
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The User’s Guide to 

MCRC software   



2 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 | P a g e  

 

a Chemometrics Lab., Department of Chemistry, Sharif University 
of Technology, Tehran, Iran 

b Department of Computer Engineering, Sharif University of 
Technology, Tehran, Iran 

 

 

Developed by: 

 

Mehdi Jalali-Heravi* a 

Hadi Parastara 

Mohsen Kamalzadehb 

 

 

 

 

 

 

 

 

 

The User’s Guide to MCRC software   



4 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prof. R. Tauler from Department of Environmental Chemistry, IIQAB-
CSIC, Barcelona, Spain  

and 

Dr. J. Jaumot from Department of Analytical Chemistry, University of 
Barcelona, Barcelona, Spain 

 

are acknowledged for developing MCR-ALS toolbox used in this software 
and their valuable comments on the present software, its manual and 
corresponding manuscript.   

The User’s Guide to MCRC software   



5 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  

 

 

 

 

 

MCRC software version 1.0 

 
© Copyright 2010,  Chemometrics Lab., Department of Chemistry, Sharif 
University of Technology, Tehran, Iran. 

 

This software belongs to the holder of copyrights and it is made public on the 
following constraints: 

It must not be changed or modified and code cannot be added. Furthermore, its 
codes cannot be made part of any software. In case of doubt, contact to the 
holder of copyrights. 
 
 
 
 
Mehdi Jalali-Heravi 

Department of Chemistry,  

Sharif University of Technology, 

Tehran, Iran 

Tel.: +98- 21- 66165315 

Fax: +98-21- 66012983 

E-mail: jalali@sharif.edu 

The User’s Guide to MCRC software   



7 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 | P a g e  

 

Table of contents 

 
Table of contents …………………………………….…………….    8 
Preface ……………………………………………………………..  11 

Introduction ………………………………………………………..  13 

About this software ……………………………………………………  14 
About this manual……………………………………………………..   15 
System requirements…………………………………………………..   16 
Installing MCRC software…………………………………………….   17 
 

Data types…………………………………….…………………….   23 

 

Importing, Exporting and Visualizing the Data………….………...  24 

 

Data Preprocessing…………….…………………….……………..  26 

Background correction…………………………………….…………..  27 
Denoising………………………………………………………………  30 
Smoothing ……………………………………………………………..  32 

  

Chemical Rank Determination ……………….…………………....  36 

Principal component analysis (PCA) …………………………………  38 
Morphological score ………………………………………………….  41 
Subspace comparison (SC) ……………………………………………  44 
Malinowski test ………………………………………………………..  47 
Logarithm of eigenvalues and eigenvalues ratio ……………………...  49 

 



9 | P a g e  

 

Local Rank Analysis …………………….………………….……… 50 

Evolving factor analysis (EFA)……………………………………………..  51 
Fixed size moving window-evolving factor analysis (FSMW-EFA) …... 52 
Evolving latent projective graphs (ELPGs)……………………………. 55 
 
 

Resolution Methods …………………….………………………….. 57 

Generation of initial estimates………………………………………… 60 
Multivariate curve resolution-alternating least square (MCR-ALS)….. 64 
Heuristic evolving latent projection (HELP)…………………………..  71 
 

 

Peak Integration …………………………….……………………… 76 

 

Reference……………………………………………………………………  79 

 

Final remarks……………………….…………………………..…… 82 

 

 

 

 

 

 

 

 

 

 

 



10 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 | P a g e  

 

Preface 

 
Implementation of multivariate curve resolution algorithms and methods in public domain 

and commercial software remain scarce, reflecting the intrinsic difficulties of developing 

robust and user-friendly methods for MCR. Solving MCR problems still typically requires 

user interaction and knowledge of the problem under study. In recent years great efforts have 

been made by different chemometric groups for developing software (commercial or free) for 

implementation of different MCR methods for analyzing multi-component systems. MCRC 

software is dedicated to chemometric analysis of two-way chromatographic data such as GC-

MS and HPLC-DAD. This software offers a user-friendly tool can allow for an easy way to 

perform different algorithms for prepossessing, chemical rank determination, local rank 

analysis, multivariate resolution and peak integration for the analysis of multi-component 

chromatographic data sets. Although MCRC software was developed for chemometric 

analysis of chromatographic data, however, it may also be used for other types of multivariate 

data.  

This manual is designed to introduce users of MCRC software version 1.0 to the basic 

operation of the program and its use in analyzing chromatographic data. It provides a 

comprehensive overview of the system, including installation, data management, creating 

chemometric analyses, and copying results. Since the manual is intended to get users up to 

speed quickly, it concentrates on the most important features of the program, rather than 

trying to cover every small detail.  

 

 

NOTE: a copy of this manual in PDF format is included with the program and may be 

accessed from the Help menu. In the PDF document, all of the graphs are in color.  

 

 

 

 

 
 

July, 2010 
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1. Introduction 
 
Chromatographic analytical systems are increasingly being used for analysis of 

complex samples, such as foods and essential oils. Hyphenated separation techniques 

of gas chromatography-mass spectrometry (GC-MS) and high performance liquid 

chromatography-diode array detection (HPLC-DAD) are intensively used for 

obtaining detailed qualitative and quantitative information. However, in the case of 

complex samples, the traditional approaches for handling data have many problems. 

Many approaches have been proposed for situations where the eluting peaks are 

completely resolved. However, analysis of chromatographic data is sometimes 

hampered by different problems, mainly derived from the chromatographic separation 

and/or multivariate spectroscopic measurements. For example, sometimes for 

complex samples and/or the need for faster chromatographic runs, perfect separation 

cannot be achieved. Also, problems with baseline drift, spectral background, presence 

of different types of noise and low signal-to-noise (S/N) ratio of peaks may affect the 

quality of the analysis [1-3]. Standard tools for data-analysis are insufficient for 

extracting all the relevant information from the complex samples analyzed by the 

chromatography. A more versatile methodology is needed for solving these 

fundamental problems. Several chemometric techniques are proposed to overcome the 

undesirable phenomena introduced during the chromatographic run [4-11]. Therefore, 

development of software for comprehensive analysis of two-way chromatographic 

data may seem necessary. 

In the present manual, an integrated chemometric software is presented to apply 

several different mathematical algorithms in an easy-to-use environment for solving 

some chromatographic problems.  
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About this software 
 
MCRC software is a collection of essential and advanced chemometric routines that 

work in an easy-to-use environment for solving some chromatographic problems. 

MCRC software gets its name from the Multivariate Curve Resolution of two-way 

Chromatographic data software. MCRC software is designed for chemists who are 

not experts in programming or in advanced statistics and seek user-friendly tools for 

solving chromatographic problems such as baseline drift, spectral background, 

presence of different types of noise and co-elution.  
MCRC software consists of five groups of techniques for preprocessing, chemical 

rank determination, local rank analysis, multivariate resolution and peak integration. 

This software enables the analysis of complex multi-component chromatographic 

signals, GC-MS and HPLC-DAD. The features of the presented software include: (a) 

providing a number of preprocessing techniques, (b) implementation of different 

techniques for chemical rank determination, (c) usage of iterative and non-iterative 

techniques for the resolution of chromatographic data and (d) a user-friendly 

graphical user interface (GUI) with variety of graphical outputs.  

Running the software does not require a serious experience; however, a basic 

knowledge of the underlying methods is helpful to successfully interpret the results. 
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About this manual 

 

MCRC software version 1.0 includes a brief description of the theory and how to 

implement the chemometric methods. The manual covers congruence analysis and 

least-square fitting [12], morphological score [13], Savitzky-Golay filter [14], 

principal component analysis (PCA) [15], simplified Borgen method (SBM) [16], 

orthogonal projection approach (OPA) [17], subspace comparison (SC) [18], simple-

to-use interactive self-modeling mixture analysis (SIMPLISMA) [19], Malinowski’s 

reduced error (RE) [20, 21], reduced eigenvalues (REV) [20, 21] and factor indicator 

function (IND) [20, 21], fixed-size moving window-evolving factor analysis (FSMW-

EFA) [22], evolving latent projective graphs (ELPGs) [12], evolving factor analysis 

(EFA) [23], multivariate curve resolution-alternating least square (MCR-ALS) [24-

27], heuristic evolving latent projection (HELP) [12, 28] and overall volume 

integration (OVI) [29].  

Only brief descriptions of the used algorithms are given here. For more information 

about the methods the user is encouraged to consult the references.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 | P a g e  

 

System requirements 

 

This software requires a Windows PC with Microsoft .NET Framework 2. Also, 

MATLAB Component Runtime (MCR) version 7.9 is needed. MCR and Microsoft 

.NET Framework 2 can be provided with the application. There are two ways for 

importing data into the software; ‘New’ and ‘Open’. If you are interested to use the 

‘Open’ way, make sure that Microsoft Office Interop Assemblies are installed on your 

PC. The installation files for Office 2003 and 2007 are around 4 and 6 megabytes and 

can be provided with the software. However, we recommend using the ‘New’ method 

in case of any problems with ‘Open’. 

The setup file will automatically install .NET framework if cannot find it on the host 

PC. The MCR should be installed by the user. After installation, a certain string has to 

be added to the ‘Path variable’ in the Windows system environmental properties. This 

process is explained next in this section. The string which should be added to the path 

depends on the location that the MCR has been installed. For the default location the 

string will be: C:\Program Files\MATLAB\MATLAB Compiler 

Runtime\v79\runtime\win32. Note that for 64 bit Windows, the last folder should be 

win64: C:\Program Files\MATLAB\MATLAB Compiler Runtime\v79\runtime\win64. 

In the case of different installation folders, the string should be changed accordingly. 

Editing the ‘Path’ variable in Windows XP requires the following steps: (a) select the 

‘My Computer’ icon on your desktop, (b) right-click the icon and select ‘Properties’ 

(You can also go to Control Panel > System; instead of steps (a) and (b)), (c) select 

the ‘Advanced’ tab and (d) click ‘Environment Variables’. You will see two lists 

containing the variables. Look for the list named ‘System Variables’. Then, find the 

variable named ‘PATH’ or ‘Path’. Double click on ‘Path’ and edit it. In the appearing 

window, there is a textbox named ‘Variable Value’. This contains a number of 

locations separated by semicolons. Add a semicolon at the end of the list (in the case 

there is no one already). Copy and paste the required string after the semicolon. Click 

OK on all the open windows.  
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Installing MCRC software 

This software is developed with Microsoft C# and makes use of MATLAB functions. 

These MATLAB functions are wrapped by MATLAB Builder for .Net in DLL files 

which are then used in the C# program. The functions inside the DLL files are 

executed by the MATLAB Component Runtime version 7.9 which is a requirement 

for this application. MCRC software should be installed as standalone software. 

MCRC software files are in a self-extracting archive (.exe for PC). To install MCRC 

software follows these steps: 

Step 1: 

Make sure you have Microsoft .Net Framework version 2 or later installed on your 

PC.   

Step 2: 

On PC, double click the ‘setup.exe’ to install MCRC Software.  

Step 3: 

Run the ‘MCRInstaller.exe’ file to install MATLAB Component Runtime 7.9. This 

specific version of MATLAB Component Runtime is required for this application.  

Step 4: 

Go to the installed program folder at corresponding directory and open the ‘MCRC 

software’ folder and double click the ‘MCRC Software.exe’ for running the software.  

Step 5:  

Go to the ‘Help’ menu at the upper menu of the main window of the software and 

open the ‘User Guide’ for obtaining more information about the state of execution of 

each method.  

The installation procedure is shown in Figs. 1-10. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Double click on this folder 

Double click on this file 

Fig. 1 

Fig. 2 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

Fig. 4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 

Fig. 6 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Double click on this folder 

Fig. 7 

Fig. 8 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 

Fig. 10 
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2. Data types 

 

MCRC software was developed for chemometric analysis of chromatographic data; 

however, it may also be used for other types of multivariate data.                            

This software enables the analysis of complex multi-component chromatographic 

signals of gas chromatography-mass spectrometry (GC-MS) and high performance 

liquid chromatography-diode array detection (HPLC-DAD). For illustrating the 

versatility of the developed software and the execution of each method, a simulated 

GC-MS data with three components and a given level of noise and background is 

chosen. The dimension of this data is (100 × 136); 100 denote retention times as raw 

variables and 136 mass-to-charges (m/z) values as column variables. 

 Three additional data sets are included in the software; one is simulated HPLC-DAD 

data for evaluating of the potential of the software for the analysis of the HPLC-DAD 

data. This data set contains three components with serious overlap. This data matrix 

has 26 rows (time points) and 48 columns (wavelengths).  

The second data set contains a real GC-MS peak cluster selected from the total ion 

chromatogram (TIC) of the essential oil of rose flower [6]. This two-component peak 

cluster has a large amount of noise and a complex pattern of elution. The dimension 

of this data matrix is 41 × 231. The chemometric analysis of this peak cluster may 

show the potential of MCRC software for analysis of real chromatographic data.  

It is important to note that there is not limitation on the number of rows and columns. 

Also, the number of rows (time points) can be more that the number of columns. 

Therefore, the third data set is a four-component simulated GC-MS peak cluster. In 

this data set the number of rows (retention times) is more than the number of columns 

(m/z). The dimension of this data matrix is 100×20. 100 is for row variables (retention 

times) and 20 is for column variables (m/z).  
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3. Importing, Exporting and Visualizing the Data 

 

Usually chromatographic data acquisition software allows the user to export the 

chromatographic data in ASCII (American Standard Code for Information 

Interchange) format. Data files can be imported into the MCRC software in two 

different modes.  

The first mode is more versatile and more recommended. In this mode, the user 

selects ‘File’ and then ‘New’ from the upper menu. The user can take the desired data 

from somewhere else for example copy from an Excel worksheet or a MATLAB 

array and paste it directly to the ‘New’ window (Right click > Paste).  

In the second mode, only files with‘.xls’ format can be imported. The user selects 

‘File’ and then ‘Open’ and chooses the location of the desired data.  

In any case, it is very important to note that the input data must contain only the 

values of intensity and other information such as the instrumental conditions, 

retention times or scan numbers and wavelength or m/z values must be removed. 

When two-way chromatographic data is loaded into the software, a 2D plot and the 

dimensions of the input data (number of rows and columns) will appear on the right 

side of the window. In addition, there is a box on the right side of the main window 

of the software that the range of row variables (e.g. time points) and column variables 

(e.g. wavelengths or m/z values) must be entered by user. This information can help 

the user in visualizing the data and carrying on the subsequent steps of chemometric 

analysis.  

Fig. 11 (a) and (b) shows the main window of MCRC software before and after 

importing the simulated GC-MS data. For this data, the row variables (retention 

times) are in the range of 1.0 to 2.0 and column variables (m/z) from 20 to 156.  

After importing the data, a larger version of the plot can be viewed by selecting 

‘View’ and then ‘Plot’ from the upper menu. The plot can be saved as an image.  

In addition, the input data and the obtained results after each preprocessing step can 

be copied to the clipboard for future uses. This can be done by selecting ‘Data’ from 

the ‘View’ menu in the menu bar. 

 It should be pointed out that all the techniques in the MCRC Software can be 

activated by checking the check boxes below the method names.  

 



 

 

 

   

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 (a) 

Fig. 11 (b) 



4. Data preprocessing 
 
Fig. 12 shows the total ion chromatogram (TIC) of the three-component simulated 

GC-MS data in the MCRC Software before applying preprocessing techniques. As it 

can be seen from this figure, the input data contains a considerable amount of noise 

and backgrounds contribution. Using the ‘Preprocessing’ tab the data can be 

pretreated using different algorithms for the background correction, denoising and 

smoothing.  

The preprocessing algorithms implemented in the MCRC software improve the 

capabilities of the subsequent steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 
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Baseline correction 

 

Baseline correction using congruence analysis and least square fitting [12] is a very 

powerful technique for removing the baseline drift and spectral background in the 

chromatographic data.  

For convenience, raw two-way chromatographic data in general can be divided into 

two parts: one originating from the chemical constituents in the analyzed mixture, 

and the other due to instrumental artifacts, called spectral background and 

chromatographic baseline shift here in order to distinguish them from the ‘‘random’’ 

noise. Thus, raw two-way data may also be expressed as: 

 

X = Xc + Xb          or          Xij  = Xc,ij + Xb,ij        (i = 1,…, n; j = 1,…, m)                (1) 

 

where the subscripts c and b denote constituents and background, respectively. Since 

the most general systematic background for ‘‘hyphenated instrument’’ spectro-

chromatographic data is a drifting baseline in combination with a spectral 

background that is approximately constant during the chromatographic run. Such a 

background of two-way data could be expressed as: 

 

Xb = t1T + 1sT   or   Xb,ij = ti + si                                                                                (2) 

 

Here we use vector t for the baseline shift from chromatography and sT for the 

spectral absorbance vector. The vectors 1T and 1 contain only 1s and the dimensions 

of the two vectors are the number of detector channels m (in wavelength or m/z in 

spectra) and number of retention time n, respectively. 

The chromatogram or the latent-projective graphs (ELPGs) [12] may reveal a 

drifting base-line offset. Local analysis of the zero-component regions before elution 

of the first chemical component starts and after the last chemical component has 

eluted can together provide sufficient information for correcting a drifting base line. 

The procedure for confirming and correcting a systematically drifting baseline and 

spectral background using congruence analysis and least square fitting goes in five 

steps: 
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(1)  Calculate the first normalized loading vector p1,b for the zero-component region   

       before elution of the first chemical component starts and the first normalized  

       loading vector pla for the zero-component region after elution of the last  

       chemical component is finished. 

 

(2)  Compare the two loading vectors by means of their congruence coefficient, i.e.  

       calculate the scalar product Φb,a = pl,b'p l,a. 

 

(3)  If Φb,a is close to 1.0 then pl,a = p1,b meaning that the base-line offset can be  

       explained by the same factor (loading vector) during the whole chromatographic  

       elution process. In this case, the "offset" vectors tb and ta, are calculated for the  

       two zero-components regions. 

 

(4)  Use the simple univariate least-squares procedure to fit a straight line through all  

  the elements of the "offset" vectors tb and ta, with retention time as       

"independent" variable. t i = b0 + b1i   � � �, � � �. This procedure provides  

       estimates of te, for the baseline factor in the whole region between the two zero- 

       component regions. 

 

(5)  Collect tb, ta, and te, in one vector t and subtract tlT + lpl,b
T from the data matrix  

       X to obtain a corrected chromatographic/spectroscopic data matrix.  

 

This procedure provides a simple way to deal with the spectral and chromatographic 

baseline offset in two-way data from hyphenated instruments. With the help of this 

procedure, the spectral and chromatographic baseline offset in the two-way data can 

be removed with introducing additional artifacts. 

 Execution of baseline correction in the MCRC software is straightforward. By 

entering the points (retention times or scan numbers) in zero component regions 

(ZCR), before and after the elution of the desired peak cluster and press the ‘Apply’ 

button, the baseline can be corrected. The plots of data before and after baseline 

correction will be shown after applying this method on data. Fig. 13 (a) shows the 

‘Preprocessing’ tab window and Fig. 13 (b) demonstrates the corresponding plots for 

simulated GC-MS data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 (a) 

Fig. 13 (b) 
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         Denoising 

In the denoising step, homoscedastic noise can be reduced. This step can only be 

applied to GC-MS data which contain discontinuous spectroscopic dimension. The 

method of morphological score [13] is used for this purpose. This method is able to 

discriminate the signal from the noise. Therefore, it can be used for removing 

homoscedastic noise from data and also for chemical rank determination (next 

section).                                                                                                                     

The morphological score was first presented in the chemometrics literature by Shen 

et al. [13]. The method is based on the fact that the ratio of the norm of a spectrum to 

the norm of its first difference is higher for a profile of a component than a profile 

generated only by noise. Mathematically, it is defined by: 

 

�� 	
� �  
	
� 
��

�� 	
� 
��
                                                                             (3) 

 

where MS(x) is the morphological score calculated for vector x.  

MO(x) is called the morphological operator, and it calculates the difference between 

sequential values of the vector x. It has been shown that the score is scale invariant 

and is not affected by the magnitude of the noise; it is also independent of the 

baseline offset. The morphological score of the noise level is calculated using the 

formula given in Eq. (4): 

 

���� �  �	�����	���,�������                                                                       (4) 

 

where N is the number of elements in the vector, and F is the F-test value at certain 

level of confidence at (N-1,N-2) degrees of freedom. By calculation of the 

morphological score of noise, it is possible to remove the spectral channels that have 

the morphological score below noise. Therefore, deleting the spectral channels due to 

noise would be helpful in reducing the noise in the whole signal. Due to the 

discontinuity of the mass spectral, this method is applicable to GC-MS data. But in 



the case of HPLC-DAD, the spectral dimension is continuous and therefore, this 

method cannot be applied. 

To execute this method in the MCRC software, it is only necessary to apply it on the 

GC-MS data. After applying this method, the plots of desired data before and after 

denoising will be shown. Fig. 14 depicts the corresponding plots for simulated GC-

MS data. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 
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Smoothing 
 

The Savitsky-Golay filter is a smoothing filter based on polynomial regression [14]. 

Instead of simply using the averaging technique, the Savitsky-Golay filter employs 

the regression fitting capacity to improve the smoothing results because it takes 

advantage of the fitting ability of polynomial regression. However, the formulation of 

the Savitsky-Golay filter is quite similar to that of the averaging filter. The major 

difference between the moving-window average method and the Savitsky-Golay filter 

is that the latter one is essentially a weighted average method in the form of; 

 


�� �  �����  ∑ ������� 
���                                                                        (5) 

 

In this equation,  !�denotes the smoothed value while  !�" are the original raw data, 

where i and j are the running indices. (2m+1) is the window width and wj is the 

corresponding weights in the polynomial formula through polynomial regression. It 

should be noted that the first two data points, x1 and x2, cannot be smoothed in the 

process. After finding for example  #�, the next step is to move the window to the 

right by one datum to evaluate  $�. Then the procedure is repeated by moving the 

window successively along the equally spaced data until all the data are exhausted. It 

is noteworthy that the window width and the order of polynomial are the important 

parameters in deducing the correct weights. Therefore, these parameters should be 

optimized in Savitzky-Golay filter. These parameters can be changed according to the 

intensity of the signal and the amount of noise.  

For smoothing the import data using Savitsky-Golay filter in MCRC software, there is 

an option. The user can select different window width and polynomial order and using 

‘Preview’ button can see the data before and after smoothing. For example Fig. 15 (a) 

and (b) demonstrates the desired plots for (width=7 and order=2) and (width=9 and 

order=2).    

After selecting the best window width and polynomial order by user (for example 

width = 9 and order = 2), by pressing ‘Apply’ button, the initial input will be replaced 

by the results of last preview and the latter will become the input for all future 

functions.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 (a) 

Fig. 15 (b) 



Fig. 16 shows the ‘Preprocessing’ tab window. The small plot on the right side of the 

main window is produced after applying all the preprocessing techniques. The larger 

version of the plot can be viewed by selecting ‘View’ and then ‘Plot’ from the upper 

menu. The plot can be saved as an image. This figure will be kept on the software 

until the end of analysis. It can be seen that the background and noise are greatly 

reduced.  

The data after each step are available in the ‘Data’ window which was mentioned 

earlier. By clicking on ‘Copy Contents’, the results will be copied to the clipboard 

(Fig. 17 (a) and (b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 (a) 

Fig. 17 (b) 
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5. Chemical Rank Determination 

 

The determination of the number of chemical components in a system is a crucial step 

in the qualitative analysis using the data matrix. For many techniques, in an idealized 

noise-free situation, this number corresponds to the matrix rank. However, 

determining the chemical rank of an experimental data matrix is a difficult task 

because of the following factors: (i) the presence of baseline drift and spectral 

background, (ii) the presence of measurement noise and their non-assumed 

distributions, (iii) heteroscedasticity of the noise, and (iv) co-linearity in the 

measurement data. One can define the chemical rank as the number of relevant 

chemical factors that may be extracted from the data matrix in absence of noise. Most 

methods determine the chemical rank on the basis of PCA [15] or singular value 

decomposition (SVD) [30]. Additionally, Malinowski proposed several criteria based 

on error analysis [20, 21].  

Due to the accumulation of noise in hyphenated chromatographic data such as GC-

MS and HPLC-DAD, it is often difficult to arrive at safe results by these methods 

using full rank data matrix. Therefore, techniques such as subspace comparison [18] 

and morphological score [13] which are based on the analysis of key spectra instead 

of full rank matrices should be applied. These techniques may decrease the effect of 

noise and reliable results can be obtained. 

Figs. 18 (a) and (b) demonstrate the ‘Chemical Rank Determination’ tab windows 

before and after entering the desired values, respectively. A brief description of 

techniques used for the chemical rank determination in this software is presented here.     

 

 

 

 

 

 

 

 

 

 



 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 (a) 

Fig. 18 (b) 
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Principal Component Analysis (PCA) 

As first step, PCA [15] on the input data can be performed. The input data matrix X 

is subjected to the PCA bilinear decomposition. The ‘master equation’ for PCA is:  

X = t1p1
T + … + tppp

T + E                                                                                         (6) 

X = TPT + E                                                                                                              (7) 

where T is the score matrix, P is the loading matrix, and they are orthogonal and 

orthonormal, respectively. E is the residual matrix using p components. Also, t i and 

pi are the columns of T and P, respectively. There exist a number of algorithms that 

can be used for calculating PC models. These can basically be subdivided into one-

by-one component at a time algorithms (such as non-iterative partial alternating least 

square (NIPALS) algorithm [30]) and all-component-at-once algorithms (such as 

SVD [30]). MCRC software makes use SVD algorithm for PCA decomposition. The 

SVD is: 

 X = USVT + E                                                                                                          (8) 

where U and V are the score and loading matrix, respectively, where U and V are 

orthonormal, and S is a diagonal matrix with singular values on its diagonal. X and 

E are the same as for Eq. (7). The equivalence of Eqs. (7) and (8) is given by P = V 

and T = US.                                                                                                               

The input data can be either mean centered or auto-scaled before the SVD analysis. 

The maximum number of principal components can be selected by the user. The 

desired plots (score, loading and eigenvalues) can be chosen by the corresponding 

checkboxes. Output plots of eigenvalues, score and loadings for the simulated GC-

MS data are shown in Figs. 19 (a) – (c), respectively.  

The values of score, loading and eigenvalues appear in separate windows after 

applying the PCA and can be copied to the clipboard using ‘Copy Contents’ button 

(Fig. 20). There is a ‘Close All Output Windows and Plots’ button on the main 

window of the software. This button can be used for closing all data windows and 

plots opened after applying the functions (for example windows in Fig. 20). PCA 



can be used not only for obtaining a clear insight into the data but also for 

determining the number of important variables in the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 (a) 

Fig. 19 (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 (c) 

Fig. 20 
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Morphological Score 

Another method which is implemented in the MCRC software for the chemical rank 

determination is the morphological score method [13]. As mentioned before, the 

morphological score was first presented in the chemometrics literature by Shen et al. 

[13]. The method is based on the fact that the ratio of the norm of a spectrum to the 

norm of its first difference is higher for a profile of a component than a profile 

generated only by noise. Mathematically, it is defined by: 

 

�� 	
� �  
	
� 
��

�� 	
� 
��
                                                                              (9) 

 

where MS(x) is the morphological score calculated for vector x. MO(x) is called the 

morphological operator, and it calculates the difference between sequential values of 

the vector x. It has been shown that the score is scale invariant and is not affected by 

the magnitude of the noise; it is also independent of the baseline offset. In this 

method, in order to avoid accumulation of noise and obtaining reliable results, only 

some key factors are analyzed instead of the full rank matrix. OPA [17] and SBM 

[16] may be used as factor selection methods using this technique. Here, the level of 

noise in a given confidence level or probability is calculated according to the 

morphological score value. The morphological score of the noise level is calculated 

using the formula given in Eq. (10): 

 

���� �  �	�����	���,�������                                                                      (10) 

 

where N is the number of elements in the vector, and F is the F-test value at certain 

level of confidence at (N-1,N-2) degrees of freedom.  Then the chemical rank would 

be reported by counting the number of factors with a morphological score upper than 

that of the noise level (MS > MSnl). It is noteworthy that the noise level is 

determined according to the amount of noise originally present in the data. 

Therefore, smoothing the input data in preprocessing step is not recommended.  
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For the simulated GC-MS data, the user should first enter the probability level of the 

calculation. For example, a probability of 0.05 which corresponds to a confidence 

level of 95 % is recommended.  

If SBM is selected for the factor selection the ridge parameter or offset value should 

be determined. This parameter is included to prevent the presence of significant of 

noise vectors in the data matrix. The offset value varies between 0 and 1.  

The chosen number of factors is not critical and should only be greater than the 

actual number of the components in the signal, for example it can be 8 in the case of 

the simulated GC-MS data.  

If OPA is selected, only the number of desired factors should be suggested by the 

user (for example 8 in the case of simulated GC-MS data). 

 The morphological score plots using SBM and OPA are shown in Figs. 21 (a) and 

(b), respectively. Although, this method is appropriate for chemical rank estimation 

for GC-MS data, but it is not so suitable for HPLC-DAD data. The major reason is 

due to the low level of noise in the HPLC-DAD data relative to the GC-MS data. 

This can produce a wrong noise level and chemical rank for the data. 

The desired data for the plots will also appear after applying the method. These data 

can be copied using ‘Copy Contents’ button. Also, these windows can be closed 

using ‘Close All Output Windows and Plots’ button.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 (a) 

Fig. 21 (b) 
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Subspace Comparison (SC)  

Another important method for the chemical rank determination is subspace 

comparison [18]. In this technique, similar to the morphological score method, key 

factors are analyzed instead of the full rank data matrix.  

Subspace comparison compares two subspaces, each of which is described by a set 

of orthonormal vectors selected by a suitable method for factor selection such as 

PCA [15], OPA [17] and SIMPLISMA [19]. Although different methods select 

different key factors, if the correct number of them are selected then they will span 

the same vector subspace of the full row or column space of the matrix.  

Suppose two subspaces are defined as F = {f1, f2, f3, . . .,fk} and G= {g1, g2, g3, . . ., 

gk}, which are taken as columns of the n×k dimensional matrices F and G. Note k 

must be the same for both matrices. In this method, the vectors of F and G 

orthogonalized and then the two parameters of subspace discrepancy function, D (k), 

and the principal angle between subspaces, Sin2 (θK), calculate for each variable.  

 

D (k) = k – tr (k)                                                                                                      (11) 

 

tr (k) = Trace (FTGGTF)                                                                                        (12) 

 

D(k) is a measure of that part of the subspace which is in orthogonal complement of 

the other. This function becomes zero when two subspaces are identical.  

 

Sin2 (θK) = 1 – sK
2                                                                                                    (13) 

 

In this equation, sK is the eigenvalue and Sin2 (θK) is the largest principal angle as a 

measure of disagreement between the subspaces.  

The number of components or key factors (chemical rank) is selected from the 

largest value of K when D (K) and Sin2 (θK) are equal to each other and they are 

close to zero.  

 

 



Execution of subspace comparison in the MCRC software is very easy. Only the 

number of factors for each method should be selected by the user.  It is important to 

note that the number of variables for three methods must be the same. Then, for the 

PCA method, the number of desired PCs should be entered. For example, the value 

of 6 could be entered for the simulated GC-MS data. In a similar way OPA and 

SIMPLISMA factors can be selected (e.g. 6 for the desired data).  

Figs. 22 (a) – (c) show the subspace comparison plots for PCA-OPA, OPA-

SIMPLISMA and PCA-SIMPLISMA for the simulated GC-MS data, respectively. 

According to these plots, three components will describe appropriately the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22 (a) 



 

 

 

 

 

 

 

 

 

 

 

           

 

 

 

Fig. 22 (b) 

Fig. 22 (c) 
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           Malinowski Test 

The Malinowski’s reduced error (RE) and reduced error eigenvalues (REV) and 

factor indicator function (IND) [20, 21] can also be used for determining the number 

of significant components in the data matrix. Malinowski’s RE function can be 

defined as follow: 

%& � ' ∑ (���)*+�	��*�	��*�,�/�                                                                            (14) 

where λi is the eigenvalues, n and m are the number of rows and columns in X 

matrix, respectively, and k is the number of true factors.   

Malinowski’s REVs are normalized eigenvalues. An REV is defined as the 

eigenvalues divided by the degree of freedom employed in its extraction and can be 

defined as follow: 

%&.� �  (�	������	������                                                                         (15) 

Another function for determining the number of significant components is 

Malinowski’s IND. This empirical function is shown in Eq. (16). 

/�0 � %&	��*��                                                                                        (16) 

where RE and k were defined previously, and l is the least of n and m.    

 In these methods, RE, REV and IND are plotted as a function of the number of 

components in a data set. Usually one can observe a large decrease in RE and REV 

as significant factors are added to the PC model. Once all of the statistically 

significant variance is modeled, RE and REV level off to nearly a constant value and 

thereafter slightly decreases. Additional PCs model the purely random error. 

Including these factors in the PC model reduces slightly the estimated error. 

Malinowski and others [20, 21] have observed that the IND function reaches a 

minimum value when the correct number of factors is used in a principal component 

model. Fig. 23 demonstrates the RE, REV and IND plots for the simulated GC-MS 

data. In addition, the logarithmic plots are also plotted. 



 One can see a substantial decrease in RE and REV by going from one to two PCs. 

Also, going from PC2 to PC3 shows a decrease in these functions. This decrease is 

appropriately can be seen in the logarithmic curves. This strongly indicates that the 

first three components are important.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 



Logarithm of Eigenvalues & Eigenvalues Ratio 

The logarithms of eigenvalues (LEV), eigenvalues ratio (EVR) and logarithms of 

eigenvalues ratio (LEVR) [20] have also been reported as useful methods for 

differentiating the significant components from the remaining ones. In this case, the 

LEV, EVR and LEVR would be plotted against the number of components, and the 

rank is determined by finding a break in the plot for the LEV plot and locating a 

separate group of data points in the EVR and LEVR methods. Fig. 24 shows the 

plots for the sample GC-MS data. All plots show the presence of three components 

in the preprocessed data matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

Fig. 24 



             6. Local Rank Analysis 

The techniques of local rank analysis give important information about the data 

system under study and its structure. Different regions including zero-component, 

selective and overlapped regions in chromatograms can be determined by these 

methods. Evolving factor analysis (EFA) [23], fixed size moving window-evolving 

factor analysis (FSMW-EFA) [22] and evolving latent projective graphs (ELPGs) 

[12] techniques are applied for this purpose. EFA, FSMW-EFA and all their derived 

approaches are called local rank analysis methods because they look at the 

chromatograms in a local fashion, with repeated analyses of restricted elution 

windows of the data set. Other exploratory tools look at the complete 

chromatographic data with the aim of locating the most representative elution times, 

i.e. the purest spectra, or the most representative detector channels, i.e. the purest 

elution profiles, in the chromatographic run.  

Here a brief description of each method and the state of execution in the MCRC 

software is presented. Fig. 25 shows the ‘Local Rank Analysis’ tab window. In this 

window three methods of EFA, FSMW-EFA and ELPGs are included. 

 

 

 

 

 

 

 

 

 

 

 Fig. 25 
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Evolving Factor Analysis (EFA) 

Evolving factor analysis (EFA) was the parent method conceived by Maeder et al. 

[12] to study sequential evolving processes, such as chemical reactions or elution in 

chromatography. Mimicking a chromatographic analysis, where the chromatogram 

is formed recording successive spectra as a function of time, EFA performs PCA 

analyses on gradually expanding data matrices in the elution direction, enlarged by 

adding a new spectrum (detector response) at a time. This procedure is performed 

from top to bottom of the data set (forward EFA) and from bottom to top (backward 

EFA) to investigate the emergence and the decay of the eluting compounds, 

respectively.  

Fig. 26 shows the EFA results for a three-component GC-MS data table. The 

overlaid forward EFA plot and backward EFA plot are built by representing the 

log(eigenvalues) of each PCA analysis vs. the elution time related to the last row 

included in the window analyzed. The lines connecting all the analogous eigenvalues 

(ev), i.e., all the 1st ev., the 2nd ev., the ith ev.,. . . indicate the evolution of the 

magnitude of eigenvalues along the elution process and, as a consequence, the 

variation linked to the eluting compounds. A new eigenvalue line seen above the 

noise level, marked by the pool of non-significant eigenvalues, indicates the 

emergence (forward EFA) or decay (backward EFA) of an eluting compound. 

Considering the simplest case, where components are eluting sequentially and there 

are no embedded peaks (i.e., peaks eluting completely under a major one), the time 

range between the point where the first forward EFA line and the last backward EFA 

line arise from noise defines the elution window (time range of compound elution) 

for the first eluting compound. The time range out of the elution windows the 

complementary zero concentration window (time range where a compound is 

absent). This procedure can be performed analogously for all eluting compounds in 

the data set [31]. The knowledge of these windows is essential for many resolution 

methods.  

 

 

 



Still taking advantage of the sequential elution idea, connecting the first forward 

EFA line (marking the first emerging compound) with the last backward EFA line 

(marking the first decaying compound), we may obtain the approximate elution 

profile for the first compound. The rest of the profiles are obtained analogously 

connecting the ith forward EFA line with the n-ith backward EFA line, where n is 

the total number of eluting compounds. 
To execute this method in the MCRC software, it is only necessary to apply it on the 

data. After applying the corresponding plots (forward, backward and their 

combinations) will be shown (Fig. 26). In addition, the eigenvalues for forward and 

backward analysis will be depicted.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26 
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Fixed-Size Moving Window-EFA (FSMW-EFA)  

Another family of methods derived from EFA performs PCA analyses on windows 

of fixed size that are moved along the dataset. The most widely used approach of 

this kind is fixed size moving window-evolving factor analysis (FSMW-EFA), 

developed by Keller et al. [22]. In this method, PCA analyses are performed on fixed 

size windows moved row by row downwards along the elution direction of the data 

set. The FSMW-EFA plot shows the eigenvalues obtained in all the PCA analyses as 

it was done in EFA. This representation contains the information on the compound 

overlap in the elution direction. In FSMW-EFA plots, the logarithmic of eigenvalues 

higher than the noise level shows the presence of a new component. For a system of 

one species, only one curve is higher than the noise level in its FSMW-EFA plot. If 

the local rank is two, there are two components co-eluting, and so forth. The flat area 

in this plot shows the pure selective regions for one single component and the peak-

shaped region represents the overlapping region containing at least two components. 

Thus, elution ranges where two eigenvalue lines arise from the noise level indicate 

the presence of two overlapped compounds. In general, the number of compounds 

overlapping in a certain time range equals the number of eigenvalue lines above the 

noise level. FSMWEFA is particularly useful for the detection of selective elution 

regions for the different compounds, i.e., zones where only one compound is 

present. When such zones are present, obtaining the pure spectra of the related 

compounds is straightforward. They are thus of great help to decrease the 

uncertainty linked to the chromatographic resolution results. FSMW-EFA was 

created as a method more capable to detect impurities or minor compounds than 

EFA due to the local analysis of small elution windows. This sensitivity explained 

the widespread use of this method to address peak purity problems [32, 33]. 

Therefore, both the number of chemical species at every scan number and patters of 

elution for concentration profiles can be obtained. Also, from this plot one can 

obtain some information about the zero components, overlap and selective regions, 

i.e. the local rank information are obtained. In order to further confirm the 

conclusion obtained from the FSMW-EFA, the use of ELPG plots is also helpful.  

 

 



For performing FSMW-EFA in the MCRC software, the user must enter the window 

width and then apply this method on the data. It is important to note that the window 

width is an important parameter in this method that should be optimized. 

Figs. 27 (a) and (b) demonstrate the variation of eigenvalues and logarithms of 

eigenvalues vs. elution times for simulated GC-MS data. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27 (a) 

Fig. 27 (b) 
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Evolving Latent Projective Graphs (ELPGs) 

The ELPG [12] plot is actually a principal component projective plot. In the ELPG 

plot using the chromatographic direction, a straight-line region represents a pure 

selective region for one single component, while the curving part regions denote the 

overlapping regions containing at least two components.  

There are at least four advantages of using the ELPGs: 

 

1. In bivariate score plot, a straight-line segment pointing to the origin suggests 

selective information in the retention time direction. As for the bivariate loading 

plot, a straight-line segment pointing to the origin suggests selective information in 

the spectral direction. The concept of ‘straight line’ here is, of course, in the sense of 

least squares. 

 

2. The evolving information of the appearance and disappearance of the chemical 

components in the retention time direction can also be provided in ELPG. If one can 

produce the three-dimensional ELPG for the peak cluster with more than three 

components, the ELPG can provide more depicting insight about the data structure. 

 

3. Information enabling the detection of shifts of the chromatographic baseline and 

instrumental background is also provided in ELPG. If there is an offset in the 

chromatogram, the points will not concentrate at the origin in the plot even if one 

includes the zero-component regions in the data. 

 

4. ELPG is also a very good diagnostic tool to identify the embedded peaks in the 

chromatogram. This information is very important for resolving concentration 

profiles. The ELPG works like a microscope to assist one to see the details of the 

data structure of two-way data. 

Execution of this method in the MCRC software is very straightforward. The user 

can plot the 2-dimensional (2D) (Fig. 28 (a)) or 3-dimensional (3D) (Fig. 28 (b)) 

graphs representation of these plots using the MCRC software.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28 (b) 

Fig. 28 (a) 
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7. Resolution Methods 

Multivariate resolution methods are factor analysis tools designed to find the real 

underlying chromatographic profile and pure mass spectrum of each component 

using only the recorded two-way data matrix.  

A two-dimensional chromatographic data X (m×n) produced by a hyphenated 

instrument can be expressed as the product of two factor matrices as follows; 

Xm×n = Cm×pS
T

n×p  + E                                                                                              (17) 

In this equation, Xm×n denotes response matrix representing p components of m 

spectra measured at regular time intervals and at n different wavelengths or m/z 

values. Matrix C is composed of p columns, each describing the chromatographic 

profile of a pure chemical species. Similarly, the matrix ST consists of p rows 

corresponding to the pure spectra of the chemical components. Matrix E denotes the 

noise of the measurement. The superscript T means the matrix is transposed. The 

main goal of the multivariate curve resolution techniques is the decomposition of the 

response matrix according to Eq. (17).  

Multivariate curve resolution (MCR) methods have been classified in different ways 

[34] including both hard-modeling (HMCR) and self-modeling curve resolution 

(SMCR) methods. Hard-modeling methods force a specific mathematical model for 

example the shape of elution profiles or the shape of a curve in kinetics. Self-

modeling methods do not demand a priori information about the spectral or 

concentration profiles but apply natural constraints [34] such as unimodality and 

non-negativity. SMCR can further be categorized as iterative and non-iterative 

according to the algorithm used.  

Iterative resolution methods obtain the resolved concentration and response matrices 

through the one-at-a-time refinement or simultaneous refinement of the profiles in 

C, in ST, or in both matrices at each cycle of the optimization process. The profiles 

in C or ST are “tailored” according to the chemical properties and the mathematical 

features of each particular data set. The iterative process stops when a convergence 

criterion (e.g., a preset number of iterative cycles is exceeded or the lack of fit goes 

below a certain value) is fulfilled. 
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 Iterative resolution methods are in general more versatile than non-iterative 

methods. They can be applied to more diverse problems, e.g., data sets with partial 

or incomplete selectivity in the concentration or spectral domains, and to data sets 

with concentration profiles that evolve sequentially or non-sequentially. Prior 

knowledge about the data set (chemical or related to mathematical features) can be 

used in the optimization process, but it is not strictly necessary. 

Commonly used iterative methods include iterative target transformation factor 

analysis (ITTFA) [35, 36], multivariate curve resolution-alternating least squares 

(MCR-ALS) [24-27], resolving factor analysis (RFA) [37] and multivariate curve 

resolution-objective function minimization (MCR-FMIN) [8, 38].  

The generation of initial estimates for starting the iterative optimization process and 

applying proper constraints such as non-negativity, unimodality and selectivity, 

during the optimization process are important for obtaining the more unique 

responses. 

Most non-iterative methods are one-step calculation algorithms that focus on the 

one-at-a-time recovery of either the concentration or the response profile of each 

component. Once all of the concentration (C) or response (S) profiles are recovered, 

the other member of the matrix pair, C and S, is obtained by least-squares (LS) 

according to the general MCR model, X = CST [39, 40].  

Methods which are non-iterative in nature include evolving factor analysis (EFA) 

[23], window factor analysis (WFA) [41], heuristic evolving latent projections 

(HELP) [12, 28], sub-window factor analysis (SFA) [42] and parallel vector analysis 

(PVA) [43].  

Non-iterative methods use information from local-rank maps or concentration 

windows in a characteristic way. In mathematical terms, these windows define 

subspaces where the different compounds are present or absent. The subspaces can 

be combined in clever ways through projections or by extraction of common vectors 

(profiles) to obtain the profiles sought. Non-iterative methods are fast, but they have 

clear limitations in their applicability because of the difficulties associated with 

correct definition of concentration windows and local rank.  

In many situations, the MCR solutions are not unique. Very often, rotational and 

intensity ambiguities may present in MCR solutions. It means that, instead of a 

unique solution, a range of feasible solutions that fit the data equally well may be 

obtained. These bands of feasible solutions can be drastically reduced when 
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constraints are applied during the estimation of concentration and spectral profiles. 

Several procedures have been described in the literature about how to find the bands 

of feasible solutions associated to MCR solutions [44-46]. 

The MCR-ALS and HELP are common MCR techniques and both are available in 

the MCRC software. A brief description of these methods is presented below. 
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Generation of Initial Estimates 

The iterative optimization of the profiles in C or ST starts by using a matrix or a set 

of profiles with the same size as C or ST with rough approximations of the 

concentration profiles or spectra that will be obtained as the final results. This matrix 

contains the initial estimates to be used in the resolution process. In general, the use 

of nonrandom estimates shortens the iterative optimization process and helps to 

avoid convergence to a local optimum different from the desired solution. It is 

sensible to use chemically meaningful estimates if we have a way to obtain them 

easily or if the necessary information is available. Whether the initial estimates of C-

type or ST-type are selected depends on which type of profiles is less overlapped, on 

which direction of the matrix is more information available or simply on the will of 

the chemist.  

There are several chemometric methods to calculate these initial estimates; some of 

them are particularly suitable when the data consists of evolutionary profiles of a 

process, such as EFA [12], whereas some others mathematically select the purest 

rows or columns of the data matrix as initial profiles such as SIMPLISMA [19], 

OPA [17] or SBM [16].  

The MCRC software uses these methods for estimating the initial guess of 

concentration and spectral profiles. Fig. 29 shows the Resolution 1 tab window.  In 

this window the Number of Components boxes for each method should be filled in. 

Additionally, the value of Noise Percent in the SIMPLISMA method and Ridge 

Parameter in the SBM should be entered. The Ridge parameter is included to 

prevent the presence of significant of noise vectors in the data matrix. The value of 

this parameter varies between 0 and 1. The user can select whether concentration or 

spectral profiles are obtained. Figs. 30 (a)-(d) show the initial estimates of the 

concentration profiles using the methods of EFA, SIMPLISMA, OPA, and SBM, 

respectively. Also, the minimum number of components for the SBM method is 

three.  

 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29 

Fig. 30 (a) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 (b) 

Fig. 30 (c) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 (d) 
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             Multivariate curve resolution-alternating least squares (MCR-ALS) 

MCR-ALS is a specific implementation of ALS that has been proposed and 

developed by Tauler’s group [24-27]. It is an iterative resolution method whose 

algorithm is related in the most straightforward manner to the basic MCR model. 

Thus, MCR-ALS finds iteratively the matrices of concentration profiles and spectra 

through the optimization of C-type or ST-type estimates by a constrained alternating 

least-squares procedure. In this method, neither the C nor the ST matrix has priority 

over the other and the two full matrices are used in each iterative cycle. The general 

operating procedure of MCR-ALS includes the following: 

 

1. Determination of the number of compounds in X. 

2. Generation of initial estimates (e.g., C-type matrix). 

3. Calculation of ST under constraints. 

4. Calculation of C under constraints. 

5. Reproduction of X from the product of C and ST. 

6. Go to step (3) until convergence is achieved. 

 

The number of compounds in X can be determined using ‘Chemical Rank 

Determination’ step or can be known beforehand. In any case, the number obtained 

must not be considered a critical parameter and resolution of the system using 

different numbers of components is the usual and recommended practice. The initial 

estimates used should be chemically meaningful and can be generated using the 

methods described in previous section that best suit the nature of the data set. The 

core of the MCR-ALS method consists of solving the following two least-squares 

problems under the suitable constraints: 

 ���12  34516 7 1 8 �293                                                                                               (18) 

 ����2  34516 7 1 8 �293                                                                               (19) 

 

In these two equations, the norm of the residuals between the PCA reproduced data, 

XPCA, using the selected number of components, and the ALS reproduced data using 
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the least-squares estimates of C and ST matrices, 1 8  and �29, is alternatively 

minimized keeping constant 1 8  (Equation (18)) or �29 (Equation (19)). The explicit 

least squares solution of Equation (18) is: 

 

�29 � 	12912���1294516                                                                                           (20) 

 

Or in equivalent form: 

 

�29 � 12�  4516                                                                                                       (21) 

 

where 12�  is the pseudoinverse of the concentration matrix. Likewise, the explicit 

least-squares solution of Equation (19) is: 

 

:8 � 4516;8	�29�2���                                                                                                 (22) 

 

or 

 

:8 � 4516�2�                                                                                                           (23) 

 

where �2�  is the pseudoinverse of the spectral matrix.  

The two least-squares problems in Equations (18) and (19) are solved sequentially in 

each iterative cycle, that is, the spectral matrix ST is calculated and then used to 

obtain the concentration matrix C. Note that the matrix used to check for the 

convergence of the optimization procedure is frequently not the experimental matrix, 

X, but the reproduced matrix from a PCA model with a number of components equal 

to the number of chemical compounds in the system, XPCA. This de-noised matrix 

keeps all the relevant chemical information on the original data set and helps to 

evaluate in a more reliable way the convergence of the optimized profiles toward the 

solutions sought. The convergence criterion in the alternating least-squares 

optimization is typically based on the comparison of the fit obtained in two 

consecutive iterations. When the relative difference in fit is below a threshold value, 

the optimization is finished. Other possibilities include setting a maximum number 

of iterative cycles as a stop criterion or comparing the shape of the resolved 
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concentration profiles and spectra in consecutive iterations. Although the difference 

in fit between iterations is the most commonly used criterion to stop the optimization 

process, it is also recommended to monitor the evolution of the profile shapes to be 

sure that the optimal solution has been obtained from all possible points of view. As 

long as inappropriate constraints are not employed and the core bilinear model is 

obeyed, MCR-ALS will usually result in a feasible solution, although rotational 

and/or intensity ambiguities can still exist depending on the actual system under 

study. During the ALS optimization, several constraints can be applied to model the 

shapes of the C or ST profiles such as non-negativity, unimodality, normalization 

and selectivity (local rank). In reference 27, the MCR-ALS method and graphical 

user interface (GUI) developed by Jaumot et al. is explained in more detail. In the 

present MCRC software, this MCR-ALS GUI is kept practically equal to the one 

previously developed. Figures of merit of the optimization procedure are the 

percentage of lack of fit (LOF), the percentage of explained variance (R2) and the 

standard deviation of the residuals with respect to the experimental data (σ).  

LOF is defined as the difference among the input data X and the data reproduced 

from the CST product obtained by MCR techniques. This value is calculated 

according to the expression: 

 

<�� 	%� � �>> ?∑ @����,�∑ 
����,�                                                                              (24) 

 

Where xij designs an element of the input data matrix X and eij is the related residual 

obtained from the difference between the input element and the MCR reproduction.  

R2 and σ are calculated according to following expressions where xij and eij are the 

same as above and nrows and ncolumns are the number of rows and columns in the X 

matrix. 
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The MCR-ALS optimization dialog boxes that appear during the MCR-ALS 

execution are mainly related to: (a) input of initial information, (b) selection of the 

constraints and selection of the optimization parameters and (c) display of the 

resolution results. The first dialog box corresponds to the Selection of the data set 

window. In this window the data matrix and the initial estimate boxes should be 

filled in (Fig. 31 (a), input in data matrix box and one of the estimations EFA, 

SIMPLISMA, OPA and SBM in initial estimate box). Once these matrices have 

been selected, six different plots corresponding to the columns and rows of the input 

data matrix, initial estimate profiles and score and loading plots of PCA are 

obtained. 

By clicking the Continue button, the software will go directly to the Selection of ALS 

constraints window (Fig. 31 (b)). After loading this window in Fig. 31 (b), the only 

active buttons are those to select which constraints should be applied. When one 

particular constraint and the matching checkbox button are selected, new options are 

gradually activated to give the details on where and how the constraints should come 

into play in the resolution process.                                                              

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31 (a) 

Fig. 31 (b) 



When no closure constraint is selected, as for the GC-MS example, a new window 

will open suggesting the use of an alternative normalization to avoid scale problems 

during ALS optimization (see Fig. 31 (c)). Once the constraints are selected, the 

choice of the optimization parameters and the information needed to present the 

output of the resolution method are carried out in the same way for the data matrix. 

By clicking the Optimize button, the optimization procedure starts showing the 

partial results obtained in different iterations. When graphical output has been 

selected, the MCR-ALS resolved profiles are graphically shown after each iteration.  

 

 

 

 

 

 

 

 

 

Once convergence is achieved or after the maximum number of iterations is 

exceeded or in the case of divergence, the optimal resolution results will be shown 

(Fig. 31 (d)). In this window, a plot of the resolved concentration and spectral 

profiles is given as well as figures of merit related to the optimization results. More 

details for the state of the execution of this toolbox are given in the reference 27. 

Finally, the corresponding data for exporting from the MCRC Software and 

subsequent analysis can be appeared by clicking the Retrieve Results button in the 

Resolution 1 tab window. Two windows containing the values of concentration and 

spectral profiles will appear (Fig. 32).   

 

 

Fig. 31 (c) 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31 (d) 

Fig. 32 
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Heuristic evolving latent projection (HELP)  

The HELP is a multifunctional approach that includes, for instance the identification 

of selective regions as well as a component-wise resolution of the pure components 

[12, 28]. The most specific feature of the HELP is the use of selective regions where 

the measurements are generated exclusively by one component.  

The PCA decomposition of data matrix X is shown in Eq. (17). The non-orthogonal 

rotation matrix R with inverse R-1, transforms the score and loading vectors from the 

principal component decomposition into the concentration and spectral profiles of 

the pure chemical species. The problem is how one can determine the transformation 

matrix R. If we look at just one chemical component i at a time, we can write; ci = 

Tr i. The vector r i is column i in matrix R. In order to solve for the transformation 

vector r i, the information in zero-component and selective regions can be used. This 

gives the following relation;  

 

cs+o,i = Ts+o,ir i                                                                                                            (27) 

 

The subscript s+0,i implies the use of the selective region in addition to the zero-

concentration window for component i to determine the transformation vector r i.  

Information about the zero concentration window and the selective region for the 

component i, can be obtained by the local rank analysis methods, such as FSMW-

EFA and ELPGs. Thus, we can solve Eq. (27) uniquely for the rotation vectors {r i} 

for all chemical components i with some selective chromatographic regions; 

 

r i = inv(Ts+0,i
T*Ts+0,i)*Ts+0,i*cs+0,i                                                                        (28) 

 

In this equation, cs+0,i is the score vector of the first principal component in the 

selective region of chemical component i. Hence, using the R rotation matrix and the 

following equation, the concentration and spectral profiles for all components can be 

obtained;  

 

C = TR                                                                                                                    (29) 

 

ST = R-1PT                                                                                                               (30) 



Note that the HELP method involves a deflation operation to remove the response of 

the resolved component and repeats the aforementioned resolution procedure using 

the deflated data matrix to estimate the remaining pure variables.  

Similar to the MCR-ALS technique, the values of σ, LOF and R2 can be used for the 

evaluation of the results obtained using HELP technique. The HELP method can be 

executed in Resolution 2 tab window of MCRC software (Fig. 33 (a)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First of all, the number of components in the data matrix should be entered into the 

Number of Components box. Clicking the Open HELP Window opens a new window 

on which the local rank information should be addressed (Fig. 26 (b)).  

 

 

 

 

 

 

 

Fig. 33 (a) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This information can be obtained from the Local Rank Analysis step using EFA, 

FSMW-EFA and ELPGs. For each component, zero-component and selective 

regions should be selected. Zero-component region (ZCR) considers a retention time 

range in which no compound has been eluted. In selective regions only one 

component could be present. In other words, the local rank is one in this range. In 

addition, each component has usually two zero-components and one selective region 

except for the first and last components which have only one ZCR. Therefore, the 

user can tick the check box for activating the second ZCR in the HELP window (Fig. 

33 (b)). After entering the corresponding information in this window for each 

component, clicking the Apply button starts the calculation of the HELP solutions. 

Fig. 33 (c) shows the corresponding profiles obtained using this method and the 

corresponding values is shown in Fig. 33 (d).  

 

 

 

Fig. 26 (b)  

Fig. 33 (b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33 (c) 

Fig. 33 (d) 



Finally, after calculating the HELP solutions, the statistical parameters can be 

displayed in the Resolution 2 window similar to the MCR-ALS (Fig 34).  These 

parameters are useful in comparison with the results of the two methods (MCR-ALS 

and HELP).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34 
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8. Peak Integration 

 

The method of overall volume integration (OVI) [29] is carried out for computing 

the amount of each component after resolving the chromatograms and mass spectra. 

The total two-way response of each component can be obtained from the outer 

product of concentration and spectrum vectors. The total amount of each component 

is proportional to the overall volume of its two-way response. The advantage of this 

quantitative method over the general peak-area integration is that all mass spectral 

intensities are taken into consideration. Also, it avoids the disadvantage that general 

peak area approximately treated by peak split.  

Execution of the OVI in the MCRC software is very simple. Peak Integration tab 

window is shown in Figs. 35 (a) and (b). In this window the corresponding matrix 

and method boxes should be filled in.  

In the first box, the input data matrix (either processed or not) and the pure data 

matrix for each component can be selected. In a similar way, in the second box the 

desired method (MCR-ALS and/or HELP) should be selected by the user.  

By clicking the Apply button, the software calculates the peak area for each data 

matrix and the relative percentage for each one relative to the whole signal can be 

calculated.      

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 35 (a) 

Fig. 35 (b) 
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