
¹ This author's work was in part supported by a grant from ITRC (N. T-500-1895-86-2-17.)
² This author's work was in part supported by a grant from IPM (N. CS2386-2-01.)

A FAST COMMUNITY BASED ALGORITHM FOR
GENERATING WEB CRAWLER SEEDS SET

Shervin Daneshpajouh, Mojtaba Mohammadi Nasiri¹
Computer Engineering Department, Sharif University of Technology, Tehran, Iran

daneshpajouh@ce.sharif.edu, m_mohammadi@ce.sharif.edu

Mohammad Ghodsi²
Computer Engineering Department, Sharif University of Technology, Tehran, Iran

School of Computer Science, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran
ghodsi@sharif.edu

Keywords: Crawling, Communities, Seed Quality Metric, Crawl Quality Metric, HITS, Web Graph, Hyperlink
Analysis.

Abstract: In this paper, we present a new and fast algorithm for generating the seeds set for web crawlers. A typical
crawler normally starts from a fixed set like DMOZ links, and then continues crawling from URLs which
are found in these web pages. Crawlers are supposed to download more good pages in less iteration.
Crawled pages are good if they have high PageRanks and are from different communities. In this paper, we
present a new algorithm with running time O(n) for generating crawler's seeds set based on HITS algorithm.
A crawler can download qualified web pages, from different communities, starting from generated seeds set
using our algorithm in less iteration.

1 INTRODUCTION

A major question a crawler has to face is which
pages are to be retrieved so as to have the "most
suitable" pages in a collection [1]. Crawlers
normally retrieve a limited number of pages. In this
regard, the question is how fast a crawler collects the
"most suitable" pages. A unique solution to this
question is not likely to exist. In what follows, we
try to answer this question.

Different algorithms with different metrics have
been suggested to lead a crawl towards high quality
pages [2,3]. In [2] Cho, Garcia-Molina, and Page
suggested using connectivity-based metrics to do so.
To direct a crawl, they have used different ordering
metrics: breadth-first, backlink count, PageRank,
and random. They have revealed that performing a
crawl in breadth-first order works nearly well if
"most suitable" pages are defined to be pages with
high PageRanks.

Najork and Wiener extended the results of Cho et
al. They examined the average page quality over the
time of pages downloaded during a web crawl of

328 million unique pages and showed that traversing
the web graph in breadth-first search order is a good
crawling strategy[3].

Based on Henzinger's work [1] better
understanding of graph structure might lead to a
more efficient way to crawl the web. In this paper
we use this idea to develop our algorithm. First, we
define the "most suitable" pages and then we show
how a crawler can retrieve them. We use three
metrics to measure the quality of a page.

In this paper, we present a new fast algorithm for
extracting seeds set from previously crawled pages.
Using offered metrics, we show that by starting from
extracted seeds suggested by our algorithm, a
crawler will quickly collect the most suitable pages
from different communities.

We have studied different community extraction
algorithms: PageRank[4], Trawling[8], HITS, and
Network flow base community discovery[5,9]. After
analysis, we decided to use HITS-Ranking without
keyword search in our algorithm for community
discovery and collecting seeds set. We have found
that bipartite cores are useful for selecting seeds set.

Bipartite cores contain Hub and Authority pages.
Since we are interested in having Authority pages in
our crawl, we would need to start crawling from
Hub pages. Hubs are durable pages, so we can rely
upon them for crawling.

The main idea in our method is to use HITS-
Ranking on the whole graph for extracting the most
important bipartite cores. We offer two bipartite core
extraction algorithms.

We have compared the results of the crawls
starting from extracted seeds set produced by our
algorithm, with crawls starting random nodes. Our
experiments show that the crawl starting from seeds
set identified by our algorithm finds the most
suitable pages of web very faster than a random
crawler did.

According to our knowledge, this is the first
seeds extraction algorithm that is able to identify and
extract seeds from different web communities. Low
running time is crucial in working with large size
web data. The running time of proposed algorithm is
O(n). Low running time with community base
properties makes this algorithm unique in
comparison with previous algorithms.

The remainder of this paper proceeds as follows:
in Section 2, we present our algorithm for
discovering seeds set in a large web graph and
compute the complexity of proposed algorithm; in
Section 3, we discuss the results of running and
evaluating this algorithm on 18M and 39M node
graphs; Section 4 contains conclusion and future
works.

2 ALGORITHM FOR
DISCOVERING SEEDS SET IN
LARGE WEB GRAPH

In this section, we present our algorithm to
discover seeds sets from web graph.

A crawler normally does not crawl the entire
web. Instead, it continues to retrieve a limited
number of pages. Crawlers are expected to collect
the "most suitable" pages of web rapidly. We
defined "most suitable" pages of web as those pages
with high Page Rank. In terms of HITS algorithm
they are called Authority pages. The difference is
that HITS algorithm finds the authority pages
relating to keywords but PageRank shows the
importance of a page in the whole web. As well, we
know that good hubs link to good authorities. If we
are able to extract good hubs from a web graph and
different communities, we will be able to download

good authorities that have high PageRank of
different communities.

2.1 Iterative HITS-Ranking &

Pruning

We assume that we have a web graph of crawled
web pages. The goal is to extract seeds set from this
graph so that a crawler can collect the most
important pages of the web in less iteration. To do
this we run HITS-ranking algorithm on this graph.
This is the second step of HITS algorithm. In the
first step, it searches the keywords in an index-based
search engine. For our purpose, we ignore this step
and only run the ranking step on the whole graph. In
this way, bipartite cores with high Hub and
Authority rank will become visible in the graph.
Then we select the most highly ranked bipartite core
using two algorithms. We suggest, extracting seeds
with fixed size, and extracting seeds with fixed
density; we remove this sub-graph from the graph,
repeat ranking, seed extraction, and sub-graph
removal steps up to a point that we have enough
seeds set.

A question that may arise is why we need to run
HITS-ranking again when repeating these steps. Isn't
one time ranking enough for whole steps? The
answer is: removing bipartite core in each step
modifies the web-graph structure we are working on.
In fact, re-ranking changes the hub and authority
ranks of bipartite cores. Removing high-ranked
bipartite core and re-ranking web-graph drive,
bipartite cores appeared to be from different
communities. Thus, a crawler will be able to
download pages from different communities starting
from these seeds. We have experimented our
algorithm using web-graph of UK 2002 containing
18M nodes and 298M edges, and UK 2005
containing 39M nodes and 936M edges [6, 7]. Our
experiments prove that extracted bipartite cores have
a reasonable distance from each other.

The other question that may arise is that if a
crawler starts from seeds resulted from our
algorithm, why would the results of crawl lead to the
most suitable pages. The answer is: in iterations of
algorithm, we select and extract high-ranked
bipartite cores from the web-graph. Extracted
bipartite cores have high hub or authority ranks. It is
expected that pages with high hub-rank link to pages
with high PageRank. Our experiments prove the
correctness of this hypothesis.

2.3 Extracting Seeds with Fixed Size

The Extract-Bipartite-Cores-with-Fixed-Size
procedure, as it's name indicates, extracts one
bipartite sub-graph with highest hub and authority
ranks with predetermined size given as an input.
Algorithm is given a directed graph G,
BipartiteCoreSize, NewMemberCount and h, and a
vectors. BipartiteCoreSize specifies the desired size
of bipartite core we like to be extracted.
NewMemberCount indicates in each iteration of
algorithm how many hub or authority nodes should
be added to the hub or authority sets; h and a vectors
are hub and authority ranks of nodes in the input
graph G.

Figure 1. Extracting Bipartite Cores with Fixed Size

In the initial steps, the Algorithm sets HubSet to
empty and adds the node with highest authority rank
to AuthoritySet. While the sum of AuthoritySet size
and HubSet size is less than BipartiteCoreSize, it
continues to find new hubs and authorities regarding
the NewMemberCount and adds them to the related
set. We use this procedure when we like to extract
bipartite sub-graph with fixed size. Figure 1 shows
the details of Extract-Bipartite-Cores-with-Fixed-
Size procedure. In Figure 2 we show the steps of
bipartite sub-graph creation with NewMemberCount
equal to 1. An interesting result we have found in
our experiments is that at the very first steps, all the
hubs have links to all authorities which is a complete

bipartite sub-graph. This leaded us to suggest an
extraction algorithm with a density factor that is
described in the following subsection.

2.4 Extracting Seeds with Fixed

Cover-Density

The Extract-Bipartite-Cores-with-Fixed-
CoverDensity procedure, as it's name indicates,
extracts one bipartite sub-graph with highest hub and
authority ranks in a way that the sub-graph has the
desired cover-density function. A directed graph G,
CoverDenstity, h and a vectors are given to the
algorithm.
We define Cover-Density as follows:

(1) ||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE

This measure shows how many nodes in the
authority set are covered by nodes in hub set. If the
bipartite sub-graph is a complete bipartite sub-graph,
this measure will be equal to 100. Therefore, if we
intend to extract complete bipartite sub-graph we set
CoverDenstity to 100. h and a vectors are hub and
authority ranks of nodes in the input graph G.

In initial steps, Algorithm sets HubSet to empty
set and adds the node with highest authority rank to
AuthoritySet. In addition, it sets CoverDensityCur to
100.

While CoverDensityCur is bigger than or equal
to input CoverDensity, procedure continues to find
new hubs and authorities. This algorithm adds only
one new node to the sets at each iteration of the
algorithm. Remember that in Extract-Bipartite-
Cores-with-Fixed-Size we could adjust the count of
new members. Here, we do not have such a variable.
This is because of the fact that we like to have a
precise cover density here. In other words, if we
increase the number of new nodes to more than 1,
this might cause the reduction of the accuracy of
desired cover density.

We use this procedure when we like to extract
bipartite sub-graph with desired density between
hubs and authorities. Figure 3 shows the details of
the Extract-Bipartite-Cores-with-Fixed-
CoverDensity procedure.

2.5 Putting It All Together

Up to now, we have presented algorithms for HITS-
Ranking and bipartite core extraction based on hub
and authority ranks. Our goal is to extract a set of

Procedure Extract-Bipartite-Cores-with-Fixed-Size
 Input: graph: G=(V,E) , integer:
BipartiteCoreSize, NewMemberCount;
 vector: h,a.
1) HubSet = ∅;
2) AuthoritySet= Add v with highest a(v) to
 AuthoritySet;
3) While |AuthoritySet| + |HubSet| <
 BipartiteCoreSize do

4) HubSet = HubSet ∪ (Find Top

NewMemberCount h(v) where v,w∈ E
and w in AuthoritySet and v not in
HubSet);

5) AuthoritySet= AuthoritySet ∪ (Find Top

NewMemberCount a(v) where w,v∈ E
and v in AuthoritySet and w not in
HubSet);

6) End While
 output: HubSet, AuthoritySet
End Procedure

desired number of seeds to crawl and download
pages from different web communities with high
PageRank in less iteration. We use the proposed
algorithms to achieve this goal. We assume that we
have a web graph of crawled web pages. Then we
run HITS-Ranking algorithm on the whole graph
and use one of the bipartite core extraction
algorithms we have presented. Then we select
arbitrarily one of the nodes in the extracted hub set
and add it to our seeds set. Finally, we remove the
extracted core from the input graph and repeat these
steps until we find the ideal number of seeds.

Figure 2. Steps of bipartite sub-graph creation with
NewMemberCount equal to 1. Hub nodes are shown in
grey and authority nodes are shown in white. (a) shows the
sub-graph after adding the highest authority rank node and
adding hub with highest rank that refer to this authority
node. In (b), the next authority with highest rank which
was not added previously in authority set and is linked by
the only node in the hub set is added. In (c), the second
hub node with highest hub rank which was not already in
the hub set and linked to one of the nodes in authority set
is added. In (d) resulted sub-graph after 4 steps is shown.

We can use one of these two bipartite core
extraction algorithms that we have proposed:
Extract-Bipartite-Cores-with-Fixed-Size, Extract-
Bipartite-Cores-with-Fixed-CoverDensity. If we
wish bipartite cores to have a fixed size we use the
first algorithm and if we are looking for bipartite
cores having desired cover density, then we use the
second algorithm. For example, if we like the
density of bipartite cores to be complete we should
use the second algorithm.

We have experimented both of these algorithms.
As we cannot guess the suitable size of a web
community, we use the second method. The second
method can calculate the density of links between
hubs and authorities. If we have a complete bipartite
core then we are sure that all the authority pages are
from the same community. By decreasing the Cover-
Density measure, we decrease the degree of
relationship between authority pages. Because the

second method is more reliable than the first one, in
this paper we only present experimental results
achieved from using Extract-Bipartite-Cores-with-
Fixed-CoverDensity. Figure 4 shows the seeds
extraction algorithm we have used in our
experiments in this paper.

Figure 3. Extracting Bipartite Cores with Fixed Density

The Extract-Seeds algorithm receives a directed
graph G and SeedCount as input. At the initial step,
algorithm sets SeedSet to empty. While the size of
SeedSet is less than SeedCount, the algorithm keeps
running. In the first line of While section, algorithm
calls HITS-Ranking procedure with G as the input
graph and 60 as HITSIterationCount. Kleinberg's
work shows that HITSIterationCount equal to 20, is
enough for convergence of hub and authority ranks
in a small sub-graph [7]. We have found
experimentally that a number of more than 50 is
enough for convergence of hub and authority ranks
with the dataset we use. HITS-Ranking algorithm
returns two vectors, h and a, containing result of hub
and authority ranks of all nodes in graph G. In the
next line algorithm calls Extracting-Bipartite-Cores-
with-Fixed-CoverDensity with G as input graph, 100
as cover density value, and h and a as hub and
authority vectors. This function finds complete

(a) (b)

(c) (d)

Procedure Extract-Bipartite-Cores-with-Fixed-
CoverDensity
 Input: graph: G=(V,E) , integer:
CoverDensity;
 vector: h,a.
1) HubSet = ∅;
2) AuthoritySet = Add v with highest a(v) to
AuthoritySet;
3) CoverDensityCur = 100;
4) While CoverDensityCur ≥ CoverDensity do
5) HubSet = HubSet ∪ (Find Top

NewMemberCount h(v) where v,w∈
E
and w in AuthoritySet and v not in
HubSet);

6) AuthoritySet= AuthoritySet ∪ (Find

Top NewMemberCount a(v) where
w,v∈ E and v in AuthoritySet and w
not in HubSet);

7) CoverDensityCur =

||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE ;

8) End While
 output: HubSet, AuthoritySet
End Procedure

bipartite cores in the input graph and returns
complete bipartite nodes in HubSet and AuthoritySet.
In the next line, a node randomly is selected from
hub set and is added to the SeedSet. Now algorithm
removes the hub and authority nodes and their edges
from graph G. The removal step helps us to find
seeds from different communities.

Figure 4. Seeds Extraction Algorithm

2.6 Complexity of Proposed Seeds
Extraction Algorithm

The running time of Seeds-ExtractionAlgorithm,
(Figure 4), is O(n), where n is the number of nodes
in the input graph.

The While loop of lines 2-12 is executed at most
|SeedCount| times. The work of line 4 is done in
O(n). Because the complexity of HITS-Ranking is
equal to Θ(K*2*L*n) where K is
|HitsIterationCount|, L the average number of
neighborhoods of a node and n is the number of
nodes in the input graph. This complexity is
multiplied by 2 because there are two steps for this
kind of computation, one for hub vector and the
other for authority vector. In addition, the
normalization steps can be done in Θ(3n). So, the
complexity of HITS-Ranking is O(n).

The running time of Extracting-Bipartite-Cores-
with-Fixed-CoverDensity in line 4 is O(n). The
While loop of lines 4-8, in figure 3, is executed at
most |HubSet + AuthoritySet| times which can be
viewed as a constant number k. Finding and adding
a distinct hub node with highest rank to hub set, in
line 5, takes Θ(k*n). Finding and adding a distinct

authority node with highest rank to authority set, in
line 6, takes Θ(k*n). So, the running time of
Extracting-Bipartite-Cores-with-Fixed-
CoverDensity is at most O(n).

The removal steps of lines 6-11, in Figure 4,
takes O(n) for removing identified hubs and
authorities.
Therefore, the total running time of Seed-Extraction
Algorithm is O(|SeedCount|*n), which is equal to
O(n).

3 EXPERIMENTAL RESULTS

In this section, we apply our proposed algorithm, to
find seeds set from previously crawled pages. Then,
we start a crawl using extracted seeds on the same
graph to evaluate the result. To show how applying
algorithm on old data can provide good seeds for a
new crawl, we start the crawl on a newer graph
using seeds set extracted from a previous crawl.

3.1 Data Sets

The laboratory for Web Algorithmics at the
University of Milan provides different web graph
data sets [10]. In our experiments, we have used
UK-2002 and UK-2005 web graph data sets
provided by this laboratory. These data sets are
compressed using WebGraph library. WebGraph is a
framework for studying the web graph [11]. It
provides simple ways to manage very large graphs,
exploiting modern compression techniques. With
WebGraph, we can access and analyze a very large
web graph on a PC.

3.1.1 UK-2002

This data set has been obtained from a 2002 crawl of
the .uk domain performed by UbiCrawler in 2002
[12]. The graph contains 18,520,486 nodes and
298,113,762 links.

3.1.2 UK-2005

This data set has been obtained from a 2005 crawl of
the .uk domain performed by UbiCrawler in 2005.
The crawl was very shallow, and aimed at gathering
a large number of hosts, but from each host a small
number of pages. This graph contains 39.459.935
nodes and 936,364,282 links.

Procedure Extract-Seeds
 Input: graph: G=(V,E) , integer: SeedCount;
1) SeedSet = ∅
2) While |SeedSet| < SeedCount do
3) h, a = HITS-Ranking(G , 60);
4) HubSet, AuthoritySet = Extracting-

Bipartite-Cores-with-Fixed-
CoverDensity(G, 100, h, a);

5) SeedsSet = SeedsSet ∪ Select a node
arbitrarily from HubSet;

6) For all v in HubSet do
7) Remove v and all E(v) from G;
8) End For
9) For all v in AuthoritySet do
10) Remove v and all E(v) from G;
11) End For
12) End While
 output: SeedsSet
End Procedure

Figure 5. diagram of Log-Log In-Degree and Out-Degree
of UK 2002 and UK 2005.

3.2 Data Set Characteristics

3.2.1 Degree Distribution

We had investigated the degree distribution of UK-
2002 and UK-2005. Figure 7.a and 7.b show In-
degree and Out-degree distribution for UK-2002 in
log-log form. Figure 7.c and 7.d show In-degree and
Out-degree distribution for UK-2005 in log-log
form. The results show that the In-degree and Out-
degree distribution are power laws in these two
datasets.

3.2.2 Diameter

The diameter of a web-graph is defined as the length
of shortest path from u to v, averaged over all
ordered pairs (u,v) [13]. Of course, we omit the
infinite distance between pairs that there is not a
path between them. This is called average connected
distance in [6]. We estimated this measure on UK-
2002 and UK-2005 data sets through experiments.
Table 1 shows the estimated diameter of these data
sets together with the number of nodes and edges.
We use the resulted diameter to evaluate the
distances between extracted bipartite cores resulting
from our method.

Table 1. UK 2002 and 2005 Data Sets information before
pruning.

Data Set Nodes Edges Diameter
Estimate

UK-2002 18,520,486 298,113,762 14.9
UK-2005 39.459.935 936,364,282 15.7

Table 2. UK 2002 and 2005 Data Sets information after
pruning.

Data Set Nodes Edges
UK-2002 18,520,486 22,720,534
UK-2005 39.459.935 183,874,700

3.3 Date Preparation

3.3.1 Pruning

Most of the links between pages in a site are for
navigational purposes. These links may distort the
result of presented algorithm. The result of the
HITS-Ranking algorithm on this un-pruned graph
will result in hub and authority pages to be found in
a site. To eliminate this effect we remove all links
between pages in the same site.

We assume pages with the same host-name are
in the same site. Table 2 shows the number of nodes
and edges after pruning in the UK data sets.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10

log(In-Degree)

(a). Log-Log In-Degree UK 2002

(b). Log-Log Out-Degree UK 2002.

0

2

4

6

8

10

12

14

16

0 2 4 6 8
log(Out-Degree)

(c). Log-Log In-Degree UK 2005.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10

log(In-Degree)

(d). Log-Log Out-Degree UK 2005.

0

2

4

6

8

10

12

14

16

0 2 4 6 8

log(Out-Degree)

3.4 Results of Extracted Seeds using
Proposed Algorithm

We run our algorithm for seeds extraction, Extract-
Seeds, on UK-2002 and UK-2005. This algorithm,
as Figure 4 shows, sets CoverDensity to 100 for
seeds extraction. It searches and extracts complete
bipartite cores and then, at each step, selects the
seeds from hub nodes in the bipartite sub-graph (see
Figure 2). Figure 6 shows the size of extracted hubs
and authorities in different iteration from UK-2002.
It is clear that these cores are complete-bipartite. To
reduce the impact of outlier hub sizes in the
graphical presentation, we have used a log-log
diagram. Figure 7 depicts the size of the extracted
hubs and authorities in different iterations for UK-
2005.

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8 9 10 11

HUB

Authority

Figure 6. Log-Log diagram of Hub and Authority sizes
Extracted from UK 2002 in different iteration.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

HUB

Authority

Figure 7. Log-Log diagram of Hub and Authority sizes
Extracted from UK 2005 in different iteration

Normally, the hub sizes are bigger than the
authority sizes. We obtained bipartite cores with
very large hub sizes in UK-2002. So, we have
limited the number of hubs to 999 in UK-2002 data
set.

3.5 Quality Analysis

3.5.1 Metrics for Analysis

We used some different metrics to evaluate the
quality of extracted seeds. The first metric is the
distance between extracted seeds. As we have
mentioned earlier, a crawler tends to extract web
pages from different communities. Using HITS-
Ranking and Iterative pruning we can conclude that
extracted seeds are from different communities. To
prove this, we measure the distances between
extracted cores. We have defined core-distances as
the nearest directed path between one of the nodes in
the source core to one of the nodes in the destination
core.

The second metric, is the PageRank of pages that
will be crawled starting from these seeds.
Previously, we have defined the most suitable pages
in the web to be the pages with high PageRanks.
Therefore, if the average PageRank of crawled
pages, at each step of crawl, is bigger than a random
crawl, especially at the beginning, then we can
conclude that a crawl that starts from those seeds
identified by our algorithm will result in better
pages.

The third metric is the number of crawled pages
at each step of crawling. We focus on a crawler
whose goal is to download good pages in small
iteration. Thus, if the number of crawled pages
starting from extracted seeds by our method at each
step is bigger than the number of crawled pages
starting at random set, then we can conclude that our
method leads a crawl toward visiting more pages in
less iteration too.

For the first metric, we measure the distance
between the cores. For the other two metrics, we
need to crawl the graph starting from seeds extracted
with our method and compare it with a crawl starting
from randomly selected seeds.

3.5.2 Result of Bipartite Core Distances

We have measured the distance between all bipartite
cores that were extracted from UK datasets and they
had a reasonable distance in comparison with the
diameter of the related graph. Figure 8, shows the
graphical representation of distances between 56
cores extracted from UK-2002. The number on top
of each node indicates the iteration number in which
the core has been extracted. Because the distance
graph between nodes may have not an Euclidian
representation, distances in this figure do not exactly
match with real distances. The other important
information is that bipartite cores in close iterations
have a distance equal or bigger than average
distance of related web graph. In addition, the cores
that are close to each other (there is a short directed

path between them) are identified in far iteration. As
an example, the distance between core extracted
from iteration 32 and the core extracted from
iteration 47 is one. In this sample, the minimum
distance between nodes is 1 and maximum distance
is 13. The average distance is 7.15. As the diameter
of UK-2002 data set is 14.9, core distances are fine.

Figure 8. Graphical representation of distances between 56
extracted seeds from UK-2002 by our algorithm. The
number on top of each node(core) indicates the iteration
number in which the related node has been extracted.

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

1 3 5 7 9 11 13 15 17 19

Iteration

Pa
ge

R
an

k

Our Algorithm Mean PageRank Random Algorithm Mean PageRank
Figure 9. Comparison between PageRank of Crawled
pages starting from 10 seeds extracted by our method on
UK-2002 and Random Seeds.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

Lo
g-

C
ou

nt
 T

ra
ve

rs
ed

 p
ag

es

Our Method Random
Figure 10. Comparison between Log Count diagram

of pages visited at each Iteration starting from 10 seeds
extracted by our method and 10 seeds selected randomly
from UK-2002.

Figure 11. Comparison between PageRank of Crawled
pages starting 10 seeds extracted from UK-2005 by our
method and 10 Random seeds selected from UK-2005.

Figure 12. Comparison between Log Count Diagram of
pages visited at each Iteration starting from 10 seeds
extracted by our method from UK-2005 and 10 seeds
selected randomly on UK-2005.

3.5.3 Result of Average PageRank and Visit
Count

In this section, we evaluate the second and third
metrics defined for evaluation. For UK-2002 we
have executed the Extract-Seed algorithm with
SeedCount=10. Therefore, the algorithm extracts one
seed from each core in iteration. Then, we have
started a crawling on UK-2002 data set
implementing BFS strategy and measured the
average PageRank of visited pages in each crawl
depth, and the number of pages visited in each crawl
depth. Then, we have compared the results with
those gained from a crawl starting from random
seeds for the same graph.

Figure 9 shows the comparison of average
PageRank of crawl starting from seeds extracted
with our method and a crawl starting from random
seeds. Except the first depth (iteration) of crawl, in
the other steps, up to step 4, the average PageRank
of pages crawled with our method appear to be
better. Specially, in the second and third iterations,
the difference is superior. In the later iterations
average PageRank of visited pages are close.

1 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 202

0.00E+00

2.00E-04
4.00E-04
6.00E-04

8.00E-04
1.00E-03
1.20E-03

1.40E-03
1.60E-03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration
Our Method-Seed 2005

PageRank

Random Seeds

1

2

4

7

8

6

5

3

Our Method-Seed 2005

Figure 10 shows the comparison of log-number of
pages visited in each depth of crawl on UK-2002.
For better graphical representation, we have
computed log-count of visited pages. Apparently,
the results of our method are always better than
crawl starting random seeds and a crawl with seeds
extracted with our method downloads more pages in
less iteration. Figures 11 and 12 show the
experiments on UK-2005. The same results appear
here too.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Our Method Seeds from UK 2002 Random Seeds from UK 2005
Figure 13. Comparison between PageRank of Crawled
pages starting 11 seeds extracted from UK-2002 by our
method and 11 Random seeds selected from UK-2005.

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Our Method Seeds from UK2002 Random Seeds from UK2005
Figure 14. Comparison between Log Count Diagram of
pages visited at each Iteration starting from 11 seeds
extracted by our method from UK-2002 and 11 seeds
selected randomly on UK-2005.

3.5.4 Good Seeds for a New Crawl

Using proposed algorithm we have discovered seeds
from UK 2002 and UK 2005. Then we have
evaluated the utility of these seeds using three
evaluation criteria. These evaluations are good, but a
real crawler has not access to seeds of a web graph
which it is going to crawl. We should show that the
result is always good if we start the crawl using
seeds extracted from an old crawled graph.

In this section, we show the result of crawling on
UK 2005 using seeds extracted by proposed
algorithm and we compare it by randomly crawled

seeds to simulate the real environment. Before
algorithm's execution, we have checked the validity
of seeds found from UK-2002 in UK-2005 data set.
If a seed does not exist in a newer graph, then we
remove that seed from our seeds set. Our
experiments show that only 11 percent of seeds exist
in the new data set. In fact, we have extracted 100
seeds from UK 2002 to be sure that we have 11 valid
seeds in UK 2005.

Figure 13, shows the comparison of average
PageRank of crawl starting from seeds extracted
with our method and a crawl starting from random
seeds. The result of our method is better until
iteration 3. Figure 14, shows the comparison of log-
number of pages visited in each depth of the crawl.
In this case, the result of our method is better than
the random case between steps 4 and 15. In fact, our
method download pages with high Page Rank till
iteration 3 and next it crawls more pages than the
random case till iteration 15. After that, the result is
nearly the same. Therefore, we can conclude that a
crawler can download qualified web pages in less
iteration; starting generated seeds set using our
algorithm in less iteration.

5 CONCLUSION AND FUTURE
WORKS

Crawlers like to download more good pages in less
iteration. In this paper, we have presented a new fast
algorithm with running time O(n) for extracting
seeds set from previously crawled web pages. In our
experiments we have showed that if a crawler starts
crawling from seeds set identified by our method,
then it will crawl more pages with higher PageRank
in less iteration and from different communities,
than starting a random seeds set. In addition, we
have measured the distance between selected seeds
to be sure that our seeds set contains nodes from
different communities. According to our knowledge,
this is the first seeds extraction algorithm that is able
to identify and extract seeds from different
communities.

Our experiments were on graphs containing at
most 39M nodes and 183M edges. This method can
be experienced on larger graph in order to
investigate the resulting quality on them too.
Another aspect where improvement may be possible
is the implementation of the seeds that are not found
in a new crawl. In our experiments, we have simply
ignored nodes present in an older graph but not in

the newer one. This aspect may be improved by
finding similar nodes in the newer graph.

ACKNOWLEDGEMENTS
Authors would like to thank Mohammad Mahdian
for his helpful and valuable comment on earlier draft
of this work.

REFERENCES

[1] Henzinger, M. R., 2003. Algorithmic challenges in
Web Search Engines. Internet Mathematics, vol.
1, no. 1, pp. 115-123.

[2] Cho,J. Garcia-Molina, H. and Page, L., 1998.
Efficient Crawling through URL ordering. In
Proceedings of the 7th International World Wide
Web Conference, April, pp.161-172.

[3] Najork, Wiener, J. L., 2001. Breadth-First Search
Crawling Yields High-Quality Pages, Proceedings
of the 10th international conference on World
Wide Web,pp. 114-118.

[4] Brin , S. and Page, L., 1998. The anatomy of a large-
scale hypertextual Web search engine.
Proceedings of the seventh international
conference on World Wide Web 7, pp. 107 – 117.

[5] Kleinberg,J., Lawrence, S., 2001. The Structure of the
Web. Science, vol. 294. no. 5548, pp. 1849 –
1850.

[6] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul,
Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, Janet L. Wiener,
2000. Graph structure in the Web. Computer
Networks, pp. 309-320.

[7] Jon M. Kleinberg,J., 1999. Authoritative Sources in a
Hyperlinked Environment. Proc. 9th ACM-SIAM
Symposium on Discrete Algorithms, pp.604-632.

[8] Kumar,R., Raghavan,P., Rajagopalan,S.,
Tomkins,A., 1999. Trawling the Web for
Emerging Cyber-Communities. Computer
Networks, vol. 33, no. 11, pp.1481-1493.

[9] William Flake,G., Lawrence,S., Giles,L., Coetzee,F.,
2002. Self-Organization and Identification of Web
Communities. IEEE Computer , vol. 35, no. 3, pp.
66-71.

[10] Laboratory for Web Algorithmics, [Online],
Available: http://law.dsi.unimi.it/ [19 Jan. 2007]

[11] Boldi,P., and Vigna,S., 2004. The WebGraph
framework I: Compression techniques. In Proc. of
the Thirteenth International World Wide Web
Conference, pp. 595-601.

[12] Boldi, P., Codenotti, B., Santini, M., Vigna, S.,
2004, UbiCrawler: A Scalable Fully Distributed
Web Crawler, Journal of Software: Practice &
Experience, , vol 34, no 8, pp. 711-726.

[13] Albert, R. Jeong, H. Barabasi, A.L., 2000, 'A
random Graph Model for massive graphs', ACM
symposium on the Theory and computing.

