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A B S T R A C T

Gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography-mass
spectrometry (GC�GC-MS) are powerful techniques for measurement of all metabolites in complex metabolic
samples. However, analyzing GC-MS and especially GC�GC-MS metabolomic data is a major challenge to the
researchers in the field of metabolomics mainly due to the complexity and large data size. In this regard, an
automated R based software entitled RMet has been developed to overcome the challenges in the metabolomic
analysis workflow of GC-MS and GC�GC-MS data sets. Additionally, it is able to facilitate the complex process of
extracting reliable and useful biological information from these data sets. Moreover, RMet can greatly accelerate
the time-consuming data analysis process of large GC-MS and GC�GC-MS datasets by the means of modern
chemometric methods. In fact, RMet transforms raw GC-MS and GC�GC-MS data files into the elution profiles and
mass spectra of important (significantly affected metabolites) which can be imported into NIST MS search soft-
ware for the final identification of these metabolites. To show the performance of the developed software, large
GC�GC-MS data sets of a previously reported environmental metabolomics study on lettuce samples exposed to
contaminants of emerging concerns (CECs) were analyzed by RMet. The procedure for analyzing GC-MS meta-
bolic data with RMet is as same as GC�GC-MS data sets but some steps can be skipped due to the lower size of GC-
MS data sets. The software, its manual, sample data sets and source code are freely available on https://github.
com/SUTChemometricsGroup/RMet.
1. Introduction

Metabolomics is the comprehensive study of all metabolites in a cell,
tissue, or an organism in order to produce a metabolic snapshot of a
biological system [1]. Metabolomic samples are mostly of high
complexity due to the presence of numerous metabolites with specific
physicochemical properties in the metabolome. This complexity is
illustrated by the number of metabolites and phytochemicals in the
plant kingdom which is estimated to be greater than 200000 [2]. As a
result, measurement of all metabolites in such complex sample matrices
requires the use of multiple sophisticated analytical instruments and
remains an analytical challenge. Among different analytical platforms,
gas chromatography-mass spectrometry (GC-MS) is the more frequently
used technique for separation and identification of metabolites. How-
ever, the complexity present in most of the biological samples pushes
this technique to its limits. The comprehensive two-dimensional gas
chromatography-mass spectrometry (GC�GC-MS) is a great solution to
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overcome this challenge [3]. The GC�GC instrument separates the
greatest number of metabolites with excellent sensitivity and, when
combined with a fast mass spectrometry detector such as time-of-flight
(TOF), provides an exceptional metabolite identification power [4].
The GC�GC technique has various advantages over GC such as
improved resolution, increased separation capacity, better signal to
noise ratios which lead to enhanced analyte detectability, and the
ability of chemical class ordering in the 2D total ion chromatogram
(TIC) [3]. However, there are significant challenges in the process of
obtaining desired information from GC�GC-MS data, mostly due to the
large volume of the produced data (e.g. typically in gigabytes (GB) per
sample) [4]. This issue will certainly emerge for untargeted metab-
olomics studies in which there is a need to run many samples from at
least two sample classes with a minimum of three replicate runs for
each sample.

Chemometric techniques based on multivariate data analysis can
properly tackle the problems surrounding large metabolomics data sets
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[5]. Multivariate curve resolution-alternating least squares (MCR-ALS) is
a frequently used multivariate resolution method for decomposition of
measure mixed analytical signals into the contribution profiles of pure
constituents using a bilinear data decomposition. Combination of an
appropriate compression strategy such as wavelet transform with
MCR-ALS is a perfect solution for approaching the problems surrounding
metabolomics data volume [5].

Different software tools have been developed for analysis of metab-
olomic data and for obtaining qualitative and quantitative information.
Currently available omics tools such as Metabolyzer [6], PlantMat [7],
MetExpert [8], MetExtract II [9,10], Lipostar [10], IMMA [11],
FlavonQ-2.0v [12], and MetaboliteDetector [13] are only able to analyze
Liquid Chromatography-Mass Spectrometry (LC-MS) and GC-MS
metabolomic data. Although a number of data analysis methods are
developed for processing GC�GC-MS data, to date there is no software
that combine all required steps for analyzing GC�GC-MS metabolomics
data. Thus, there is an essential necessity for a comprehensive
user-friendly software which is specifically designed for omics studies in
order to facilitate and speed up time-consuming data mining process of
complex GC-MS and GC�GC-MS metabolomic data. Such software can
popularize the application of GC-MS and GC�GC-MS techniques com-
bined with novel chemometric algorithms and modern statistical ap-
proaches among the researchers in the field of metabolomics. In this
regard, it can provide them with a large amount of new useful informa-
tion about their studied biological system.

In order to meet this demand, we have developed RMet, an auto-
mated R based user-friendly graphical user interface (GUI) that aims to
overcome challenges during the analysis of complex and big metab-
olomic GC-MS and GC�GC-MS data sets for transforming them to
proper biological information. This software includes all steps of a
complete untargeted metabolic data analysis work including pre-
processing, segmentation, data compression, multivariate curve resolu-
tion (MCR), important metabolites identification, and metabolites
classification.

Briefly, RMet applies MCR-ALS [14–17] as its resolution algorithm
which is one of the most efficient ways to handle fundamental challenges
that occur during GC�GC analyses such as elution time shifts, base-
line/background contribution, peak overlap, and peak shape changes
[3]. Then, it performs metabolite classification by building a partial least
squares-discriminant analysis (PLS-DA) [18,19] and finally introduces
the significantly affected metabolites using variable importance in pro-
jection (VIP) [20] scores. Afterward, metabolic pathway analysis should
be performed using metabolic pathways databases in order to identify
affected metabolic pathways.

The workflow is designed in such a way that enables individuals to
perform a complete analysis and obtain appropriate results without
having any knowledge of chemometrics, but simultaneously provides
detailed statistics for experts who want to customize and optimize their
analysis. Preprocessing and Segmenting of large GC�GC-MS data is a
tedious process; a great deal of attention is required while segmenting
data or removing redundant areas such as column bleeding and deriva-
tization agents from the TIC if it is desired to manually modify the
matrices, but all these operations are easily done in RMet by just a few
clicks. Also, RMet is low-size software written in R programming lan-
guage which is an open source language with high popularity among the
statisticians and data scientists [21]. These novel features make RMet a
dominant automated computational tool for analyzing GC�GC-MS
metabolomics. It should be pointed out that RMet can be used for the
analysis of GC-MS metabolomic data too. In the following sections, the
RMet’s function is demonstrated in data processing of a previous envi-
ronmental metabolomics study on lettuce samples exposed to contami-
nants of emerging concern (CECs) by GC�GC-TOFMS which aims to
investigate the effect of CECs exposure of lettuce on its metabolic path-
ways [3].
2

2. Experimental

2.1. Software development

RMet is developed under RStudio version 1.1.383 using R core
version 3.4.3, its execution file can be run in Windows environment
without any limitation on the version and it is available free of charge at
https://github.com/SUTChemometricsGroup/RMet along with a
manual, source codes and sample data sets. In order to use RMet on the
Linux and Macintosh operating systems, one should install R core (freely
available at https://cran.r-project.org) and run the RMet.R code which is
available at the previously mentioned Github link. For this GUI, R
packages of MASS, ALS, wavelets, rgl, hash, fields, Matrix, irlba, mixo-
mics, gWidgets2, gWidgets2RGtk2, RGtk2, RNetCDF, and abind were
utilized. Minimum required computer configuration depends on the size
of input data, but a desktop computer with 8 GB of RAM and a 3 GHz
processor can easily analyze up to 20 GB of GC�GC-MS data. The
installation steps of RMet are shown in Figs. S1–S8 of supporting infor-
mation (SI).

2.2. Real GC�GC-TOFMS data sets

To test the performance of the developed software, GC�GC-TOFMS
data sets of extracted metabolites from four control lettuce samples and
four lettuce samples exposed to eleven CECs were used [3]. Data sets are
available at https://github.com/SUTChemometricsGroup/RMet. In this
study, the lettuce (Lactuca sativa L) samples were irrigated with water
contaminated with 50 μg/L concentration of 11 CECs (pharmaceuticals,
personal care product, anticorrosive agents, and surfactants) for 34 days
under controlled conditions. Then, the crops were harvested and their
metabolome was extracted. In order to extract the metabolites from the
lettuce leaves, 60mg of plant materials, 400 μL methanol, 30 μL of a
50 μg/mL D-glucose solution, and 30 μL of a 50 μg/mL salicylic acid so-
lution were vortexed and sonicated in an Eppendorf tube. Next, the so-
lution was vortexed with 200 μL of chloroform and 400 μL of water
respectively. Finally, it was centrifuged and the aqueous phase was
transferred to a vial. The extracted metabolome of leaf samples was
derivatized with tetramethylsilane (TMS) and analyzed by
GC�GC-TOFMS (HP 6890 N (Agilent Technologies, Palo Alto, CA)) in
optimum conditions. The readers encourage to read ref. [3] for more
details.

The analysis of eight metabolome samples leads to the generation of
eight CDF files with a total size of 8.6 gigabytes (GB). All datasets were
directly imported to RMet in order to perform analysis and identify the
important (significantly affected) metabolites.

3. Results and discussion

RMet’s data processing strategy is shown in Fig. 1. It is a specifically
designed data processing platform for analyzing both GC�GC-MS and
GC-MS metabolomic data sets. Following, the applied approaches and
algorithms in each step of the RMet workflow will be discussed in detail
during the analysis of GC�GC-MS data of control and CECs exposed
lettuce samples. These data sets were used to demonstrate the function-
ality and output of each data mining step.

3.1. Data import

In this section, the user can upload both GC�GC-MS and GC-MS data
in CDF, CSV, and Rdata formats. In order to create the data matrix for
GC�GC-MS data from raw CDF file, the instrument modulation period
and the detector frequency is required. After importing data, two- and
three-dimensional (2D and 3D) visualization of TIC are available. For
example, Fig. 2 shows the 3D visualization of one of the control lettuce
sample. As previously mentioned, four control and four exposed samples
were recorded with a modulation time of 4 s and a detector frequency of
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Fig. 2. RMet data importing page.

Fig. 1. Schematic diagram of RMet workflow.
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100 Hz. Considering these parameters and the CDF vector’s length, the
TIC of each sample was a 400�619 matrix. It is worth mentioning that
the total size of imported datasets was 8.6 GB. Also, Figs. S9–S12 show
how to start analysis and import data into RMet.

3.2. Preprocess & segmentation

This section greatly facilitates the data segmentation and removal of
the redundant parts in the chromatogram including bleeding and/or
derivatization agents parts. The user can view the TIC of a selectedmatrix
3

with the different intensity ceiling for better area selection. Segmentation
is included in the software for decreasing the data size. Additionally, the
calculation efficiency can be improved by selecting segmentation oper-
ation. Removing the column bleeding, column overload, and derivatizing
agent areas from TIC is also available by selecting the vertical and hor-
izontal removal operations. All selected matrices will be modified by
clicking on the “operate” button (Fig. 3). In the case under study in this
work, the 8 imported datasets were divided into two segments. Both
segments cover the same range of second column time points (from time
points 177 to 400 in order to exclude the column bleeding area). In



Fig. 3. Preprocess and segmentation step in RMet.
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addition, the coverage of first column time points in the first segment
(i.e., segment A) was from 100 to 348, and from 358 to 619 for second
segment (i.e., segment B). Fig. 3 shows the 2D contour plot for segment A
of the GC�GC-MS TIC of one of the control lettuce samples. More
details about the preprocessing and segmentation part of the RMet soft-
ware can be found in supporting information (SI) (section S2.2,
Figs. S13–S19).
Fig. 4. Metabolites number

4

3.3. Determining the number of metabolites

Here different segments for control and exposed samples can be
augmented in the column-wise or row-wise way for simultaneous analysis
by MCR-ALS model. Since determining the number of components is
required for MCR, singular value decomposition (SVD) is used to deter-
mine the number of metabolites in the augmented data matrix. Fig. 4
determination in RMet.
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depicts the component determination page of RMet. By creating and
selecting an augmented matrix, the user can see the plot containing log-
arithm of singular values ratios. In this plot, zooming and scrolling are
provided for precise estimation of the number of components (Fig. 4). Both
segments A and B were arranged into column-wise super-augmented
matrices named augment A and augment B. According to the SVD ratio
plot (Figs. 4), 26 metabolites were considered for augment A and 32 me-
tabolites for augment B. More details can be seen in Figs. S20–S21.

3.4. Data compression

As it has already been discussed, the big size of GC�GC-MS data sets
is a challenging issue. Although segmentation can help, it is not an ideal
solution because increasing the number of segments can lead to errors in
the classification step (due to the separation of some metabolites’ chro-
matographic profiles into two different segments). Therefore, a proper
compression algorithm is required to reduce data size and make the
analysis more feasible. RMet performs a discrete wavelet transform [22,
23] in the time direction in order to compress the augmented data matrix.
Indeed, increasing the level of compression leads to losing a greater
portion of data. Therefore, finding an optimized compression level is
clearly important. In this regard, RMet provides the user with the final
data size and chromatogram created by imposing different compression
levels. By doing so, one can select the proper compression level based on
the pattern of the resulted chromatogram, the portion of negative values,
and the system’s computing power. In our study, both augmented data
matrices were compressed by level 3. In other words, their size was
reduced from 2.76 GB to 345MB for segment A and from 2.91 GB to
364MB for segment B. As an instance, Fig. 5 demonstrates compressed
GC�GC-MS data sets for segment A. Also, Figs. S22–S24 depicts more
details about data compression in RMet.

3.5. Building a model

In this step, the MCR model is built to obtain pure chromatographic
and spectral profiles of metabolites. The MCR-ALS is one of the most
powerful resolution methods to resolve complex hyphenated and multi-
Fig. 5. Data compress
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dimensional chromatographic data [17,24] (e.g., GC-MS and
GC�GC-MS), while also handling fundamental challenges during chro-
matographic analyses such as elution time shifts and peak shape changes.
The MCR-ALS method is based on the fulfillment of the bilinear model
and therefore, chromatographic data should be arranged in an
augmented data matrix. For example, GC�GC-TOFMS data sets of control
and exposed lettuce samples can be arranged in a column-wise super--
augmented data matrix with mass-to-charge ratios (m/z) as columns and
elution times in first- and second-chromatographic columns as rows of
this data matrix. This data augmentation provides the MCR-ALS method
with two outstanding advantages. First, it can perfectly handle un-
avoidable chromatographic challenges such as shifts in retention time
within and between GC�GC-TOFMS chromatographic runs, as the m/z
values are similar among all measured spectra in all second-column
modulations. The second advantage is the capability of performing the
simultaneous analysis. In fact, MCR-ALS benefits from a great flexibility
to consider all samples (standard, unknown and replicates) in a single
super-augmented data matrix, even if the number of rows (retention
times) varies among the individual data matrices. Furthermore, adding
extra components to the MCR-ALS model enables the modeling of base-
line/background contributions. In this section of the RMet software, the
user can select the desired configuration such as constraints, convergence
criterion, and the maximum number of iterations to build MCR model.
After choosing the desired configuration, MCR modeling can be done by
pushing the “Run” button in RMet software (Fig. S25). After performing
MCR analysis, the output R file can be easily uploaded to the software in
order to proceed to the next steps. The output of the MCR-ALS modeling
step is the resolved pure elution and spectral profiles for metabolites and
some statistical parameters such as lack of fit (LOF) and noise level. In our
study, the resulted LOF and noise level for MCR model of augment A was
2.1% and 2.2% respectively. For segment B, these values were 2.5% and
2.8% respectively. All of these values were acceptable according to the
agreement between LOF and noise level.

3.6. Pure components profiles

In this step, the user can view the output of MCR-ALS including
ion step in RMet.
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resolved elution profiles in chromatographic dimension for GC-MS and in
two chromatographic dimensions for GC�GC-MS data along with
resolved mass spectra. Fig. 6 shows the resolved mass spectra. The soft-
ware can also display the elution profile of a single metabolite in different
samples (e.g., control and exposed) in order to see the chromatographic
variations of selected metabolite among the control and exposed samples
(see Figs. S26–S27 for more details).

3.7. Supervised classification of samples based on their metabolites

After obtaining pure elution profiles for metabolites, the peak areas of
the resolved components in different samples can be calculated in RMet.
Therefore, a new data matrix is created in RMet with samples as rows and
resolved metabolites as columns of this data matrix. Among different
linear and non-linear classification methods, it is possible to use different
methods like PLS-DA and/or orthogonal projection to latent structure-
discriminant analysis (OPLS-DA) as a linear models and kernel based
methods and/or support vector machine (SVM) as non-linear model [25].
However, as PLS-DA can be considered as a more frequently used
method, therefore, this method is included in RMet to classify the iden-
tified metabolites based on their relative concentration (i.e., peak areas).
The user should define the numbers of classes by selecting all samples
belonging to a determined class and pressing the “create class” button. By
doing so, the software automatically generates the X-block which con-
tains the relative concentration of all resolved metabolites in all samples
and the y-block that is a vector indicating which samples are in the
defined classes. After selecting the proper preprocessing (mean--
centering, scaling, auto-scaling), the PLS-DA classification model is built
for training set and evaluated using cross-validation (Fig. 7).

The X-block cumulative variances for selecting the proper number of
latent variables (LVs) and other required statistics for model validation is
also provided by the software (Fig. 7). Please see section S2.7 in SI to get
more details about PLS-DA model and its features. In our study, auto-
scaling was selected as the preprocessing method and the classification
model was built using 4 LVs. As shown in Fig. 7, control and exposed
samples are completely separated in PLS space. Also, Fig. 8 shows some
of the statistical parameters (X-residuals, regression coefficients, corre-
lation circle plot, and cumulative variance) to evaluate the validity of the
classification model for training set. As it can be seen from this Figure, all
of these plots confirm the validity of the developed classification model.
Also, RMet enables users to perform classification on test data after
building the model and it provides related statistical information [26].
See section S2.7 and Figs. S28–S32 in SI for more details.
Fig. 6. Resolved mass spec
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3.8. Identification of important metabolites

Here we introduce the last step of the RMet workflow which is the
identification of important metabolites. The variable importance in
projection (VIP) scores show the influence of each metabolite on the PLS-
DA model, therefore they are very appropriate for determining the
important (significantly affected) metabolites among the resolved ones.
In this section, VIP scores are computed and represented for each
metabolite using the PLS weights associated with each LV. In this soft-
ware, the “greater than one rule” is used as a criterion for selection of the
important metabolites [20]. Finally, the NIST MS search compatible text
files containing mass spectrum information of the important metabolites
is exported to a user-selected folder that enables the identification of the
important metabolites (Figs. S33–S35). At this stage, RMet has perfectly
performed its duty, which was transforming raw GC�GC-MS data file
into a recognition of metabolic changes in the system. With important
metabolites in hand, one can use metabolic pathways databases such as
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [27,28]. database
in order to perform a pathway analysis and determine the functional
modules that included at least two of the identified metabolites so that
the affected metabolic pathways will be identified. In our study, 26
metabolites were found to be significantly affected as a result of exposure
of the plant to the CECs. Table 1 shows these important metabolites and
their VIP scores. Alterations in concentrations of these important me-
tabolites reveal that exposure of lettuce to the mentioned CECs cause
significant changes in various metabolic pathways of the plant such as
carbohydrate metabolism, the citric acid cycle, pentose phosphate
pathways, and glutathione pathway.

As it has already mentioned in the text, the same procedure can be
performed for the analysis of GC-MS data using RMet and the only
different section is the “Segmentation & preprocessing” section. For GC-
MS data matrices, it can only select a range of retention times by
inputting the desired range in spin buttons and clicking on the “Impose
button” (Fig. S36). All the following steps are the same as GC�GC-MS
procedures but the compression can be skipped since GC-MS data sets
have usually low sizes. As an example, GC-MS data of metabolic profiles
of daphnia magna exposed to salinity [29] were tested using RMet and
can be found in https://github.com/SUTChemometricsGroup/RMet.

4. Conclusion

Development of new integrated software for fast and accurate anal-
ysis of large GC-MS and GC�GC-MS untargeted metabolic data set can
tra of all metabolites.

https://github.com/SUTChemometricsGroup/RMet


Fig. 8. Some statistical information of resulted PLS-DA model for classification of resolved metabolites. a) X-block residuals. b) Regression coefficients considering 4
LVs. c) Correlation circle plots. d) Latent variables’ cumulative variance plot.

Fig. 7. Metabolites classification using PLS-DA in RMet.
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Table 1
Identified important metabolites and their VIP scores.

Metabolite VIP
score

Metabolite VIP
score

Metabolite VIP
score

L-Proline, 5-
oxo-1

1.35 Tartaric acid 1.24 Prostaglandin
F-2 β

1.36

Butane, 2,3-
diol

1.10 Methylmalomic
acid

1.16 D- mannose 1.21

Maleic-acid 1.01 Propanedioic
acid

1.33 Acetic acid 1.03

Glycerol 1.21 Myo-inositol 1.16 Xylonic acid 1.13
Lyxose 1.24 Allo-inositol 1.13 Ribitol 1.12
Citric acid 1.17 Sylo-inositol 1.04 Sorbit 1.25
Benzoic acid 1.36 D-

Glyceraldehyde
1.28

Succinic
acid

1.34 Ribonic acid 1.14

S. Moayedpour, H. Parastar Chemometrics and Intelligent Laboratory Systems 194 (2019) 103866
extremely help the researches in the field of metabolomics. In order to
meet this crucial need, we have developed RMet, a novel automated R
based software for analyzing both GC-MS and GC�GC-MS untargeted
metabolomic data sets in a simple, quick, and reliable manner. All
required steps for completing a metabolomics data analysis workflow
including data preprocessing and segmentation, data compression,
determining the number of metabolites, obtaining pure elution profiles
and mass spectra of all metabolites, recognition and classification of
important metabolites, and exporting the mass spectra of important
metabolites for further identification with mass spectrometry libraries
such as NIST are perfectly covered in RMet. RMet utilizes the MCR-ALS
which is a powerful method for decomposition of raw GC-MS and
GC�GC-MS data into the pure elution profiles and spectra of metabolites.
The greatest limitation of MCR-ALS analysis is the need for high
computing power. RMet overcomes this limitation by providing a proper
compression strategy before the resolution step which can reduce data
size without losing important information. These novel specifications in
addition to its user-friendly environment make RMet a useful data mining
tool for GC-MS and GC�GC-MS based untargeted metabolomics studies.

4.1. Independent testing

Prof. Mehdi Jalali-Heravi.
Chemistry and Biochemistry Department, California State University,

Los Angeles, Phone: (949) 466 4766, Email: mjalali2@calstatela.edu.
RMet software is a very interesting piece of work, especially in

opening a new window for carrying metabolomics studies using GC-MS
and GC�GC-MS techniques. I confirm all abilities of this software as
authors described in the manuscript. This software helps those re-
searchers who are interested to work with metabolomic data. This soft-
ware is able to implement the common data size reduction method of
wavelet transform and data segmentationmethod as well. Also, MCR-ALS
algorithm is included in this software for resolution of mixed chro-
matographic signals into the pure elution and mass spectral profiles.
Furthermore, PLS-DA model was included for classification of resolved
metabolites. For each model, the statistical parameters can be viewed.
One of the advantages of this software is that it is very easy to be installed
and its applying is very simple and as mentioned in the manuscript no
needs to be expert in programming. I believe that regarding the easiness
and simplicity of this software, all chemists who are interested in RMet
can use it.
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Supplementary data to this article can be found online at https://
doi.org/10.1016/j.chemolab.2019.103866.
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