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Abstract In this paper, we consider a special version of the well-known line-
simplification problem for simplifying the boundary of a region illuminated by a point
light source q, or its visibility polygon VP(q). In this simplification approach, we
should take the position of q as an essential factor into account to determine the qual-
ity of the resulting simplification. For this purpose, we redefine the known distance-
and area-distortion error criteria as the main simplification criteria to take into ac-
count the distance between the observer q and the boundary of VP(q). Based on
this, we propose algorithms for simplifying VP(q). More precisely, we propose sim-
plification algorithms of O(n2) and O(n4/3+δ) running time for observer-dependent
distance-distortion simplification criterion and an O(n3) simplification algorithm for
observer-dependent area-distortion criterion where n is the number of vertices in
VP(q). Moreover, we consider the observer-dependent distance-distortion simplifi-
cation problem in the data streaming model where the vertices of VP(q) are given as
a stream and only a constant amount of memory is available.
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1 Introduction

Motivation In many applications of computer graphics and robotics, we are asked
to maintain and process the region visible from an observer, or equivalently,
the set of illuminated points from a light source. In real applications, an observer
usually has a limited vision power, i.e., it can not distinguish small visibility dif-
ferences at far distances. Moreover, the required space to maintain the exact visible
region may be too high and it may be impossible to accurately maintain such bound-
aries. On the other hand, the resolution of a display screen is always limited and
only an approximation of a higher resolution boundary is displayed on such screens.
This leads us to the problem of approximating such boundaries by simpler (smaller
number of vertices) polygons for faster processing time and smaller storage. As a
key factor, this approximation must be done based on the position of the observer;
closer parts of the boundary to the observer have greater chance of appearing in the
approximation. The reason is easy; in real applications, an observer sees the closer
boundaries more clearly whereas it can not distinguish small visibility changes at far
distances.

Related Works Our problem is a special case of the classic line simplification prob-
lem for which there are several algorithms. These methods approximate a given chain
(path) of line segments by another chain of fewer segments in order to minimize the
difference between the initial and the simplified chains. This difference, to be for-
mally defined later, is called the error of this simplification.

There are two optimization goals in line simplification algorithms: min-k and
min-δ. In the min-k version, there is a given error threshold and we are to use the
minimum number of vertices in the simplified path meeting this error threshold. In
min-δ, we are allowed to use at most k vertices for some given k in the simplified
path and the goal is to minimize the error of the simplification.

There are many variants of line simplification problem. In its restricted version,
the vertices of the simplified path are required to be selected from the set of ver-
tices of the original path. Some results on the unrestricted version can be found in
[11–13, 16]. For the restricted version, the main algorithms can be found in [3–5,
8–10, 14, 17–19, 21, 23, 24]. Also, an approximation algorithm can be found in [3]
which approximately solves the restricted version of this problem.

These simplification algorithms use different criteria to compute the quality of the
simplification or the difference between the initial and the simplified paths. Distance-
distortion and area-distortion are the most widely used criteria or error functions.
In distance-distortion error function, the error of a simplification is defined as the
maximum distance between the initial and the simplification paths. This distance is
further measured using various metrics including Hausdorff distance for L1, L2 or
L∞ metrics [3, 8, 9, 14, 17, 21] and Fréchet distance [4, 10]. In area-distortion, the
error of a simplification is defined as a function of the area created between the initial
and the simplification paths [5, 18, 19, 23, 24].

Definitions, Notation, and Problem Statement In a planar scene composed of a set of
polygonal objects, two points are visible from each other if their connecting segment
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does not intersect the scene objects. The set of points visible from a point q , called
its visibility polygon and denoted by VP(q), is always a star-shaped simple polygon
in planar domains. In this paper, we interchangeably use visibility polygon for its
boundary.

Except for Sect. 3.3, we focus on the restricted version of the line simplification
problem. Let P be a path defined by a sequence of points p0,p1,p2, . . . , pn. A sub-
sequence Q = q0, q1, . . . , ql, ql+1 of P is a l-simplification of P if q0 = p0 and
ql+1 = pn. In this simplification, any segment qiqi+1 of Q (0 ≤ i ≤ l) is the corre-
sponding simplification of subpath P(s, t) = ps,ps+1, . . . , pt of P where qi = ps

and qi+1 = pt . In other words, subpath P(s, t) of P has been simplified by segment
qiqi+1 in Q. Then, Q is an approximation of P and can be stored using smaller
memory size, at expense of losing the accuracy of P .

Assume that err is the criterion or error function used to compare similarity of
Q and P or to evaluate quality of this simplification. Using this error function, the
error of a segment qiqi+1 is denoted by err(qiqi+1) and is defined to be the error of
approximating subpath P(s, t) by the segment qiqi+1 under the error function err.
The error of the simplification Q is then defined to be either the maximum or the sum
of the error of its links qiqi+1(0 ≤ i ≤ l) and are respectively denoted by errMax(Q)

and errSum(Q). So, having the error function err, we try to minimize errMax(Q) or
errSum(Q) which are called max-simplification and sum-simplification, respectively.
The max-simplification is usually used for distance-distortion error functions while
the sum-simplification is used for area-distortion metrics.

Definition of an error function err usually depends on the underlying applica-
tion. The Hausdorff distance, errh, as the main distance-distortion error function is
the metric used in many simplification algorithms. For a segment qiqi+1 which is
the simplification of the subpath P(s, t), errh(qiqi+1) is defined to be the maximum
Euclidean distance of points ps,ps+1, . . . , pt from the segment qiqi+1. The Euclid-
ean distance of a point p from a segment qr , denoted by d(p,qr), is defined to be
|pt | where t is the point on qr that minimizes |pt |. For example, errh(prps) in Fig. 1
is equal to |pkpr | which is the shortest distance between pk and points of segment
prps , and errh(pspt ) of this figure is equal to do(pm,pspt ), where do(pm,pspt ) is
defined as the orthogonal distance of pm from the supporting line of pspt (the line
that passing over a segment is called its supporting line).

Sum-area, erra , is the main area-distortion error function. Here, erra(qiqi+1) is
defined to be the area of the region contained between the previously defined qiqi+1
and P(s, t).

The error functions used so far do not take the position of observers into account.
We consider observer-dependent simplification of visibility polygons, where the ver-
tices of the path that are closer to the observer are more important to keep than
the farther points. Precisely, assume that P = p0,p1,p2, . . . , pn,p0 is VP(q) for
a point observer q . Then, we need an approximating error function that considers
the distance between the points of P and the observer q . Moreover, we need sim-
plification algorithms based on this error function to compute an l-simplification
of P . In this paper, we assume that VP(q) is given as the problem input. Also,
we assume that the initial (and final) point p0 is given as problem input (VP(q)

is a closed simple polygon and anyone of its vertices can be taken as p0. How-
ever, different simplifications are obtained for different choices of p0 and we will
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need more processing time to find the best simplification among them. This will
increase the running time of our algorithms. Therefore, we assume that p0 is
given as a problem input). We only consider the min-k simplification in this pa-
per from which the min-δ simplification is obtained by a simple binary search on
δ valuses.

Our Results We define observer-dependent approximating error functions for
VP(q) that depend on the position of q for both distance-distortion and area-distortion
criteria. For these simplification error functions, we first provide an O(n2) algorithm
for max-simplification of VP(q) using the proposed observer-dependent distance-
distortion error function and an O(n3) algorithm for sum-simplification of VP(q)

using the proposed observer-dependent area-distortion error function. In these meth-
ods, we compute the associated error of the O(n2) possible links in respectively
O(n2) and O(n3) time. Having these links, the former simplification is done using
the general algorithm of Imai and Iri [17] and the latter is done using the algorithm
presented by Bose et al. [5].

Then, we improve the max-simplification of VP(q) under the proposed observer-
dependent distance-distortion error function to O(n4/3+δ). In this improvement we
employ the method used by Agarwal and Varadarajan [3] in which the O(n2) links
are maintained implicitly in a clique cover. Also, we define the unrestricted version of
this problem and propose an efficient method for solving it in O(n logk) time where
k is the complexity of the resulting simplification.

We further consider the cases in which the observer behaves like a radar inside a
planar environment. Here, the observer sweeps its neighborhood circularly, and draws
its visibility polygon. In such applications, the visible points are given continuously
as a stream of input data and we assume that it is impossible to maintain and show all
these points. Therefore, it is necessary to approximate the exact visibility polygon by
another polygon of smaller number of vertices.

In this streaming model, regardless of the number of points in the input path, we
intend to simplify the path to at most k points. Also, we should continuously update
the simplification as new points are received. For this version of the problem, our
proposed method uses O(k2 + k√

ε
) additional storage and each point is processed

in O(k log 1
ε
) amortized time. Then, the error of the resulting simplification with 2k

points is not bigger than (2 + ε) times the error of the optimal offline simplification
with k points. This method is based on the general algorithm proposed in [1].

To the best of our knowledge, the result of this paper is the first in this area and
the efficiency of the proposed methods is as well as the best current simplification
algorithms—that do not take into account the observer position. The only similar
work to the results of this paper is the rendering based simplification of Buzer [7],
which depends on the resolution of the display screen without considering the ob-
server position. There are several interesting open directions in applying and extend-
ing this notion.

The rest of this paper is organized as follows: in Sect. 2, our observer-dependent
simplification error function is described. In Sect. 3, we propose simplification algo-
rithms for point observer visibility polygon in an offline setting and in Sect. 4, we
solve the problem in streaming model.
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Fig. 1 Simplifying visibility
polygon

2 Observer-Dependent Simplification Error Functions

The Hausdorff error function only depends on the initial and the simplified paths and
therefore, is not proper for observer-dependent simplification of visibility polygons in
which the position of the observer has an important effect. We illustrate this claim by
an example. Assume that P = p1,p2, . . . , pn,p1 of Fig. 1 is the visibility polygon of
a point observer q . Here, pj is closer to the observer than pi which is assumed to be
very far away from q . Also, assume that we are asked to simplify P by removing one
vertex and pi and pj are the only choices for elimination. If we remove pj , the actual
position of pj and its position in the resulting simplification (from the viewpoint of
q) differs by |pjp

′
j |. However, this deviation occurs at a distance of |pjq| from the

observer. In contrast, if we eliminate vertex pi , our deviation from the initial polygon
is |pip

′
i | which happens at distance |piq| from the observer. Since, pi was assumed

to be too much farther from q than pj , the latter simplification is better (from the
viewpoint of q) even if |pip

′
i | was slightly larger than |pjp

′
j |. However, if we use

Hausdorff error function, pj will be removed if |pip
′
i | is a bit larger than |pjp

′
j |.

The same argument is true for all distance and area distortion simplification error
functions.

We therefore need to formally define a new error function that includes the position
of the observer in computing the error of a simplification. Moreover, in order to use
current simplification algorithms, the new function must be computed easily and can
be simply plugged into these algorithms.

To define a proper simplification criterion, we need to consider how distance af-
fects visibility or illumination. Assume that r and s are two points on VP(q). Theo-
retically, while r and s are distinct points they are seen as different points on VP(q).
But, a realistic observer has a limited vision distinction power, i.e. for small values
of |rs| the observer sees them as a single point. This means that when the angle be-
tween segments qr and qs is too small then the observer can not distinguish them.
This threshold angle is usually independent of the distance between the visible points
and the observer. We call this threshold angle the vision distinction power of the ob-
server. Therefore, a good candidate criterion for comparing visibility brightness of
two segments is the angles between the segments that connect their endpoints to the
observer. But, we always need to compare this for segments that lie on the rays em-
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Fig. 2 Vision distinction power

Fig. 3 Observer-dependent simplification error

anating from the observer for which these angles are zero. For example we need to
compare this for the segments |pjp

′
j | and |pip

′
i | in the above scenario.

Let’s look at the angle criterion again. For parallel segments rr ′ and ss′ shown in
Fig. 2, these angles are equal. For these segments we have |rr ′|

|ss′| = |qr|
|qs| , and therefore,

|rr ′|
|qr| = |ss′|

|qs| . These relations are still valid if l and l′ are too close or even overlap.
Therefore, for any two segments pp′ and t t ′ on two rays emanating from q (see
Fig. 2) a proper visibility brightness comparison is to compare |pp′|

|pq| and |t t ′|
|tq| .

Now, we are ready to define our observer-dependent simplification error func-
tions. Assume that we are to approximate the path pippj (see Fig. 3.A), a part of
VP(q), by the segment pipj . From the viewpoint of q , p is mapped to p′ and other
points of segments pip and ppj are mapped to their corresponding points of seg-
ments pip

′ and p′pj . In such simplifications, the corresponding observer-dependent
error of a point t on the path pippj is denoted by errvis(q)(t,pipj ) (or simply by

errvis(t,pipj ) whenever q is known from context) and is defined to be |t t ′|
|tq| where t ′

is the intersection point of segments tq and pipj . This means that at distance |tq|,
we have deviated from the initial path by a value of |t t ′|. This definition is also used
for paths of more internal vertices.

Three situations are not covered by this definition and are handled as follows.
If pi , pj and q are collinear (see Fig. 3.B), p and all other points of the polygon
boundary from pi to pj must also lie on the segment pipj . The reason is that the
path P(i, j) is a part of VP(q) which is a star-shaped simple polygon and q is a
core point of VP(q). Then, segments tq and pipj overlap and do not have a single
intersection point. In this situation, there is no difference between subpath P(i, j) and
its corresponding subpath in the simplification. Therefore, the corresponding error of
the points in subpath P(i, j) is defined to be zero.

Another problem of the definition of errvis(t,pipj ) is that the segments pipj and
tq do not necessarily intersect, i.e., point t ′ does not always exist. Since, VP(q) is a
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star-shaped simple polygon and t lies on the boundary of this polygon between pi

and pj , the supporting line of pq always intersects pipj . This intersection point may
lie outside the segment tq (see Fig. 3.C). Here, from the viewpoint of q , t is mapped
to t ′ which is this intersection point. In these cases, the observer-dependent error of
point t is defined to be |t t ′|

|t ′q| . Unlike the cases shown in Fig. 3.A, we do not use |t t ′|
|tq| as

the error value here. The reason is that the value of |t t ′|
|tq| in the former cases (Fig. 3.A)

is always equal to something between zero and one. This is also true for |t t ′|
|t ′q| in the

latter cases (Fig. 3.C) as well, while, the value of |t t ′|
|tq| ranges from zero to ∞ here.

Finally, we are supposed to simplify VP(q) for which q is an internal point and
we expect to have this property in the simplified version of VP(q). To support this re-
quirement, we must prevent segments that contradict this condition (like the segment
pipj in Fig. 3.D) to appear in the simplification. In such cases, there are some points
like t on subpath P(i, j) in Fig. 3.D, such that the observer q lies between t and t ′.
We define the observer-dependent error of such points to be infinite. Then, the error
of segment pipj will also be infinite (to be defined later) and this infinite error value
prevents such segments to be included in the resulting simplification.

According to the above definition of errvis function, it is clear that errvis(p,pipj )

is either infinite or a number between zero and one. Using this definition, we propose
our observer-dependent error functions for both distance- and area-distortion cases.

2.1 Observer-Dependent Distance-Distortion Error

The observer-dependent distance-distortion error of a segment pipj which is a sim-
plification of a subpath P(i, j) of VP(q) is defined to be max(errvis(q)(t,pipj )) over
all points t on the subpath P(i, j). This error is denoted by errdvis(q)(pipj ) (or sim-
ply by errdvis(pipj ) if q is known from context).

There is a close relation between this observer-dependent error function and the
width notion. The width of a set of points with respect to a given direction

−→
d is the

minimum distance between a pair of lines being parallel to
−→
d that encloses the point

set. Let PL(i, j) (resp. PU(i, j)) be the set of points of the subpath P(i, j) that lie
in the closed half plane defined by the supporting line of pipj which contains (resp.
does not contain) the observer q . We denote by wL(i, j) (resp. wU(i, j)) the width of
the points of PL(i, j) (resp. PU(i, j)) with respect to the direction of −−→

pipj . We have,

Lemma 1 For a subpath P(i, j) = pi,pi+1, . . . , pj of VP(q),

errvis(pipj ) = max

(
wU(i, j)

do(q,pipj ) + wU(i, j)
,

wL(i, j)

do(q,pipj )

)
.

Proof From Thales’ theorem, for any point p on P(i, j) that lies on the opposite

side of pipj relative to q , we have errvis(p,pipj ) = do(p,pipj )

do(p,pipj )+do(q,pipj )
. Therefore,

the maximum error of these points is wU (i,j)
do(q,pipj )+wU (i,j)

. Similarly, for a point p on
P(i, j) that lies on the same side of pipj relative to q we have errvis(p,pipj ) =
do(p,pipj )

do(q,pipj )
and their maximum is wL(i,j)

do(q,pipj )
. �
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Fig. 4 Observer-dependent
area-distortion error

A direct consequence of this lemma is that the associated error of a segment pipj

belongs to a vertex pk with (i ≤ k ≤ j ). Using this result, we can simply compute the
corresponding error of any segment pipj only by checking vertices of the subpath
P(i, j).

2.2 Observer-Dependent Area-Distortion Error

According to the relation between distance and area, the observer-dependent area-
distortion error of the segment pipj is defined to be

∑
(errvis(q)(t,pipj )) over all

points t on the subpath P(i, j). This error is denoted by erravis(q)(pipj ) (or simply
by erravis(pipj ) if q is known from context).

To compute the value of erravis(pipj ) we must compute sum of infinite values.
This is done by solving an integral. Assume that the segment rs, shown in Fig. 4, is
a part of P(i, j) simplified by pipj . The sum of the observer-dependent error of all
points of rs is denoted by erravis(rs,pipj ). Without loss of generality, we assume

that pipj lies on x axis. Then, erravis(rs,pipj ) = ∫ xs′
xr′

|t t ′|
|tq| dx where xr ′ and xs′ are

respectively x coordinates of r ′ and s′. We can solve this integral as follows.
Assume that ax + by + c = 0 is the equation of the supporting line of rs and

xq = m and yq = n. The point t lies on both segments rs and tq and, according to the
above assumption, xt ′ = x and yt ′ = 0. Then, we can compute xt and yt as follows:

{
yt − n = n − 0

m − x
(xt − m), ax + byt + c = 0

⇒
{
yt = nc + anx

ax − am − bn
, xt = cm − cx − bnx

ax − am − bn
.

Therefore,

erravis(rs,pipj ) =
∫ xs′

xr′

|t t ′|
|tq|dx =

∫ xs′

xr′

√
(x − xt )2 + (0 − yt )2√
(m − xt )2 + (n − yt )2

dx.

The closed form of this integral is,

F (x) =
∫ |t t ′|

|tq|dx =
(t − xt )

√
(t − xt )2 + y2

t + y2
t ln(t − xt +

√
(t − xt )2 + y2

t )

2
√

(m − xt )2 + (n − yt )2
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from which the value of erravis(rs,pipj ) is computed: erravis(rs,pipj ) = F (xs′)−
F (xr ′).

The same computation can be done for the other case of observer-dependent error
shown in Fig. 3.C. Having this formula, we can compute erravis(pipj ) by summing
the values of erravis(rs,pipj ) for all segments rs of P(i, j).

3 Simplification Algorithms

In Sect. 2, we defined two observer-dependent error functions and described how to
compute errdvis(pipj ) and erravis(pipj ) for candidate links in the simplification.
Naively, we can compute errdvis and erravis of each link in O(n) time. There are
O(n2) candidate links. Then, the total time complexity of computing the error of all
links is O(n3).

Having the error of all links, there are efficient general algorithms to solve min-k
version of both max-simplification and sum-simplification problems. As a general ap-
proach, Imai and Iri [17] modeled the min-k version of the max-simplification prob-
lem by a directed acyclic graph G over the vertices of the path P = p0,p1, . . . , pn.
For any pi ∈ P , there is a vertex pi in G and an edge −−→

pipj is added to this graph
if and only if (iff) err(pipj ) is not greater than the allowed error threshold. The
shortest path from p0 to pn in G is then the solution of this version of simplify-
ing P . Also, Bose et al. [5] proposed a dynamic programming approach to solve the
max-simplification problem. We can use these algorithms along with the proposed
observer-dependent error functions to solve simplification problems. Efficient imple-
mentation of the DAG approach can be run in O(n2) [8], and running time of the
dynamic programming approach is O(kn2 + n2+δ) [5]. Therefore, the naive method
for computing error of the links, O(n3), is our bottleneck in obtaining efficient sim-
plification algorithms under the observer-dependent error functions.

In this paper, we do not do better for erravis , but for errdvis we propose O(n2) and
O(n4/3+δ) algorithms to solve the restricted min-k version of the max-simplification
problem and an O(n logn) algorithm for its unrestricted version. In the rest of this
paper we only consider the observer-dependent distance-distortion error function and
solve the min-k version of the max-simplification problem.

3.1 The O(n2) Algorithm

A segment pipj can appear in min-k simplification of a path P if for all points pm

(i < m < j ) we have errdvis(pm,pipj ) ≤ e where e is the given error threshold. This
means that for any point pm (i < m < j ), pipj must intersect the segment p′

mp′′
m (see

Fig. 5) where p′
m is the point on segment pmq , such that |p′

mpm| = e|pmq| and p′′
m

is the point on the supporting line of pmq and in the opposite side of pm compared to
p′

m such that |p′′
mpm| = e|p′′

mq|. Equivalently, edge −−→
pipj is added to the DAG G of

the general algorithm of Imai and Iri [17] iff pipj intersects segments p′
mp′′

m for all
vertices pm with i < m < j . The segment p′

mp′′
m is called the tolerance zone of pm

with respect to the observer q and error threshold e.
Therefore, to decide on pipj (adding edge −−→

pipj to G or not) we should con-
sider the tolerance zone of all vertices of P that are between pi and pj . Then, to



Algorithmica

Fig. 5 Observer-dependent
tolerance zone

Fig. 6 The gray region is the permitted region of p0 as we proceed considering the points p1 to p4

1: procedure BuildDAG(P : path of n vertices, e : error threshold)
2: for i = 1 to n − 1
3: PRpi

= hp(q,pi ,pi+1)

4: for j = i + 1 to n do
5: if pj ∈ PRpi

then
6: add −−→

pipj to G

7: end if
8: PRpi

= PRpi

⋂
�p′

j
pip

′′
j

9: end for
10: end for
11: return G

Fig. 7 Building DAG for the general simplification algorithm

decide on pipj+1 we can use the information prepared when deciding on pipj . We
do this by defining a permitted region for pi , denoted by PRpi

, which is a part of the
plane with this property that, when deciding on pipj , this edge is added to G iff pj

lies inside PRpi
. Trivially, the initial value of PRpi

is the half plane defined by qpi

containing pi+1—this half-plane is denoted by hp(q,pi,pi+1). The reason is that
errdvis(pipi+1) = 0 and regardless of the position of pi+1, −−−−→

pipi+1 is always added to
G. Let �pqr denote the wedge defined by the edges −→

qp and −→
qr that contains segment

pr . Then, −−−−→
pipi+2 must be added to G iff pi+2 lies inside �p′

i+1pip
′′
i+1. Therefore,

after considering pi+1, PRpi
must be updated to �p′

i+1pip
′′
i+1. Then, when we con-

sider pi+2, PRpi
has the property that −−−−→

pipi+2 is added to G iff pj+2 lies inside PRpi
.

In Fig. 6 we have shown how the permitted region of the point p0 changes when we
proceed to decide on the segments p0pk (0 < k < 5). According to this figure, edges−−→
p0p1, −−−→

p0,p2 and −−→
p0p4 are added to G, but, −−→

p0p3 is not added to G. Using this ap-
proach, we can build G in total O(n2) time. The pseudo code shown in Fig. 7 depicts
details of this method.



Algorithmica

Using this method, our observer-dependent distance-distortion error function can
be used along with current efficient line simplification algorithms without increasing
their running time complexity.

Theorem 1 The visibility polygon of a point observer inside a planar domain of total
n vertices can be simplified according to the observer-dependent distance-distortion
error function in O(n2) time.

3.2 The O(n4/3+δ) Algorithm

Agarwal and Varadarajan [3] have proposed the only sub-quadratic simplification
algorithm for L1 and uniform error functions. Their algorithm is based on preparing
a clique cover for the DAG G of Imai and Iri approach [17].

A set G = {G1(V1,E1), . . . ,Gl(Vl,El)} is a clique cover of a directed graph G =
(V ,E) if,

– Each Gi is a subgraph of G,
– Each Gi is a complete bipartite graph and if Vi1 and Vi2 are the vertex classes of

Gi then each edge of Ei is directed from a vertex in Vi1 to a vertex in Vi2 ,
– E = ⋃l

i=1 Ei ,
– Ei ∩ Ej = ∅ for all 1 ≤ i ≤ l, 1 ≤ j ≤ l, i �= j .

Then, we need O(|G|) = O(
∑l

i=1 |Vi |) space to store G . Having this compressed
version of G, we can find the shortest path between any two vertices of G in time
O(|V | + |G|) [3].

They proposed a method for finding such a clique cover of the simplification DAG
for solving max-simplification under L1 and uniform metric. In this section, we ap-
ply this method for solving min-k simplification under observer-dependent distance-
distortion error function.

Assume that VP(q) = C = 〈p1,p2, . . . , pn〉 is the given visibility polygon and
G is the corresponding DAG. We compute a clique cover G of G by a divide and
conquer scheme. Assume that C1 = 〈p1,p2, . . . , p� n

2 �〉 and C2 = 〈p� n
2 �+1, . . . , pn〉

are the two parts of C in divide step and G1 and G2 are respectively their clique
covers. Then, we need to prepare a clique cover G12 for edges E12 = {−−→pipj |−−→pipj ∈
G,pi ∈ C1,pj ∈ C2} in the merge step. If we do this, G = G1 ∪ G2 ∪ G12 will be a
clique cover for G. Since G1 and G2 are computed recursively, it is enough to describe
a method for building G12.

In Sect. 3.1, we defined PRpi
to be initially the half-plane hp(q,pi,pi+1)

and its value is updated as vertices pi+1,pi+2, . . . are processed. Let C1 =
〈p1,p2, . . . , p� n

2 �〉, C2 = 〈pn,pn−1, . . . , p� n
2 �+1〉, pi ∈ C1 and pj ∈ C2. We define

cone(pi) to be equal to PRpi
after processing p� n

2 � and cone(pj ) to be equal to
PRpj

after processing p� n
2 �+1. The following lemma defines the relation between

edges of E12 and cone of the vertices.

Lemma 2 −−→
pipj ∈ E12 iff pj ∈ cone(pi) and pi ∈ cone(pj ).
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Proof In Sect. 3.1, we showed that −−→
pipj ∈ G iff pipj intersects all segments p′

mp′′
m

for i < m < j . Trivially, if pipj intersects these segments then pj ∈ cone(pi) and
pi ∈ cone(pj ). On the other hand, if pj ∈ cone(pi) and pi ∈ cone(pj ), pipj will
intersect all segments p′

mp′′
m for i < m < j which results that pipj is an edge in G

and therefore, it is an edge in E12. �

Assume that pil and pil
′ are the half lines defining cone(pi) and α is the convex

angle defined by these half lines. We denote by wedge(pi) the wedge of angle α

defined by the supporting lines of pil and pil
′. Therefore, wedge(pi) is the union

of cone(pi) and its inverse relative to pi . The following lemma defines the relation
between cone and wedge of the vertices.

Lemma 3 The following statements are equivalent:

1 −−→
pipj ∈ E12.

2 pj ∈ cone(pi) and pi ∈ cone(pj ).
3 pj ∈ wedge(pi), pi ∈ wedge(pj ), pj ∈ hp(q,pi,pi+1) and pi ∈ hp(q,pj ,pj−1).

Proof The proof of 1 ⇔ 2 was given in Lemma 2. Proof of 2 ⇒ 3 is directly
derived from the definition of cone and wedge. Also, from these definitions we
have cone(pi) = hp(q,pi,pi+1) ∩ wedge(pi) and cone(pj ) = hp(q,pj ,pj−1) ∩
wedge(pj ) from which the relation 3 ⇒ 2 results. �

According to Lemma 3, the set of edges in E12 can be declared as follows:

E′
12 = {−−→pipj |pi ∈ C1,pj ∈ C2,pj ∈ hp(q,pi,pi+1)},

E′′
12 = {−−→pipj |−−→pipj ∈ E′

12,pi ∈ hp(q,pj ,pj−1)},
E12 = {−−→pipj |−−→pipj ∈ E′′

12,pi ∈ wedge(pj ),pj ∈ wedge(pi)}.
In the remainder of this section, we first describe a method to compute cone(p)

for all p ∈ C1 and p ∈ C2. Then, we propose a method for building G12. The lat-
ter is done by first computing a clique cover G′

12 of edges in E′
12. Then, for each

clique item (A,B) ∈ G′
12 we produce a clique cover of vertices (a, b) ∈ A × B where

(a, b) ∈ E′′
12. This results a clique cover G′′

12 for edges of E′′
12. Finally, for each clique

(A′,B ′) ∈ G′′
12, we build a clique cover of edges (a, b) ∈ A′ ×B ′ where a ∈ wedge(b)

and b ∈ wedge(a). Trivially, this is a clique cover G12 of edges E12.

Lemma 4 We can compute cone(pi) of all vertices pi ∈ C1 and pi ∈ C2 in
O(n logn) time.

Proof Assume that pi ∈ C1 and we have already computed cone(pk) for i ≤ k ≤ �n
2 �

by induction. We define Li to be the lower envelope of the convex hull of the points
{p′′

i , p′′
i+1, . . . , p

′′
� n

2 �} compare to the supporting line of pip� n
2 � and Ui to be the upper

envelope of the convex hull of the points {p′
i , p

′
i+1, . . . , p

′
� n

2 �}. Assume that we have

computed Li and Ui by induction.
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For the new vertex pi−1, we compute the tangent half lines from this point to
Li and Ui . If the tangent to Li lies below the tangent to Ui , cone(pi−1) is empty.
Otherwise, cone(pi−1) is the region contained between these tangents. Trivially, any
ray in cone(pi−1) intersects p′′

kp′
k tolerance zones for i ≤ k ≤ �n

2 � and any ray outside
cone(pi−1) does not have this property. Therefore, cone(pi−1) have been computed
correctly. We must also compute Li−1 and Ui−1 to be used for point pi−2. This is
done by using current incremental or dynamic convex hull algorithms [20, 22]. Li−1

and Ui−1 is obtained by applying required changes to Li and Ui when p′′
i−1 and p′

i−1
are added to their corresponding convex hulls. The same method can be used for
points pi ∈ C2.

Finding tangent lines and convex hull updates can be done in O(logn) [20, 22].
Therefore, the total time complexity of computing cone(pi) for all vertices pi ∈ C1

and pi ∈ C2 is O(n logn). �

We can build the clique covers for E′
12 and E′′

12 according to the following lemmas.

Lemma 5 We can compute a clique cover of size O(n logn) for E′
12 in O(n logn)

time.

Proof We put vertices pj ∈ C1 into a range searching data structure so that the
following query can be answered efficiently: For a vertex pi ∈ C1 find all vertices
pj ∈ C1 that lie in half-plane hp(q,pi,pi+1).

This is done by building a binary search data structure over the vertices of C1.
Since vertices of pj ∈ C1 are radially sorted around q and the half-plane queries pass
through this point the size of this search data structure is O(|C1|) = O(n). Then, the
answer of a query for vertex pi is given as union of O(logn) canonical and disjoint
subset of C1 in O(logn) time. The total size of all canonical subsets of this data
structure is O(n) and can be constructed in O(n logn).

Having this data structure, for each vertex pi ∈ C1 we run the query and for each
canonical subset Bk of this data structure, a set Ak is built that contains those vertices
of C1 that Bk exists in their query result. If Ak �= ∅, (Ak,Bk) is selected as a member
of the clique cover G′

12. It is simple to verify that G′
12 is a correct clique cover for E′

12.
The total size of the canonical subsets Bi is O(n) and each vertex of C1 must be

added to at most O(logn) items of Ak’s. Therefore, the total size of this clique cover
is O(n logn) and can be constructed in O(n logn) time. �

Lemma 6 We can compute a clique cover of size O(n log2 n) for E′′
12 in O(n log2 n)

time.

Proof Based on the relation between E′
12 and E′′

12, for each clique (Ak,Bk) of the
clique cover of the edges of E′

12, as prepared according to Lemma 5, we build a clique
cover for the set of edges in (Ak × Bk) ∩ E′′

12.
Consider a clique (Ak,Bk) ∈ G′

12. We build the range searching data structure
described in Lemma 5 over the vertices of Ak so that the following query can be
answered efficiently: For a vertex pj ∈ Bk find all vertices pi ∈ Ak that lie in the
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half-plane hp(q,pj ,pj−1). As describe in the proof of Lemma 5, we will build a
clique cover for the set of edges (Ak × Bk) ∩ E′′

12 in O(|Ak ∪ Bk| log(|Ak ∪ Bk|))
time whose size is also O(|Ak ∪ Bk| log(|Ak ∪ Bk|)).

If we do this for all cliques (Ak,Bk) ∈ G′
12, the total size of the resulting clique

covers will be O(n log2 n) and these cliques are built in total O(n log2 n) time. Triv-
ially, each edge of this clique cover exists in E′′

12 and vice versa. �

Agarwal and Varadarajan [3] proposed a method for building a clique cover for
E = {(a, b)|a ∈ A,b ∈ B,a ∈ wedge(b), b ∈ wedge(a)} which is based on mapping
lines in wedge(p) to dual space and computing segment intersection in this dual
space. The size of this clique cover is O(n4/3+δ) and it can be computed in O(n4/3+δ)

time where n is the number of vertices in A and B .
Using this method and having the clique cover of edges of E′′

12 as described in
Lemma 6, we can build the clique cover G12 for edges of E12 as follows. For each
(A′

k,B
′
k) ∈ G′′

12 of the clique cover of E′′
12, we build a clique cover for the edges of

(A′
k × B ′

k) ∩ E12 using the method proposed in [3]. It is simple to prove that the total
size of this cover and its building running time for all cliques of G′′

12 is O(n4/3+δ).
Combining everything together, we have the following relation for the total run-

ning time and required space for our divide and conquer algorithm to build a clique
cover for edges in G.

S(n) ≤ 2S(n/2) + c · n4/3+δ

= O(n4/3+δ)

Lemma 7 There is a clique cover of size O(n4/3+δ) for the simplification graph of
a visibility polygon of size n under the observer-dependent distance-distortion error
function. This clique cover can be constructed in O(n4/3+δ).

Using the result of Lemma 7 and doing a shortest path in this clique cover, we can
simplify VP(q) in subquadratic time.

Theorem 2 The visibility polygon of a point observer can be simplified using the
observer-dependent distance-distortion error function in time O(n4/3+δ).

3.3 Unrestricted Simplification

In previous simplifications, we need the vertices of the simplification to be selected
among vertices of the initial visibility polygon. In this section, we solve the unre-
stricted version of the line simplification problem to simplify VP(q). In this problem,
we are asked to simplify VP(q) by a polygon Q of minimum number of vertices
such that the error of this simplification (the maximum observer-dependent distance-
distortion error of the vertices of VP(q)) supports a give error threshold e. Here, the
vertices of Q are not restricted and can be selected anywhere in the plane.

To support the error thereshold e, Q must intersect the tolerance zones p′
ip

′′
i

of all vetices pi ∈ VP(q) where p′
ip

′′
i is computed with respect to q and e. As

shown in Fig. 8, this problem is reduced to the problem of finding minimum-link



Algorithmica

Fig. 8 Unrestricted visibility
simplification is equivalent to
finding minimum-link loop

loop Q = q0, q1, . . . , qk that separetes the simple polygons P ′ = p′
0,p

′
1, . . . , p

′
n and

P ′′ = p′′
0 ,p′′

1 , . . . , p′′
n . This minimum-link problem is a well-known problem for

which a O(n logk) time algorithm exists [15]. Therefore,

Theorem 3 The unrestricted version of simplifying the visibility polygon of a point
observer using the observer-dependent distance-distortion error function can be
solve in time O(n logk) where k is the number of the vertices of the resulting simpli-
fication.

4 Observer-Dependent Simplification in Streaming Model

In the previous section, we considered the cases where we have all the path vertices
in memory and we can do more than a single processing pass over them. In this
section we consider this simplification in streaming model in which we have a single
pass over the path vertices. Abam et al. proposed a general algorithm that can be
used to simplify a path whose vertices are given as a stream of input points [1].
Their algorithm solves only the min-δ version of the line simplification problem.
Because of the large number of input vertices, the result of the min-k version of the
line simplification in streaming model, may be too large to store, and therefore, no
result exists for it.

In order to use this algorithm on a path P(n) = p0,p1, . . . , pn with an error func-
tion err, two conditions must be satisfied:

– err must be a c-monotone error function on P(n) for any n > 0. This means that
for any two segments pipj and plpm such that i ≤ l ≤ m ≤ j and pi , pj , pl and
pm are vertices of P(n), we have

err(plpm) ≤ c · err(pipj ).

In other words, an error function is c-monotone if the error of a segment can not
be worse than c times the error of any segment that encloses it.

– There must be an e-approximate error oracle for err on P(n) to be defined as
follows. In streaming model, we may lose some vertices of the subpath P(i, j)

between points pi and pj . Thus, we can not compute the exact value of the error
function for this segment and we should approximate it. We denote the approxi-
mated error value of a segment pipj by err∗(pipj ). We call the procedure that
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computes this approximation our error oracle. An error oracle is e-approximate if
for any segment pipj for which the oracle is called by the algorithm we have

err(pipj ) ≤ err∗(pipj ) ≤ e · err(pipj ).

Having these two conditions, the algorithm of Abam et al. [1] simplifies a stream-
ing path P by a path Q of at most k internal vertices. The time the algorithm needs
to update the simplification upon the arrival of a new point is O(log k) plus the time
spent by the error oracle. Beyond the storage needed for the simplification Q that is
O(k), the algorithm needs O(k) storage plus the storage needed by the error oracle.
The algorithm is quite simple:

Suppose we have already handled points p0, . . . , pn. (We assume n > k + 1;
until that moment, we can simply use all points and have zero error.) Let Q :=
q0, q1, . . . , qk, qk+1 be the current simplification. The algorithm will maintain a pri-
ority queue Q that stores points qi with 1 ≤ i ≤ k, where the priority of a point qi is
the error (as computed by the oracle) of the link qi−1qi+1. In other words, the priority
of qi is (an approximation of) the error that is incurred when qi is removed from the
simplification. Now, the next point pn+1 is handled as follows:

1. Set qk+2 := pn+1, thus obtaining a (k + 1)-simplification of P(n + 1).
2. Compute err∗(qkqk+2) and insert qk+1 into Q with this error as priority.
3. Extract point qs with minimum priority from Q; remove qs from the simplifica-

tion.
4. Update the priorities of qs−1 and qs+1 in Q.

The error of the simplification Q obtained by this algorithm for k = 2k′ is at most
ce times the error of the optimal simplification of P with k′ points in non-streaming
model in which we have all points in memory. So, in order to use this algorithm,
we must show that our observer-dependent error function, errvis , is c-monotone and
we need an error oracle to approximate the error of any segment pipj for which the
oracle is called in this algorithm.

Lemma 8 Over the visibility polygon of a point observer, the observer-dependent
error function errvis is 2-monotone.

Proof Assume that points pi , pj , pl and pm lie on VP(q) such that i ≤ l ≤ m ≤ j

and errvis(plpm) belongs to a point pk where l ≤ k ≤ m and p′
k and p′′

k are respec-
tively the intersection points of the supporting line of qpk and segments plpm and
pipj . VP(q) is a star-shaped polygon and q is a point in its center. Following the
order of points on VP(q), the supporting lines of the segments plq , pmq and pkq

intersect the segment pipj and the supporting line of pkq intersects plpm. There are
six permutations for positions of points pk , p′

k and p′′
k on the supporting line of qpk

shown in Fig. 9. For all of these configurations we have

errvis(pipj ) ≥ max(errvis(pl,pipj ), errvis(pm,pipj ), errvis(pk,pipj )),

and

errvis(p
′
k,pipj ) ≤ max(errvis(pl,pipj ), errvis(pm,pipj )).
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Fig. 9 The observer-dependent error function is 2-monotone

Consequently, we have errvis(pipj ) ≥ max(errvis(p
′
k,pipj ), errvis(pk,pipj )).

We prove the lemma for all these configurations by showing that

errvis(plpm) = errvis(pk,plpm)

≤ 2 max(errvis(p
′
k,pipj ), errvis(pk,pipj ))

≤ 2errvis(pipj ).

The first equality is our assumption that pk has the maximum error on plpm among
all points of the path pl,pl+1, . . . , pm and we have already shown the last inequality.
Therefore, it is enough to show only the middle inequality.

– Case 1 (shown in Fig. 9.A): In this configuration we have,

errvis(pk,plpm) = |pkp
′
k|

|pkq| ≤ |pkp
′′
k |

|pkq| = errvis(pk,pipj )

≤ 2 max(errvis(p
′
k,pipj ), errvis(pk,pipj )).

– Case 2 (shown in Fig. 9.B): Here, if |pkp
′′
k | ≥ |p′′

kp′
k| then we have,

errvis(pk,plpm) = |pkp
′
k|

|pkq| = |pkp
′′
k | + |p′′kp′

k|
|pkq| ≤ 2|pkp

′′
k |

|pkq|
= 2errvis(pk,pipj ) ≤ 2 max(errvis(p

′
k,pipj ), errvis(pk,pipj )),
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and if |pkp
′′
k | < |p′′

kp′
k| then we have,

errvis(pk,plpm) = |pkp
′
k|

|pkq| ≤ 2|p′′
kp′

k|
|pkq| ≤ 2|p′′

kp′
k|

|p′′
k q|

= 2errvis(p
′
k,pipj )≤ 2 max(errvis(p

′
k,pipj ),errvis(pk,pipj )).

So in both conditions, the lemma is valid.
– Case 3 (shown in Fig. 9.C): For this case, assume that |pkp

′′
k | = x|pkq| =

x(|pkp
′
k| + |p′

kq|). Then,

max(errvis(p
′
k,pipj ), errvis(pk,pipj ))

≥ errvis(p
′
k,pipj )

= |pkp
′
k| + |pkp

′′
k |

|pkp
′′
k | + |pkq| = |pkp

′
k| + x(|pkp

′
k| + |p′

kq|)
x|pkq| + |pkq| = (x + 1)|pkp

′
k| + x|p′

kq|
(x + 1)|pkq|

= errvis(pk,plpm) + x|p′
kq|

(x + 1)|pkq| ≥ errvis(pk,plpm).

– Case 4 (shown in Fig. 9.D): See case 6.
– Case 5 (shown in Fig. 9.E): See case 6.
– Case 6 (shown in Fig. 9.F): According to the pictures, case 4 is the same as case 1,

case 5 the same as case 2 and case 6 the same as case 3.

So, we proved that in all cases, errvis(plpm) ≤ 2errvis(pipj ). We can see (in the
proof of case 2) that this upper bound is tight in cases 2 and 5. �

Now, we propose a procedure that approximates errvis(pipj ), the error value of
any segment pipj for which the simplification algorithm is called.

According to Lemma 1, the oracle needs to approximate do(q,pipj ), wL(i, j) and
wU(i, j) to find an approximation of errvis(pipj ). It is easy to find the exact value
of do(q,pipj ). We use the method described by Agarwal and Yu [2] to approximate
wL and wU .

Agarwal and Yu have described a streaming algorithm for maintaining a core-set
that can be used to approximate the width of a set of points in any direction. Their
algorithm requires O( 1√

ε
) space and O(log 1

ε
) amortized time per point to maintain a

core-set from which the width of the input stream can be computed, efficiently. This
is done by additionally maintaining the convex hull of the core-set using the data
structure by Brodal and Jacob [6]. This data structure uses linear space and can be
updated in logarithmic time. Also it supports queries for the extreme point in a given
direction in logarithmic time. Using these results, we describe a method for obtaining
a (1 + e)-approximate error oracle for errvis where e = 2ε + ε2 and the value of
errvis(pipj ) can be computed in O(log 1

ε
) time.

Assume that wL(i, j) and wU(i, j) are respectively the 1 + ε approxima-
tions of wL(i, j) and wU(i, j). Then, wL(i, j) ≤ wL(i, j) ≤ (1 + ε)wL(i, j) and
wU(i, j) ≤ wU(i, j) ≤ (1+ε)wU(i, j). According to Lemma 1, we need approxima-
tions for wU (i,j)

do(q,pipj )+wU (i,j)
and wL(i,j)

do(q,pipj )
to approximate the value of errvis(pipj ).
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From the 1 + ε approximation of wL(i, j) and the exact value of do(q,pipj )

we have a 1 + ε approximation for wL(i,j)
do(q,pipj )

. Combining the relation wU(i, j) ≤
wU(i, j) ≤ (1 + ε)wU(i, j) and do(q,pipj ) + wU(i, j) ≤ do(q,pipj ) + wU(i, j) ≤
(1 + ε)(do(q,pipj ) + wU(i, j)) we have,

wU(i, j)

(1 + ε)(do(q,pipj ) + wU(i, j))
≤ wU(i, j)

do(q,pipj ) + wU(i, j)

≤ (1 + ε)wU(i, j)

do(q,pipj ) + wU(i, j)

⇒ wU(i, j)

do(q,pipj ) + wU(i, j)
≤ (1 + ε)

wU(i, j)

do(q,pipj ) + wU(i, j)

≤ (1 + ε)2 wU(i, j)

do(q,pipj ) + wU(i, j)

The above relation means that (1+ε)
wU (i,j)

do(q,pipj )+wU (i,j)
is a (1+ε)2 approximation

for wU (i,j)
do(q,pipj )+wU (i,j)

.

Lemma 9 There is a (1 + e)-approximate error oracle for the observer-dependent
error function on the visibility polygon of a point observer that uses O(k2 + k√

ε
)

storage and has O(k log 1
ε
) amortized update time where e = 2ε + ε2 and k is the

number of the internal points of the simplification.

Proof Assume that Q = q0, q1, . . . , qk, qk+1 is the current simplification of the path
P(n) = p0,p1, . . . , pn. Any one of the segments qiqj where 0 ≤ i ≤ j ≤ k + 1,
may appear in the simplification in future and we must be able to approximate
errvis(qiqj ). Assume that we know the approximated values of errvis(qiqj ) for
0 ≤ i ≤ j ≤ k + 1 by induction. Also, assume that we have k + 1 core-sets according
to the algorithm of Agarwal and Yu [2] for point sets P(qi,pn) where 0 ≤ i ≤ k from
which we can find the extreme points in the direction of perpendicular to qipn.

When the new point pn+1 is given, it is added to these core-sets and a new core-set
is created for segment qk+1pn+1. To find the approximated value of errvis(qipn+1)

for 0 ≤ i ≤ k + 1 we find the extreme points in the direction of perpendicular to
qipn+1 from which (1 + ε) approximations for wL(i, n + 1) and wU(i, n + 1) are
obtained. Having these approximations and following the above discussion, we can
compute a (1 + e) approximation for errvis(qipn+1) where 0 ≤ i ≤ k + 1. Following
the simplification algorithm, if qj is the point removed from Q its associated core-set
and the O(k) errors of its potential links are removed as well to save space. Then, after
processing the new point pn+1 we have the required approximations for errvis(qiqj )

and k + 1 core-sets as assumed by induction.
Overall, O(k2 + k√

ε
) storage is needed for the approximated values of O(k2) po-

tential links and the O(k + 1) core-sets. The update of the oracle involves creation of
adding a point to O(k) core-sets, computing O(k) extreme point from these core-sets
and saving and releasing O(k) approximated link errors which are done in O(k log 1

ε
)

amortized time. �
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Combining the results of Lemmas 1, 8 and 9 with algorithm of Abam et al. [1]
described at the beginning of this section, we have the following result on simplify-
ing the visibility polygon of a point observer based on the observer-dependent error
function:

Theorem 4 There is a streaming algorithm that maintains a 2k-simplification for
VP(q) under the observer-dependent error function. This algorithm uses O(k2 + k√

ε
)

additional storage and each point is processed in O(k log 1
ε
) amortized time and the

error of the resulting simplification is not larger than (2 + ε) times the error of the
optimal offline k-simplification.

5 Conclusion

In this paper, we considered the problem of simplifying the visibility polygon of
an observer inside a planar scene. This problem has many applications in com-
puter graphics, games, robotics, path planning, and GIS. We first defined observer-
dependent error functions for both distance-distortion and area-distortion simplifica-
tion metrics. Our goal in defining these simplification criteria was to consider the
position of the observer as an effective factor in real simplification.

For our definitions of the observer-dependent simplification, we described algo-
rithms to simplify the visibility polygon of a point observer, efficiently. Then, we
proposed a simplification method for conditions where the points of the visibility
polygon are given as a stream of points and we do not have enough storage to main-
tain all points. Although, the new criteria are mathematically more complicated, but,
our simplification algorithms are as efficient as the best current simplification algo-
rithms that do not take the observer position into account.

The notion of observer-dependent simplification is pretty new and is applicable
in real applications and there are many directions in extending, improving and im-
plementing the methods described here. Extending to three dimensional space, line
segment observers and implementation issues are examples of the next open direc-
tions.
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