


**Problem 1**- Consider a wellbore with volume of  $V_{wb}$  (cubic feet) that contains gas as a single phase fluid ,this well produces gas with constant surface flowrate  $q_{wh}(scf/day)$ , and wellbore flowing pressure,  $P_w$ .



- a) Develop a mathematical relationship between surface flowrate  $(q_{wh})$  and sandface flowrate,  $q_{sf}$  (scf/day).
- b) Define wellbore storage constant,  $C_s$ , in terms of compressibility of the gas in the wellbore  $(C_g)$  and volume of the wellbore  $(V_{wb})$  then rewrite final formula versus it.
- c) Rewrite final equation in terms of dimensionless parameters:

$$P_{D} = \frac{0.00708kh(p_{i} - p)}{q\mu B}$$
 
$$t_{D} = \frac{0.000264kt}{\emptyset \mu c r_{w}^{2}}$$

**Problem 2-**Consider an infinitely large oil reservoir (transient flow) with constant surface production rate  $(q_{wh} = const)$ .

- a) Specify required conditions (B.C and I.C) for solution of radial diffusivity equation. (\*\*Assumption: we have no wellbore storage)
- b) Transform diffusivity equation and its boundary and initial conditions into dimensionless form. (\*\*Assumption: we have no wellbore storage)

$$P_{D} = \frac{0.00708kh(p_{i} - p)}{q\mu B}$$

$$t_{D} = \frac{0.000264kt}{\emptyset \mu c r_{w}^{2}}$$

$$r_{D} = \frac{r}{r_{w}}, r_{eD} = \frac{r_{e}}{r_{w}}$$

- c) Reformulate required conditions (B.C and I.C) for solution of radial diffusivity equation when we have wellbore storage.
- d) Modify Ideal solution of radial diffusivity equation when we have skin and wellbore storage.

[Hint: Ideal solution:  $P_D = f(t_D, r_D, r_{eD})$ 

Non-Ideal solution:  $P_{wD} = g(p_D, t_D, r_D, r_{eD}, c_D, s)$ 

 $C_D$  =Dimensionless wellbore storage constant

S = Skin factor

Just show the relationship between  $P_D$  and  $P_{wD}$ ]

## **Notes:**

- 1- Bring all steps involved in solution procedure of problems clearly.
- 2- Use engineering assumption/knowledge whenever required.
- 3- Clarify/simplify the results.

## **GOOD LUCK!**

**Mosayeb Shams**