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Preface

Implementation of multivariate curve resolution @ithms and methods in public domain
and commercial software remain scarce, reflecthrgy intrinsic difficulties of developing
robust and user-friendly methods for MCR. Solvin@€ Rl problems still typically requires
user interaction and knowledge of the problem umstigdly. In recent years great efforts have
been made by different chemometric groups for agpief) software (commercial or free) for
implementation of different MCR methods for anahgimulti-component systems. MCRC
software is dedicated to chemometric analysis ofway chromatographic data such as GC-
MS and HPLC-DAD. This software offers a user-frigntbol can allow for an easy way to
perform different algorithms for prepossessing, netoal rank determination, local rank
analysis, multivariate resolution and peak intagrafor the analysis of multi-component
chromatographic data sets. AlthougmCRC softwarewas developed for chemometric
analysis of chromatographic data, however, it mMay be used for other types of multivariate
data.

This manual is designed to introduce usersM@RC softwareversion 1.0 to the basic
operation of the program and its use in analyzihgpmatographic data. It provides a
comprehensive overview of the system, includingdailbetion, data management, creating
chemometric analyses, and copying results. SineartAnual is intended to get users up to
speed quickly, it concentrates on the most importeatures of the program, rather than

trying to cover every small detail.

NOTE: a copy of this manual in PDF format is in@ddwith the program and may be
accessed from thidelp menu. In the PDF document, all of the graphs aciar.

July, 2010
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1. Introduction

Chromatographic analytical systems are increasirgging used for analysis of
complex samples, such as foods and essentiaHyifshenated separation techniques
of gas chromatography-mass spectrometry (GC-MS) tdgd performance liquid
chromatography-diode array detection (HPLC-DAD) drgensively used for
obtaining detailed qualitative and quantitativeomfiation. However, in the case of
complex samples, the traditional approaches fodliagn data have many problems.
Many approaches have been proposed for situatidrerenthe eluting peaks are
completely resolved. However, analysis of chromephic data is sometimes
hampered by different problems, mainly derived fritve chromatographic separation
and/or multivariate spectroscopic measurements. &ample, sometimes for
complex samples and/or the need for faster chraynapdic runs, perfect separation
cannot be achieved. Also, problems with baseliii, dpectral background, presence
of different types of noise and low signal-to-no{S¢N) ratio of peaks may affect the
quality of the analysis [1-3]. Standard tools faatatanalysis are insufficient for
extracting all the relevant information from thengadex samples analyzed by the
chromatography. A more versatile methodology is deee for solving these
fundamental problems. Several chemometric techsique proposed to overcome the
undesirable phenomena introduced during the chiagraphic run [4-11]Therefore,
development of software for comprehensive analg$iswo-way chromatographic
data may seem necessary.

In the present manual, an integrated chemometftvae is presented to apply
several different mathematical algorithms in anydgasuse environment for solving

some chromatographic problems.
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About this software

MCRC softwareds a collection of essential and advanced chemenetutines that
work in an easy-to-use environment for solving sotheomatographic problems.
MCRC softwaregets its name from thklultivariate Curve Resolution of two-way
Chromatographic dataoftware. MCRC softwareis designed for chemists who are
not experts in programming or in advanced statisticd seek user-friendly tools for
solving chromatographic problems such as baselinft, dpectral background,
presence of different types of noise and co-elution

MCRC softwareconsists of five groups of techniques for prepsso®y, chemical
rank determination, local rank analysis, multivegigesolution and peak integration.
This software enables the analysis of complex rualthponent chromatographic
signals, GC-MS and HPLC-DAD. The features of thespnted software include: (a)
providing a number of preprocessing techniques,irfiplementation of different
techniques for chemical rank determination, (c)gesaf iterative and non-iterative
techniques for the resolution of chromatographi¢adand (d) a user-friendly
graphical user interface (GUI) with variety of ghiqal outputs.

Running the software does not require a seriouseréxpce; however, a basic

knowledge of the underlying methods is helpfuluocessfully interpret the results.
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About this manual

MCRC softwareversion 1.0 includes a brief description of theaty and how to
implement the chemometric methods. The manual sogengruence analysid
least-square fitting [12], morphological scdiE3], Savitzky-Golay filter[14],
principal component analysis (PCH)5], simplified Borgen method (SBML6],
orthogonal projection approach (OFAY], subspace comparison (@3], simple-
to-use interactive self-modeling mixture analysssMPLISMA) [19], Malinowski’s
reduced error (RE) [20, 21], reduced eigenvaludsMH20, 21] and factor indicator
function (IND)[20, 21], fixed-size moving window-evolving factanalysis (FSMW-
EFA)[22], evolving latent projective graphs (ELPG%2], evolving factor analysis
(EFA) [23], multivariate curve resolution-alternating séasquare (MCR-ALS|24-
27], heuristic evolving latent projection (HELP)2, 28] and overall volume
integration (OVI)29].

Only brief descriptions of the used algorithms gireen here. For more information

about the methods the user is encouraged to cahsuleferences.
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System requirements

This software requires a Windows PC with Micros@fET Framework 2. Also,
MATLAB Component Runtime (MCR) version 7.9 is nedd®CR and Microsoft
.NET Framework 2 can be provided with the applaatiThere are two ways for
importing data into the software; ‘New’ and ‘Opeif'you are interested to use the
‘Open’ way, make sure that Microsoft Office Inter@psemblies are installed on your
PC. The installation files for Office 2003 and 200 around 4 and 6 megabytes and
can be provided with the software. However, we meoend using the ‘New’ method

in case of any problems with ‘Open’.

The setup file will automatically install .NET fraawork if cannot find it on the host
PC. The MCR should be installed by the user. Aftstallation, a certain string has to
be added to the ‘Path variable’ in the Windows eysenvironmental properties. This
process is explained next in this section. Thegtwhich should be added to the path
depends on the location that the MCR has beenlledtdor the default location the
string will be: C:\Program Files\MATLAB\MATLAB Compiler
Runtime\v79\runtime\win32ote that for 64 bit Windows, the last folder sttbble
win64: C:\Program Files\MATLAB\MATLAB Compiler Runtime\\iz@time\win64.
In the case of different installation folders, #tang should be changed accordingly.
Editing the ‘Path’ variable in Windows XP requithe following steps(a) select the
‘My Computer’ icon on your desktogb) right-click the icon and select ‘Properties’
(You can also go to Control Panel > System; instefasteps (a) and (b)jc) select
the ‘Advanced’ tab and (d) click ‘Environment Vasias'. You will see two lists
containing the variables. Look for the list nam&gstem Variables’. Then, find the
variable named ‘PATH’ or ‘Path’. Double click ondf’ and edit it. In the appearing
window, there is a textbox named ‘Variable Valu&his contains a number of
locations separated by semicolons. Add a semicaidhe end of the list (in the case
there is no one already). Copy and paste the redjstring after the semicolon. Click

OK on all the open windows.
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| nstalling MCRC software

This software is developed with Microsoft C# andkesmuse of MATLAB functions.
These MATLAB functions are wrapped by MATLAB Buildér .Net in DLL files
which are then used in the C# program. The funstiotside the DLL files are
executed by the MATLAB Component Runtime versio@ Which is a requirement
for this application.MCRC softwareshould be installed as standalone software.
MCRC softwardiles are in a self-extracting archive (.exe f&@)PTo instalMCRC

softwarefollows these steps:
Step 1:

Make sure you have Microsoft .Net Framework verstoar later installed on your
PC.

Step 2
On PC, double click the ‘setup.exe’ to instdICRC Software
Step 3:

Run the ‘MCRInstaller.exe’ file to install MATLAB @mponent Runtime 7.9. This

specific version of MATLAB Component Runtime is uaed for this application.
Step 4:

Go to the installed program folder at correspondiirgctory and open the ‘MCRC

software’ folder and double click the ‘MCRC Softwagxe’ for running the software.
Step 5:

Go to the ‘Help’ menu at the upper menu of the mwindow of the software and
open the ‘User Guide’ for obtaining more informatiabout the state of execution of

each method.

The installation procedure is shown in Figs. 1-10.
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& MCRC Software

Welcome to the MCRC Software Setup Wizard

The installer will guide wou through the steps required to install MCRC Software on wour computer.

WARNING: This computer program is protected by copyright law and international treaties.
Unauthorized duplication or distribution of this program, or any podion of it may result in sewere civil
or criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Confirm Installation

The installer is ready to install MCRC Software on wour computer.

Click "Mext" to start the installation.

Cancel ] l < Back ] I lext >

Fig. 4



i# MCRC Software

Select Installation Folder

The installer will install MCRC Software to the fallowing folder.
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i# MCRC Software

Installation Complete

MCRC Sotware has been successfully installed.

Click "Cloze" to exit.
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2. Data types

MCRC software was developed for chemometric ansalg§ichromatographic data;
however, it may also be used for other types of tivarate data.
This software enables the analysis of complex rualthponent chromatographic
signals of gas chromatography-mass spectrometryNISE and high performance
liquid chromatography-diode array detection (HPL&Hl). For illustrating the
versatility of the developed software and the ekeauof each method, a simulated
GC-MS data with three components and a given le¥aloise and background is
chosen. The dimension of this data is (100 x 1B6J, denote retention times as raw
variables and 136 mass-to-charges (m/z) valueslama variables.

Three additional data sets are included in thenso€; one is simulated HPLC-DAD
data for evaluating of the potential of the softvéor the analysis of the HPLC-DAD
data. This data set contains three componentssaiilous overlap. This data matrix
has 26 rows (time points) and 48 columns (waveles)gt

The second data set contains a real GC-MS peateclsslected from the total ion
chromatogram (TIC) of the essential oil of rosevéo[6]. This two-component peak
cluster has a large amount of noise and a comp@é&enn of elution. The dimension
of this data matrix is 41 x 231. The chemometrialgsis of this peak cluster may
show the potential dICRC softwardor analysis of real chromatographic data.

It is important to note that there is not limitation the number of rows and columns.
Also, the number of rows (time points) can be mibtrat the number of columns.
Therefore, the third data set is a four-componenukated GC-MS peak cluster. In
this data set the number of rows (retention tinreg)ore than the number of columns
(m/z). The dimension of this data matrix is 100x200 is for row variables (retention

times) and 20 is for column variables (m/z).

23| Page



3. Importing, Exporting and Visualizing the Data

Usually chromatographic data acquisition softwallews the user to export the
chromatographic data in ASCIl (American Standardde&ofor Information
Interchange) format. Data files can be imported itite MCRC softwarein two
different modes.

The first mode is more versatile and more recomredndh this mode, the user
selects ‘File’ and then ‘New’ from the upper meifibe user can take the desired data
from somewhere else for example copy from an Examksheet or a MATLAB
array and paste it directly to the ‘New’ window @Rt click > Paste).

In the second mode, only files with'.xIs’ formatrche imported. The user selects
‘File’ and then ‘Open’ and chooses the locatiornhef desired data.

In any case, it is very important to note that thgut data must contain only the
values of intensity and other information such Be tnstrumental conditions,
retention times or scan numbers and wavelength /arvaues must be removed.
When two-way chromatographic data is loaded intogbftware, a 2D plot and the
dimensions of the input data (humber of rows arldmas) will appear on the right
side of the window. In addition, there is a boxtba right side of the main window
of the software that the range of row variableg.(&me points) and column variables
(e.g. wavelengths or m/z values) must be entereasby. This information can help
the user in visualizing the data and carrying anghbsequent steps of chemometric
analysis.

Fig. 11 (a) and (b) shows the main window MCRC softwarebefore and after
importing the simulated GC-MS data. For this ddte row variables (retention
times) are in the range of 1.0 to 2.0 and colunmaibées (m/z) from 20 to 156.

After importing the data, a larger version of tHetpcan be viewed by selecting
‘View’ and then ‘Plot’ from the upper menu. The pt@an be saved as an image.

In addition, the input data and the obtained resaifiter each preprocessing step can
be copied to the clipboard for future uses. This lsa done by selecting ‘Data’ from
the ‘View’ menu in the menu bar.

It should be pointed out that all the techniquestie MCRC Softwarecan be
activated by checking the check boxes below thénatehames.
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4. Data preprocessing

Fig. 12 shows the total ion chromatogram (TIC) led three-component simulated
GC-MS data in thtMCRC Softwardoefore applying preprocessing techniques. As it
can be seen from this figure, the input data costai considerable amount of noise
and backgrounds contribution. Using the ‘Prepraogsstab the data can be
pretreated using different algorithms for the baokgd correction, denoising and
smoothing.

The preprocessing algorithms implemented in MERC softwareimprove the

capabilities of the subsequent steps.
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Basdline correction

Baseline correction using congruence analysis aastIsquare fittinlL2] is a very
powerful technique for removing the baseline daifid spectral background in the
chromatographic data.

For convenience, raw two-way chromatographic datgeineral can be divided into
two parts: one originating from the chemical camsints in the analyzed mixture,
and the other due to instrumental artifacts, caligmbctral backgroundand
chromatographic baseline shtiere in order to distinguish them from the “random

noise. Thus, raw two-way data may also be expressed

X =X+ Xp or XjZXC,ij'FXb,ij (i=l,...,n;j=l,...,m) (l)

where the subscriptsandb denote constituents and background, respectivalgeS
the most general systematic background for “hypglted instrument” spectro-
chromatographic data is a drifting baseline in comtion with a spectral
background that is approximately constant durireg¢hromatographic run. Such a

background of two-way data could be expressed as:

Xp = t1" + 19 or Xojj=ti+s 2

Here we use vectar for the baseline shift from chromatography aidfor the
spectral absorbance vector. The vecidrandl contain only 1s and the dimensions
of the two vectors are the number of detector cem (in wavelength or m/z in
spectra) and number of retention timaespectively.

The chromatogram or the latent-projective graphkP(&s) [12] may reveal a
drifting base-line offset. Local analysis of the@eomponent regions before elution
of the first chemical component starts and after lst chemical component has
eluted can together provide sufficient informatfon correcting a drifting base line.
The procedure for confirming and correcting a gystecally drifting baseline and
spectral background using congruence analysis eamst kquare fitting goes in five

steps:
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(1) Calculate the first normalized loading veqtgy for the zero-component region
before elution of the first chemical componstarts and the first normalized
loading vectopy, for the zero-component region after elution of lHst
chemical component is finished.

(2) Compare the two loading vectors by meansaif tongruence coefficient, i.e.

calculate the scalar proddt .= pip'Pi.a-

(3) If @y 4is close to 1.0 thep, o = p1pmeaning that the base-line offset can be
explained by the same factor (loading veadaring the whole chromatographic
elution process. In this case, the "offsettorst, andt,, are calculated for the

two zero-components regions.

(4) Use the simple univariate least-squares praeet fit a straight line through all
the elements of the "offset" vectots and t,, with retention time as
"independent” variabld; = by + by; i € a,i € b. This procedure provides
estimates dt, for the baseline factor in the whole region betwéhe two zero-

component regions.

(5) Collectty, ts, andte, in one vectot and subtractl™ + Ip;p" from the data matrix

X to obtain a corrected chromatographic/spectrosodgia matrix.

This procedure provides a simple way to deal withgpectral and chromatographic
baseline offset in two-way data from hyphenatedrimsents. With the help of this
procedure, the spectral and chromatographic basefiset in the two-way data can
be removed with introducing additional artifacts.

Execution of baseline correction in the MCRC sofevas straightforward. By
entering the points (retention times or scan nus)bir zero component regions
(ZCR), before and after the elution of the despedk cluster and press the ‘Apply’
button, the baseline can be corrected. The plotdatd before and after baseline
correction will be shown after applying this methmadl data. Fig. 13 (a) shows the
‘Preprocessing’ tab window and Fig. 13 (b) dematses the corresponding plots for
simulated GC-MS data.
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Denoising

In the denoising step, homoscedastic noise carethbeced. This step can only be
applied to GC-MS data which contain discontinuogpscéroscopic dimension. The
method of morphological score [13] is used for fhispose. This method is able to
discriminate the signal from the noise. Therefdtecan be used for removing

homoscedastic noise from data and also for chenmaak determination (next

section).

The morphological score was first presented inctimometrics literature by Shen
et al. [13]. The method is based on the fact tmatratio of the norm of a spectrum to
the norm of its first difference is higher for sople of a component than a profile
generated only by noise. Mathematically, it is defi by:

_lix=3l
MS (%) = TMo - ni 3)

where MS(x) is the morphological score calculatdviectorx.

MO(X) is called the morphological operator, andatculates the difference between
sequential values of the vectarlt has been shown that the score is scale inviaria
and is not affected by the magnitude of the noisés also independent of the

baseline offset. The morphological score of thesedevel is calculated using the
formula given in Eq. (4):

n—2

Ms,, = J(N—I)F(N—I,N—Z) @

where N is the number of elements in the vectod, lams the F-test value at certain
level of confidence at (N-1,N-2) degrees of freedoBy calculation of the
morphological score of noise, it is possible to oemthe spectral channels that have
the morphological score below noise. Thereforegtited the spectral channels due to
noise would be helpful in reducing the noise in thbkole signal. Due to the

discontinuity of the mass spectral, this methodpgplicable to GC-MS data. But in
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the case of HPLC-DAD, the spectral dimension istiomous and therefore, this

method cannot be applied.

To execute this method in thdCRC softwareit is only necessary to apply it on the
GC-MS data. After applying this method, the plotdesired data before and after
denoising will be shown. Fig. 14 depicts the cquoesling plots for simulated GC-

MS data.
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Smoothing

The Savitsky-Golay filter is a smoothing filter ledson polynomial regression [14].
Instead of simply using the averaging technique, $lavitsky-Golay filter employs
the regression fitting capacity to improve the sthow results because it takes
advantage of the fitting ability of polynomial regsion. However, the formulation of
the Savitsky-Golay filter is quite similar to that the averaging filter. The major
difference between the moving-window average metmtithe Savitsky-Golay filter

is that the latter one is essentially a weighteetage method in the form of;

* 1

—_ m
Xi = 501 2= —m Wj Xi4j (5)

In this equationx; denotes the smoothed value whilg ; are the originataw data,

wherei andj are the running indices. (2m+1) is the window widihd w; is the
corresponding weights in the polynomial formulaotigh polynomial regression. It

should be noted that tHest two data pointsx; andx,, cannot be smoothed in the

process. Afteffinding for examplexs, the next step is to move the window to the

right by one datum tevaluatex,. Then the procedure is repeated by moving the
window successively along the equally spaced datidall the data arexhausted. It

is noteworthy that the window width and the ordépolynomial are the important
parameters in deducing the correct weights. Thezefthese parameters should be
optimized in Savitzky-Golay filter. These paramstean be changed according to the
intensity of the signal and the amount of noise.

For smoothing the import data using Savitsky-Gdigr in MCRC software, there is
an option. The user can select different windowtlwehd polynomial order and using
‘Preview’ button can see the data before and aftesothing. For example Fig. 15 (a)
and (b) demonstrates the desired plots for (widthrd@ order=2) and (width=9 and
order=2).

After selecting the best window width and polynooeder by user (for example
width = 9 and order = 2), by pressing ‘Apply’ buttdhe initial input will be replaced
by the results of last preview and the latter veicome the input for all future

functions.
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Fig. 16 shows the ‘Preprocessing’ tab window. Timals plot on the right side of the
main window is produced after applying all the pomessing techniques. The larger
version of the plot can be viewed by selecting Wiand then ‘Plot’ from the upper
menu. The plot can be saved as an image. Thisefigiit be kept on the software
until the end of analysis. It can be seen thatlthekground and noise are greatly
reduced.

The data after each step are available in the ‘Daitadow which was mentioned
earlier. By clicking on ‘Copy Contents’, the resulwill be copied to the clipboard
(Fig. 17 (a) and (b)).
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5. Chemical Rank Determination

The determination of the number of chemical compth& a system is a crucial step
in the qualitative analysis using the data maffiox many techniques, in an idealized
noise-free situation, this number corresponds te thatrix rank. However,
determining the chemical rank of an experimentahdaatrix is a difficult task
because of the following factors: (i) the preseméebaseline drift and spectral
background, (i) the presence of measurement naisd their non-assumed
distributions, (iii) heteroscedasticity of the rmisand (iv) co-linearity in the
measurement data. One can define the chemical asnthe number of relevant
chemical factors that may be extracted from tha dadtrix in absence of noise. Most
methods determine the chemical rank on the basiB@A[15] or singular value
decomposition (SVD) [30]. Additionally, Malinowskiroposed several criteria based
on error analysig0, 21].

Due to the accumulation of noise in hyphenated mmlatographic data such as GC-
MS and HPLC-DAD, it is often difficult to arrive &tafe results by these methods
using full rank data matrix. Therefore, technigsash as subspace comparison [18]
and morphological score [13] which are based oratiaysis of key spectra instead
of full rank matrices should be applied. These mémphes may decrease the effect of
noise and reliable results can be obtained.

Figs. 18 (a) and (b) demonstrate the ‘Chemical Raetermination’ tab windows
before and after entering the desired values, otispdy. A brief description of

techniques used for the chemical rank determinatiohis software is presented here.
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Principal Component Analysis (PCA)

As first step, PCA [15] on the input data can bdgrened. The input data matrix
is subjected to the PCA bilinear decomposition. ‘thaster equation’ for PCA is:

X =tips' + ... +tppp +E (6)
X=TP"+E 7

whereT is the score matrix? is the loading matrix, and they are orthogonal and
orthonormal, respectivel is the residual matrix usingcomponents. Alsa; and

pi are the columns ofF andP, respectively. There exist a number of algorithire
can be used for calculating PC models. These csicdlly be subdivided into one-
by-one component at a time algorithms (such asitevative partial alternating least
square (NIPALS) algorithm [30]) and all-componetibace algorithms (such as
SVD [30]). MCRC softwarenakes use SVD algorithm for PCA decomposition. The
SVD is:

X=USV' +E (8)

whereU andV are the score and loading matrix, respectivelyerek) andV are
orthonormal, and is a diagonal matrix with singular values on itaginal.X and
E are the same as for Eq. (7). The equivalence of &) and (8) is given by =V
andT =US.

The input data can be either mean centered orsnaied before the SVD analysis.
The maximum number of principal components can dlected by the user. The
desired plots (score, loading and eigenvalues)beanhosen by the corresponding
checkboxes. Output plots of eigenvalues, scorel@adings for the simulated GC-
MS data are shown in Figs. 19 (a) — (c), respelgtive

The values of score, loading and eigenvalues apjpeaeparate windows after
applying the PCA and can be copied to the clipbasidg ‘Copy Contents’ button
(Fig. 20). There is a ‘Close All Output Windows aRtbts’ button on the main
window of the software. This button can be usedclosing all data windows and

plots opened after applying the functions (for eglawindows in Fig. 20). PCA
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can be used not only for obtaining a clear insighb the data but also for

determining the number of important variables ia data.
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Morphological Score

Another method which is implemented in t€RC softwardor the chemical rank

determination is the morphological score metfi®]. As mentioned before, the
morphological score was first presented in the amastrics literature by Shen et al.
[13]. The method is based on the fact that the maitithe norm of a spectrum to the
norm of its first difference is higher for a prefibf a component than a profile

generated only by noise. Mathematically, it is dedi by:

_lix=3l
MS (%) = fMo - ni ®)

where MS(x) is the morphological score calculat@dviector x. MO(X) is called the
morphological operator, and it calculates the d#fee between sequential values of
the vectoix. It has been shown that the score is scale invaaiad is not affected by
the magnitude of the noise; it is also independ#nthe baseline offset. In this
method, in order to avoid accumulation of noise ahthining reliable results, only
some key factors are analyzed instead of the &k matrix. OPA17] and SBM
[16] may be used as factor selection methods ubkisgechnique. Here, the level of
noise in a given confidence level or probability aalculated according to the
morphological score value. The morphological sadrthe noise level is calculated

using the formula given in Eq. (10):

MS,, = \](N—l)F(N—l,N—Z) (10)

n—2

where N is the number of elements in the vectod, Riis the F-test value at certain
level of confidence at (N-1,N-2) degrees of freedofimen the chemical rank would
be reported by counting the number of factors withorphological score upper than
that of the noise level (MS > M$% It is noteworthy that the noise level is
determined according to the amount of noise orlingresent in the data.

Therefore, smoothing the input data in preprocessiap is not recommended.
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For the simulated GC-MS data, the user should dins¢r the probability level of the
calculation. For example, a probability of 0.05 @hicorresponds to a confidence
level of 95 % is recommended.

If SBM is selected for the factor selection theggdparameter or offset value should
be determined. This parameter is included to prethen presence of significant of
noise vectors in the data matrix. The offset valaiees between 0 and 1.

The chosen number of factors is not critical andusth only be greater than the
actual number of the components in the signalefample it can be 8 in the case of
the simulated GC-MS data.

If OPA is selected, only the number of desireddesishould be suggested by the
user (for example 8 in the case of simulated GCeda).

The morphological score plots using SBM and OP& sirown in Figs. 21 (a) and
(b), respectively. Although, this method is appraig for chemical rank estimation
for GC-MS data, but it is not so suitable for HPD@D data. The major reason is
due to the low level of noise in the HPLC-DAD daédative to the GC-MS data.
This can produce a wrong noise level and chema#t for the data.

The desired data for the plots will also appeagradpplying the method. These data
can be copied using ‘Copy Contents’ button. Ald®se windows can be closed

using ‘Close All Output Windows and Plots’ button.
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Subspace Comparison (SC)

Another important method for the chemical rank dateation is subspace
comparisonjl8]. In this technique, similar to the morpholagliscore method, key
factors are analyzed instead of the full rank diadarix.

Subspace comparison compares two subspaces, eadticbfis described by a set
of orthonormal vectors selected by a suitable neettow factor selection such as
PCA[15], OPA[17] and SIMPLISMA[19]. Although different methods select
different key factors, if the correct number ofrthare selected then they will span
the same vector subspace of the full row or colgpace of the matrix.

Suppose two subspaces are definedt adfy, fo, f3, . . .fi} andG={g1, g2, Qs - - -,
o}, which are taken as columns of tiwek dimensional matrice andG. Notek
must be the same for both matrices. In this methbd, vectors of F and G
orthogonalized and then the two parameters of sidesgiscrepancy function, D (k),

and the principal angle between subspace$, (i, calculate for each variable.
D (k) =k —tr(k) (11)
tr (k) = Trace E'GG'F) (12)

D(K) is a measure of that part of the subspace lwisian orthogonal complement of

the other. This function becomes zero when two [gatxss are identical.
Sin’ 0k) = 1 — &° 3j1

In this equations« is the eigenvalue and Siftx) is the largest principal angle as a
measure of disagreement between the subspaces.

The number of components or key factors (chemiaak) is selected from the
largest value oK when D (K) and Sih(6«) are equal to each other and they are

close to zero.
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Execution of subspace comparison in MERC softwares very easy. Only the
number of factors for each method should be saldayethe user. It is important to
note that the number of variables for three methodst be the same. Then, for the
PCA method, the number of desired PCs should keresht For example, the value
of 6 could be entered for the simulated GC-MS dhataa similar way OPA and
SIMPLISMA factors can be selected (e.g. 6 for theiged data).

Figs. 22 (a) — (c) show the subspace comparisots glr PCA-OPA, OPA-
SIMPLISMA and PCA-SIMPLISMA for the simulated GC-Mdata, respectively.

According to these plots, three components wilkcdes appropriately the data.
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Malinowski Test

The Malinowski’s reduced error (RE) and reducedrergigenvalues (REVand
factor indicator function (IND) [20, 21] can alse hsed for determining the number
of significant components in the data matrix. Malrski's RE function can be

defined as follow:

RE = [ Z%=k+1}‘i ]1/2 (14)
(n—k)(m-k)
where J; is the eigenvaluesy and m are the number of rows and columnsXn

matrix, respectively, anklis the number of true factors.

Malinowski's REVs are normalized eigenvalues. An\RES defined as the
eigenvalues divided by the degree of freedom engglog its extraction and can be
defined as follow:

A
(m-j+1)(n—-j+1)

REV, = (15)

Another function for determining the number of sig@ant components is

Malinowski's IND. This empirical function is shown Eg. (16).

RE

INDZW

(16)

whereRE andk were defined previously, ards the least oh andm.

In these methods, RE, REV and IND are plotted dsnation of the number of

components in a data set. Usually one can obsela®a decrease in RE and REV
as significant factors are added to the PC modekceQall of the statistically

significant variance is modeled, RE and REV leét@nearly a constant value and
thereafter slightly decreases. Additional PCs mothed purely random error.

Including these factors in the PC model reducegh#lyi the estimated error.

Malinowski and others [20, 21] have observed tlit IND function reaches a

minimum value when the correct number of factonssied in a principal component
model. Fig. 23 demonstrates the RE, REV and INDsplor the simulated GC-MS

data. In addition, the logarithmic plots are alsatted.
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One can see a substantial decrease in RE and RE¥dihg from one to two PCs.

Also, going from PC2 to PC3 shows a decrease igetlienctions. This decrease is
appropriately can be seen in the logarithmic cur¥éss strongly indicates that the
first three components are important.
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Logarithm of Eigenvalues & Eigenvalues Ratio

The logarithms of eigenvalues (LEV), eigenvaluesoréEVR) and logarithms of

eigenvalues ratio (LEVR) [20] have also been regmbras useful methods for
differentiating the significant components from tieenaining ones. In this case, the
LEV, EVR and LEVR would be plotted against the n@mbf components, and the
rank is determined by finding a break in the plot the LEV plot and locating a

separate group of data points in the EVR and LEV&hads. Fig. 24 shows the
plots for the sample GC-MS data. All plots show pinesence of three components

in the preprocessed data matrix.
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6. Local Rank Analysis

The techniques of local rank analysis give impdrtaformation about the data
system under study and its structure. Differeniomeg including zero-component,
selective and overlapped regions in chromatograams e determined by these
methods. Evolving factor analysis (EFA) [23], fixede moving window-evolving
factor analysis (FSMW-EFA) [22] and evolving latgubjective graphs (ELPGs)
[12] techniques are applied for this purpose. EFBMW-EFA and all their derived
approaches are called local rank analysis methasuse they look at the
chromatograms in a local fashion, with repeatedlyaea of restricted elution
windows of the data set. Other exploratory toolokloat the complete
chromatographic data with the aim of locating theshrepresentative elution times,
i.e. the purest spectra, or the most representdttvector channels, i.e. the purest

elution profiles, in the chromatographic run.

Here a brief description of each method and thte st execution in théMCRC
softwareis presented. Fig. 25 shows the ‘Local Rank Anglyab window. In this
window three methods of EFA, FSMW-EFA and ELPGsiactuded.
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Evolving Factor Analysis (EFA)

Evolving factor analysis (EFA) was the parent mdtieconceivedby Maeder et al.
[12] to study sequential evolvimrocesses, such as chemical reactions or elution in
chromatographyMimicking a chromatographic analysis, where tigomatogram

is formed recording successive spectra dsnation of time, EFA performs PCA
analyses on graduallgxpanding data matrices in the elution directioiamed by
adding a new spectrum (detector response) at a filme procedures performed
from top to bottom of the data set (forwd&#&A) and from bottom to top (backward
EFA) to investigate theemergence and the decay of the eluting compounds,

respectively.

Fig. 26 shows the EFA results for a three-compor@@tMS data table. The
overlaid forward EFA plot and backward EFA plot dreilt by representing the
log(eigenvalues) of each PCA analysis vs. ¢hdion time related to the last row
included in the window analyzed@he lines connecting all the analogous eigenvalues
(ev), i.e., all the 1st ev., the 2nd ev., thk ev., . . indicate the evolutiorf the
magnitude of eigenvalues along the elution process, asa consequence, the
variation linked to the eluting compounds.new eigenvalue line seen above the
noise level, marked byhe pool of non-significant eigenvalues, indicatbe
emergence(forward EFA) or decay (backward EFA) of an elutingmpound.
Considering the simplest case, where componentslatieg sequentially and there
are no embedded peaks (i.e., pealksing completely under a major one), the time
range betweethe point where the first forward EFA line and thst backward&FA
line arise from noise defines the elution windoimnérange of compound elution)
for the first eluting compound. Theéme range out of the elution windows the
complementary zero concentratiomndow (time range where a compound is
absent). This procedure can be performed analogdwshll eluting compounds in
the data set [31]. The knowledge of these wind@asssential for many resolution

methods.
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Still taking advantage of theequential elution idea, connecting the first fava
EFA line (marking the first emerging compound) with the laatkwardEFA line
(marking the first decaying compound), we may abtdie approximate elution
profile for the first compound. The resf the profiles are obtained analogously
connecting theth forward EFA line with then-ith backward EFA line, whene is
the total number of eluting compounds.

To execute this method in théCRC softwareit is only necessary to apply it on the
data. After applying the corresponding plots (fomvabackward and their
combinations) will be shown (Fig. 26). In additidhe eigenvalues for forward and

backward analysis will be depicted.
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Fixed-Size Moving Window-EFA (FSMW-EFA)

Another family of methods derived from EFA perforlR€A analyses on windows
of fixed size that are moved along the dataset. mbet widely used approach of
this kind is fixed size movingvindow-evolving factor analysis (FSMW-EFA),
developedy Keller et al. [22]. In this method, PCA analysesperformed on fixed
size windows moved row by row downwaraleng the elution direction of the data
set. The FSMW-EFA plaghows the eigenvalues obtained in all the PCA aeslas

it was done in EFA. This representation contains nif@inationon the compound
overlap in the elution direction. In FSMW-EFA plptke logarithmic of eigenvalues
higher than the noise level shows the presenceneinacomponent. For a system of
one species, only one curve is higher than theerieigel in its FSMW-EFA plot. If
the local rank is two, there are two componentsloting, and so forth. The flat area
in this plot shows the pure selective regions fog single component and the peak-
shaped region represents the overlapping regiotacming at least two components.
Thus, elutionranges where two eigenvalue lines arise from thisenlevel indicate
the presence of two overlapped compounds. In gerteeanumber of compounds
overlapping in a certain time range equaks number of eigenvalue lines above the
noise level. FSMWEFAs particularly useful for the detection of selgetielution
regions for the different compounds, i.e., zoneswhonly onecompound is
present. When such zones are present, obtaininguhe spectra of the related
compounds is straightforward. They are thus of tgreelp to decrease the
uncertainty linked to the chromatographic resolutiesults. FSMW-EFA was
created as a method more capable to detect imgmuti minor compounds than
EFA due to the local analysis of small elution vang. This sensitivity explained
the widespread use of this method to address padtly problems [32, 33].
Therefore, both the number of chemical species@tyescan number and patters of
elution for concentration profiles can be obtainédso, from this plot one can
obtain some information about the zero componestlap and selective regions,
i.e. the local rank information are obtained. Irdesr to further confirm the

conclusion obtained from the FSMW-EFA, the use Io0P& plots is also helpful.
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For performing FSMW-EFA in the MCRC software, theeumust enter the window
width and then apply this method on the data. ilnigortant to note that the window

width is an important parameter in this method #teduld be optimized.

Figs. 27 (a) and (b) demonstrate the variation igérevalues and logarithms of

eigenvalues vs. elution times for simulated GC-N$&d
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Evolving Latent Projective Graphs (ELPGS)

The ELPG [12] plot is actually a principal compoherojective plot. In the ELPG
plot using the chromatographic direction, a stralgle region represents a pure
selective region for one single component, whike ¢hrving part regions denote the

overlapping regions containing at least two compdse

There are at least four advantages of using the3sLP

1. In bivariate score plot, a straight-line segmpainting to the origin suggests
selective information in the retention time direati As for the bivariate loading
plot, a straight-line segment pointing to the ariguggests selective information in
the spectral direction. The concept of ‘straighélihere is, of course, in the sense of

least squares.

2. The evolving information of the appearance aisdpmpearance of the chemical
components in the retention time direction can aks@rovided in ELPG. If one can
produce the three-dimensional ELPG for the pealstefuwith more than three

components, the ELPG can provide more depictingsbout the data structure.

3. Information enabling the detection of shiftstieé chromatographic baseline and
instrumental background is also provided in ELPGthere is an offset in the
chromatogram, the points will not concentrate at ohigin in the plot even if one

includes the zero-component regions in the data.

4. ELPG is also a very good diagnostic tool to tdgrthe embedded peaks in the
chromatogram. This information is very importantr fiesolving concentration

profiles. The ELPG works like a microscope to dssige to see the details of the
data structure of two-way data.

Execution of this method in thdCRC softwards very straightforward. The user
can plot the 2-dimensional (2D) (Fig. 28 (a)) odiBiensional (3D) (Fig. 28 (b))

graphs representation of these plots usindMB&C software
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7. Resolution Methods

Multivariate resolution methods are factor analysisls designed to find the real
underlying chromatographic profile and pure masscspm of each component

using only the recorded two-way data matrix.

A two-dimensional chromatographic da¥ (mxn) produced by a hyphenated

instrument can be expressed as the product ofaatorf matrices as follows;
Xmsxn= CmxpS'nxp + E (17)

In this equation Xm«n, denotes response matrix represenfmgomponents ofn
spectra measured at regular time intervals ana @ifferent wavelengths or m/z
values. MatrixC is composed op columns, each describing the chromatographic
profile of a pure chemical species. Similarly, tmatrix ST consists ofp rows
corresponding to the pure spectra of the chemimalponents. MatriE denotes the
noise of the measurement. The superscripteans the matrix is transposed. The
main goal of the multivariate curve resolution teiciues is the decomposition of the
response matrix according to Eq. (17).

Multivariate curve resolution (MCR) methods havemelassified in different ways
[34] including both hard-modeling (HMCR) and selbdeling curve resolution
(SMCR) methods. Hard-modeling methods force a $ipemiathematical model for
example the shape of elution profiles or the shapa curve in kinetics. Self-
modeling methods do not demand a priori informataivout the spectral or
concentration profiles but apply natural constsif84] such as unimodality and
non-negativity. SMCR can further be categorizeditagative and non-iterative
according to the algorithm used.

Iterative resolution methods obtain the resolvedcentration and response matrices
through the one-at-a-time refinement or simultasemiinement of the profiles in
C, in S, or in both matrices at each cycle of the optiiiaprocess. The profiles
in C or S™ are “tailored” according to the chemical propertes! the mathematical
features of each particular data set. The itergireeess stops when a convergence
criterion (e.g., a preset number of iterative cgdkeexceeded or the lack of fit goes

below a certain value) is fulfilled.
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Iterative resolution methods are in general moegsatile than non-iterative
methods. They can be applied to more diverse pnole.g., data sets with partial
or incomplete selectivity in the concentration pecatral domains, and to data sets
with concentration profiles that evolve sequengiatir non-sequentially. Prior
knowledge about the data set (chemical or reladaddthematical features) can be
used in the optimization process, but it is ndtdyr necessary.

Commonly used iterative methods include iteratigeget transformation factor
analysis (ITTFA) [35, 36], multivariate curve regtibn-alternating least squares
(MCR-ALS) [24-27], resolving factor analysis (RFf37] and multivariate curve
resolution-objective function minimization (MCR-FM]) [8, 38].

The generation of initial estimates for starting tterative optimization process and
applying proper constraints such as non-negatiwtyimodality and selectivity,
during the optimization process are important fditaming the more unique
responses.

Most non-iterative methods are one-step calculasilgorithms that focus on the
one-at-a-time recovery of either the concentraborthe response profile of each
component. Once all of the concentrati@) ¢r responseS) profiles are recovered,
the other member of the matrix pa, and S, is obtained by least-squares (LS)
according to the general MCR mod¥l= CS' [39, 40].

Methods which are non-iterative in nature includeleng factor analysis (EFA)
[23], window factor analysis (WFA) [41], heuristievolving latent projections
(HELP) [12, 28], sub-window factor analysis (SFAR] and parallel vector analysis
(PVA) [43].

Non-iterative methods use information from locatkamaps or concentration
windows in a characteristic way. In mathematicaimt® these windows define
subspaces where the different compounds are preseatiisent. The subspaces can
be combined in clever ways through projectionsyoextraction of common vectors
(profiles) to obtain the profiles sought. Non-it&ra methods are fast, but they have
clear limitations in their applicability because thie difficulties associated with
correct definition of concentration windows anddbrank.

In many situations, the MCR solutions are not uaigdery often, rotational and
intensity ambiguities may present in MCR solutiolismeans that, instead of a
unique solution, a range of feasible solutions fiiahe data equally well may be

obtained. These bands of feasible solutions candtastically reduced when
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constraints are applied during the estimation afcemtration and spectral profiles.
Several procedures have been described in thatlirerabout how to find the bands
of feasible solutions associated to MCR solutigis46].

The MCR-ALSand HELP are common MCR techniques and both aréablain
the MCRC softwareA brief description of these methods is preseb&ldw.
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Generation of Initial Estimates

The iterative optimization of the profiles @ or S' starts by using a matrix or a set
of profiles with the same size & or S’ with rough approximations of the
concentration profiles or spectra that will be ald as the final results. This matrix
contains the initial estimates to be used in tilseltgion process. In general, the use
of nonrandom estimates shortens the iterative opdition process and helps to
avoid convergence to a local optimum different fréme desired solution. It is
sensible to use chemically meaningful estimateseifhave a way to obtain them
easily or if the necessary information is availablhether the initial estimates Gf
type orS'-type are selected depends on which type of psofildess overlapped, on
which direction of the matrix is more informatiowadlable or simply on the will of

the chemist.

There are several chemometric methods to calcthate initial estimates; some of
them are particularly suitable when the data céms§ evolutionary profiles of a
process, such as EFA2], whereas some others mathematically seleciptirest
rows or columns of the data matrix as initial plexi such as SIMPLISMAL9],
OPA[17] or SBM[16].

The MCRC softwareuses these methods for estimating the initial gues
concentration and spectral profiles. Fig. 29 shtveResolution ltab window. In
this window theNumber of Componentsoxes for each method should be filled in.
Additionally, the value ofNoise Percenin the SIMPLISMA method andRidge
Parameterin the SBM should be entered. The Ridge paramisténcluded to
prevent the presence of significant of noise vectorthe data matrix. The value of
this parameter varies between 0 and 1. The usesalant whether concentration or
spectral profiles are obtained. Figs. 30 (a)-(dvsithe initial estimates of the
concentration profiles using the methods of EFAVIBLISMA, OPA, and SBM,
respectively. Also, the minimum number of composefar the SBM method is

three.
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MCRC Software: Chemometric Analysis of Two-Way Chromatographic Data
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Multivariate curve resolution-alternating least squares (MCR-ALYS)

MCR-ALS is a specific implementation of ALS that shdbeen proposed and
developed by Tauler's group [24-27]. It is an iter@ resolution method whose
algorithm is related in the most straightforwardnmer to the basic MCR model.
Thus, MCR-ALS finds iteratively the matrices of cemtration profiles and spectra
through the optimization oE-type orS'-type estimates by a constrained alternating
least-squares procedure. In this method, neitree€thor theS™ matrix has priority
over the other and the two full matrices are useekich iterative cycle. The general

operating procedure of MCR-ALS includes the follogi

1. Determination of the number of compoundXin
2. Generation of initial estimates (e.G-type matrix).
3. Calculation ofS" under constraints.

4. Calculation ofC under constraints.

5. Reproduction oK from the product o€ andST.

(o]

. Go to step (3) until convergence is achieved.

The number of compounds iX can be determined using ‘Chemical Rank
Determination’ step or can be known beforehandann case, the number obtained
must not be considered a critical parameter andlugsn of the system using
different numbers of components is the usual andmenended practice. The initial
estimates used should be chemically meaningful card be generated using the
methods described in previous section that besttisginature of the data set. The
core of the MCR-ALS method consists of solving thowing two least-squares

problems under the suitable constraints:

min

0 pen - €S| a8)
mﬁln [Xpca — €S| (19)

In these two equations, the norm of the residueta/éen the PCA reproduced data,

Xpca, Using the selected number of components, andlt&ereproduced data using
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the least-squares estimates ©f and S' matrices,C and ST, is alternatively
minimized keeping constai@ (Equation (18)) oS8T (Equation (19)). The explicit
least squares solution of Equation (18) is:

ST = (CTC)'C"Xpca (20)
Or in equivalent form:

ST = C* Xpca (21)

whereC* is the pseudoinverse of the concentration matrikewise, the explicit

least-squares solution of Equation (19) is:

E = XPCAg(ng)_l (22)
or
E = XPCA§+ (23)

whereS* is the pseudoinverse of the spectral matrix.

The two least-squares problems in Equations (18)49) are solved sequentially in
each iterative cycle, that is, the spectral ma8iis calculated and then used to
obtain the concentration matri€. Note that the matrix used to check for the
convergence of the optimization procedure is fretjyenot the experimental matrix,
X, but the reproduced matrix from a PCA model witiuanber of components equal
to the number of chemical compounds in the systépaa. This de-noised matrix
keeps all the relevant chemical information on ¢niginal data set and helps to
evaluate in a more reliable way the convergendbebptimized profiles toward the
solutions sought. The convergence criterion in téernating least-squares
optimization is typically based on the comparisdntioe fit obtained in two
consecutive iterations. When the relative diffeeeircfit is below a threshold value,
the optimization is finished. Other possibilitiexlude setting a maximum number

of iterative cycles as a stop criterion or comparihe shape of the resolved
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concentration profiles and spectra in consecutamiions. Although the difference
in fit between iterations is the most commonly usetkrion to stop the optimization
process, it is also recommended to monitor theutiool of the profile shapes to be
sure that the optimal solution has been obtainaah fall possible points of view. As
long as inappropriate constraints are not emplayed the core bilinear model is
obeyed, MCR-ALS will usually result in a feasibleltion, although rotational
and/or intensity ambiguities can still exist depegdon the actual system under
study. During the ALS optimization, several conistimcan be applied to model the
shapes of th& or S' profiles such as non-negativity, unimodality, nolizegtion
and selectivity (local rank). In reference 27, MER-ALS method and graphical
user interface (GUI) developed by Jaumot et aéxgslained in more detail. In the
presentMCRC softwarethis MCR-ALS GUI is kept practically equal to tlome
previously developed. Figures of merit of the opmtion procedure are the
percentage of lack of fit (LOF), the percentageerplained variance @R and the
standard deviation of the residuals with respethéoexperimental data)

LOF is defined as the difference among the inpu& &®aand the data reproduced
from the CS' product obtained by MCR techniques. This valuecaculated
according to the expression:

Yij eiZ,-

2ij Xizi

LOF (%) = 100

(24)

Wherex; designs an element of the input data matriande; is the related residual
obtained from the difference between the input elenand the MCR reproduction.
R? ando are calculated according to following expressiomerex; ande; are the

same as above amg,ys and Neoumns@re the number of rows and columns in e

matrix.

2 2
_ 2ijXij— Xijeij

2
Zi,j Xij

Yii e
o= | ueh (26)
Nyrows Neolumns
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The MCR-ALS optimization dialog boxes that appearing the MCR-ALS
execution are mainly related to: (a) input of mlitinformation, (b) selection of the
constraints and selection of the optimization patams and (c) display of the
resolution results. The first dialog box correspomal theSelection of the data set
window. In this window the data matrix and the iaditestimate boxes should be
filled in (Fig. 31 (a),input in data matrix box and one of the estimations EFA,
SIMPLISMA, OPA and SBM in initial estimate box). . these matrices have
been selected, six different plots correspondintp¢ocolumns and rows of the input
data matrix, initial estimate profiles and scored doading plots of PCA are
obtained.

By clicking theContinuebutton, the software will go directly to ti&=lection of ALS
constraintswindow (Fig. 31 (b)). After loading this window fig. 31 (b), the only
active buttons are those to select which consgahbuld be applied. When one
particular constraint and the matching checkboxdouare selected, new options are
gradually activated to give the details on where laow the constraints should come

into play in the resolution process.
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n MCR-ALS user friendly interface
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When no closure constraint is selected, as foQieMS example, a new window
will open suggesting the use of an alternative radization to avoid scale problems
during ALS optimization (see Fig. 31 (c)). Once ttenstraints are selected, the
choice of the optimization parameters and the médion needed to present the
output of the resolution method are carried ouhansame way for the data matrix.
By clicking the Optimize button, the optimization procedure starts showiing

partial results obtained in different iterations.n®4 graphical output has been

selected, the MCR-ALS resolved profiles are graglhicshown after each iteration.

-,
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Mormalization of the 5 matrix (pure spectra)
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Fig. 31 (c)

Once convergence is achieved or after the maximumber of iterations is
exceeded or in the case of divergence, the optiesalution results will be shown
(Fig. 31 (d)). In this window, a plot of the resetl’ concentration and spectral
profiles is given as well as figures of merit reto the optimization results. More
details for the state of the execution of this boeal are given in the reference 27.
Finally, the corresponding data for exporting fraime MCRC Softwareand
subsequent analysis can be appeared by clickinfRétieeve Resultbutton in the
Resolution ltab window. Two windows containing the values ohcentration and
spectral profiles will appear (Fig. 32).



MCR-ALS user frienly interface: RESULTS

ALS optimization

Concentration profiles

Spectra

081
06T

20

047
02t
N’I\ M’\J"\I K\I ‘@\. I‘E‘n. 1 1
40

60 80 100 120

Plats are optimum in the

CORNYERGEMCE |15 ACHIEWED

iteration Nr. 19 Std. dev of residusls ve. exp. data = 0030763
Fitting error (lack of fit, of) in % (PCA) =0.77692
Fitting error (lack of fit, lof)in % (exp) = 3.359
Percent of variance explained ( r 2 ) at the optimum is = 99.8572
Fig. 31 (d)
as! as!
Copy Contents Copy Contents
1 2 3 i 1 2 3 4
0 1] 0.03505... 0 1] 0.012gg. 0
0 1] 0.04281... 0 1] 0.00349. 0
0 0.01190.. 0.030117... 0 1] 011833, 0
0 0.04051... 0.12956...
0 0.06746.. 0.19771...
0 010312, 0.27551..
0 010312, 0.37429..
0 0.03663... 047633,
0 0.08582.. 0.68200...
0 0.02003... 0.89208...
0 0.0E412.. 1.13E8E..
0 0.05194... 1.43645..
0 0.04580... 1.74437..
0 0.05800... 2.711E5E..
0 005188, 256915
0 0.05188.. 311544
0 0.04858.. 3.78972.
0 0171412, 4.46353..
0 0.20344... 51705
0 0.37021... 5.89562..
0 0.5594E.. E.54588. .
0 075184, 721365
0 0.97476.. 7.85122.
0 1.2657E... 8.44068..
0 1.63810.. 892734
0 212204, 9.42265..
749472 2708300, 9.8207..
0.04685... 3.50885.. 10.0749..
0.09091... 4.35106.. 10,1889,

0.12544. .

Fig. 32

5.33108...

101820, [w <




Heuristic evolving latent projection (HELP)

The HELP is a multifunctional approach that inclsidi@r instance the identification
of selective regions as well as a component-wiselugion of the pure components
[12, 28]. The most specific feature of the HELPhis use of selective regions where
the measurements are generated exclusively byanpanent.

The PCA decomposition of data matKxis shown in Eq. (17). The non-orthogonal
rotation matrixR with inverseR ™, transforms the score and loading vectors from the
principal componentlecomposition into the concentration and spectralilps of
the pure chemicalpecies. The problem is how one can determingdnsformation
matrix R. If we look at just one chemical componert atime, we can writeg; =
Tri. The vectorr; is columni in matrix R. In order to solve for the transformation
vectorr;, the information in zero-component and selectegions can be used. This

gives the following relation;
Cs+o,i— Ts+o,iri (27)

The subscrips+0,i implies the use of the selective region in additio the zero-
concentration window for componentto determine the transformation vector
Information about the zero concentration window #mel selective region for the
component, can be obtained by the local rank analysis methsash as FSMW-
EFA and ELPGs. Thus, we can solve Eq. (27) unigtelyhe rotation vector§ i}

for all chemical componentswvith some selective chromatographic regions;
ri = inV(Ts+0,iT*Ts+0,D*Ts+0,i*Cs+0,i (28)
In this equationCs.ois the score vector of the first principal compadnen the

selective region of chemical componeritience, using thR rotation matrix and the

following equation, the concentration and speddrafiles for all components can be

obtained;
C=TR (29)
S' =R’ (30)
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Note that the HELP method involves a deflation afien to remove the response of
the resolved component and repeats the aforemeutimsolution procedure using
the deflated data matrix to estimate the remaipung variables.

Similar to the MCR-ALS technique, the valuessoLOF and R can be used for the
evaluation of the results obtained using HELP tegpm The HELP method can be
executed irResolution 2ab window ofMCRC softwargFig. 33 (a)).

MCRC Software: Chemometric Analysis of Two-Way Chromatographic Data
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Heuristic Evolving Latent Projection (H.E.L.F)
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Fig. 33 (a)

First of all, the number of components in the datrix should be entered into the
Number of Componenb®ox. Clicking theOpen HELP Windowpens a new window

on which the local rank information should be addesl (Fig. 26 (b)).
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This information can be obtained from thecal Rank Analysistep using EFA,
FSMW-EFA and ELPGs. For each component, zero-coemorand selective
regions should be selected. Zero-component red@i@RR] considers a retention time
range in which no compound has been eluted. Inctede regions only one
component could be present. In other words, thallcank is one in this range. In
addition, each component has usually two zero-cor@pis and one selective region
except for the first and last components which hawiy one ZCR. Therefore, the
user can tick the check box for activating the secoCR in the HELP window (Fig.
33 (b)). After entering the corresponding inforroatiin this window for each
component, clicking thé\pply button starts the calculation of the HELP soluion
Fig. 33 (c) shows the corresponding profiles oledimsing this method and the

corresponding values is shown in Fig. 33 (d).
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Finally, after calculating the HELP solutions, tk&atistical parameters can be
displayed in theResolution 2window similar to the MCR-ALS (Fig 34). These

parameters are useful in comparison with the resilthe two methods (MCR-ALS

and HELP).
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8. Peak Integration

The method of overall volume integration (OV29] is carried out for computing
the amount of each component after resolving tmemshtograms and mass spectra.
The total two-way response of each component cawobbtained from the outer
product of concentration and spectrum vectors. tdted amount of each component
is proportional to the overall volume of its twoyveesponse. The advantage of this
guantitative method over the general peak-areaiat®n is that all mass spectral
intensities are taken into consideration. Als@wvibids the disadvantage that general
peak area approximately treated by peak split.

Execution of the OVI in théCRC softwares very simple Peak Integrationtab
window is shown in Figs. 35 (a) and (b). In thimdow the corresponding matrix
and method boxes should be filled in.

In the first box, the input data matrix (either geesed or not) and the pure data
matrix for each component can be selected. In dainvay, in the second box the
desired method (MCR-ALS and/or HELP) should beelt by the user.

By clicking the Apply button, the software calculates the peak aresedoh data
matrix and the relative percentage for each oretivel to the whole signal can be
calculated.
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