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Abstract: In this paper, we present a new and fast algorithm for generating the seeds set for web crawlers. A typical 
crawler normally starts from a fixed set like DMOZ links, and then continues crawling from URLs which 
are found in these web pages. Crawlers are supposed to download more good pages in less iteration. 
Crawled pages are good if they have high PageRanks and are from different communities. In this paper, we 
present a new algorithm with running time O(n) for generating crawler's seeds set based on HITS algorithm. 
A crawler can download qualified web pages, from different communities, starting from generated seeds set 
using our algorithm in less iteration. 

1 INTRODUCTION 

A major question a crawler has to face is which 
pages are to be retrieved so as to have the "most 
suitable" pages in a collection [1]. Crawlers 
normally retrieve a limited number of pages. In this 
regard, the question is how fast a crawler collects the 
"most suitable" pages. A unique solution to this 
question is not likely to exist. In what follows, we 
try to answer this question.  

Different algorithms with different metrics have 
been suggested to lead a crawl towards high quality 
pages [2,3]. In [2] Cho, Garcia-Molina, and Page 
suggested using connectivity-based metrics to do so. 
To direct a crawl, they have used different ordering 
metrics: breadth-first, backlink count, PageRank, 
and random. They have revealed that performing a 
crawl in breadth-first order works nearly well if 
"most suitable" pages are defined to be pages with 
high PageRanks. 

Najork and Wiener extended the results of Cho et 
al. They examined the average page quality over the 
time of pages downloaded during a web crawl of 

328 million unique pages and showed that traversing 
the web graph in breadth-first search order is a good 
crawling strategy[3]. 

Based on Henzinger's work [1] better 
understanding of graph structure might lead to a 
more efficient way to crawl the web. In this paper 
we use this idea to develop our algorithm. First, we 
define the "most suitable" pages and then we show 
how a crawler can retrieve them. We use three 
metrics to measure the quality of a page.  

In this paper, we present a new fast algorithm for 
extracting seeds set from previously crawled pages. 
Using offered metrics, we show that by starting from 
extracted seeds suggested by our algorithm, a 
crawler will quickly collect the most suitable pages 
from different communities.  

We have studied different community extraction 
algorithms: PageRank[4], Trawling[8], HITS, and 
Network flow base community discovery[5,9]. After 
analysis, we decided to use HITS-Ranking without 
keyword search in our algorithm for community 
discovery and collecting seeds set. We have found 
that bipartite cores are useful for selecting seeds set. 



 

Bipartite cores contain Hub and Authority pages. 
Since we are interested in having Authority pages in 
our crawl, we would need to start crawling from 
Hub pages. Hubs are durable pages, so we can rely 
upon them for crawling. 

The main idea in our method is to use HITS-
Ranking on the whole graph for extracting the most 
important bipartite cores. We offer two bipartite core 
extraction algorithms.  

We have compared the results of the crawls 
starting from extracted seeds set produced by our 
algorithm, with crawls starting random nodes. Our 
experiments show that the crawl starting from seeds 
set identified by our algorithm finds the most 
suitable pages of web very faster than a random 
crawler did.  

According to our knowledge, this is the first 
seeds extraction algorithm that is able to identify and 
extract seeds from different web communities. Low 
running time is crucial in working with large size 
web data. The running time of proposed algorithm is 
O(n). Low running time with community base 
properties makes this algorithm unique in 
comparison with previous algorithms. 

The remainder of this paper proceeds as follows: 
in Section 2, we present our algorithm for 
discovering seeds set in a large web graph and 
compute the complexity of proposed algorithm; in 
Section 3, we discuss the results of running and 
evaluating this algorithm on 18M and 39M node 
graphs; Section 4 contains conclusion and future 
works. 

2 ALGORITHM FOR 
DISCOVERING SEEDS SET IN 
LARGE WEB GRAPH  

In this section, we present our algorithm to 
discover seeds sets from web graph.  

A crawler normally does not crawl the entire 
web. Instead, it continues to retrieve a limited 
number of pages. Crawlers are expected to collect 
the "most suitable" pages of web rapidly. We 
defined "most suitable" pages of web as those pages 
with high Page Rank. In terms of HITS algorithm 
they are called Authority pages. The difference is 
that HITS algorithm finds the authority pages 
relating to keywords but PageRank shows the 
importance of a page in the whole web. As well, we 
know that good hubs link to good authorities. If we 
are able to extract good hubs from a web graph and 
different communities, we will be able to download 

good authorities that have high PageRank of 
different communities.  
 
2.1 Iterative HITS-Ranking & 

Pruning  

We assume that we have a web graph of crawled 
web pages. The goal is to extract seeds set from this 
graph so that a crawler can collect the most 
important pages of the web in less iteration. To do 
this we run HITS-ranking algorithm on this graph. 
This is the second step of HITS algorithm. In the 
first step, it searches the keywords in an index-based 
search engine. For our purpose, we ignore this step 
and only run the ranking step on the whole graph. In 
this way, bipartite cores with high Hub and 
Authority rank will become visible in the graph. 
Then we select the most highly ranked bipartite core 
using two algorithms. We suggest, extracting seeds 
with fixed size, and extracting seeds with fixed 
density; we remove this sub-graph from the graph, 
repeat ranking, seed extraction, and sub-graph 
removal steps up to a point that we have enough 
seeds set.  

A question that may arise is why we need to run 
HITS-ranking again when repeating these steps. Isn't 
one time ranking enough for whole steps? The 
answer is: removing bipartite core in each step 
modifies the web-graph structure we are working on. 
In fact, re-ranking changes the hub and authority 
ranks of bipartite cores. Removing high-ranked 
bipartite core and re-ranking web-graph drive, 
bipartite cores appeared to be from different 
communities. Thus, a crawler will be able to 
download pages from different communities starting 
from these seeds. We have experimented our 
algorithm using web-graph of UK 2002 containing 
18M nodes and 298M edges, and UK 2005 
containing 39M nodes and 936M edges [6, 7]. Our 
experiments prove that extracted bipartite cores have 
a reasonable distance from each other.  

The other question that may arise is that if a 
crawler starts from seeds resulted from our 
algorithm, why would the results of crawl lead to the 
most suitable pages. The answer is: in iterations of 
algorithm, we select and extract high-ranked 
bipartite cores from the web-graph. Extracted 
bipartite cores have high hub or authority ranks. It is 
expected that pages with high hub-rank link to pages 
with high PageRank. Our experiments prove the 
correctness of this hypothesis.  
 
2.3 Extracting Seeds with Fixed Size  



 

The Extract-Bipartite-Cores-with-Fixed-Size 
procedure, as it's name indicates, extracts one 
bipartite sub-graph with highest hub and authority 
ranks with predetermined size given as an input. 
Algorithm is given a directed graph G, 
BipartiteCoreSize, NewMemberCount and h, and a 
vectors. BipartiteCoreSize specifies the desired size 
of bipartite core we like to be extracted. 
NewMemberCount indicates in each iteration of 
algorithm how many hub or authority nodes should 
be added to the hub or authority sets; h and a vectors 
are hub and authority ranks of nodes in the input 
graph G. 
 

 
Figure 1. Extracting Bipartite Cores with Fixed Size 

In the initial steps, the Algorithm sets HubSet to 
empty and adds the node with highest authority rank 
to AuthoritySet. While the sum of AuthoritySet size 
and HubSet size is less than BipartiteCoreSize, it 
continues to find new hubs and authorities regarding 
the NewMemberCount and adds them to the related 
set. We use this procedure when we like to extract 
bipartite sub-graph with fixed size. Figure 1 shows 
the details of Extract-Bipartite-Cores-with-Fixed-
Size procedure. In Figure 2 we show the steps of 
bipartite sub-graph creation with NewMemberCount 
equal to 1. An interesting result we have found in 
our experiments is that at the very first steps, all the 
hubs have links to all authorities which is a complete 

bipartite sub-graph. This leaded us to suggest an 
extraction algorithm with a density factor that is 
described in the following subsection. 
 
2.4 Extracting Seeds with Fixed 

Cover-Density  

The Extract-Bipartite-Cores-with-Fixed-
CoverDensity procedure, as it's name indicates, 
extracts one bipartite sub-graph with highest hub and 
authority ranks in a way that the sub-graph has the 
desired cover-density function. A directed graph G, 
CoverDenstity, h and a vectors are given to the 
algorithm. 
We define Cover-Density as follows: 

(1) ||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE  

This measure shows how many nodes in the 
authority set are covered by nodes in hub set. If the 
bipartite sub-graph is a complete bipartite sub-graph, 
this measure will be equal to 100. Therefore, if we 
intend to extract complete bipartite sub-graph we set 
CoverDenstity to 100. h and a vectors are hub and 
authority ranks of nodes in the input graph G. 

In initial steps, Algorithm sets HubSet to empty 
set and adds the node with highest authority rank to 
AuthoritySet. In addition, it sets CoverDensityCur to 
100. 

While CoverDensityCur is bigger than or equal 
to input CoverDensity, procedure continues to find 
new hubs and authorities. This algorithm adds only 
one new node to the sets at each iteration of the 
algorithm. Remember that in Extract-Bipartite-
Cores-with-Fixed-Size we could adjust the count of 
new members. Here, we do not have such a variable. 
This is because of the fact that we like to have a 
precise cover density here. In other words, if we 
increase the number of new nodes to more than 1, 
this might cause the reduction of the accuracy of 
desired cover density. 

We use this procedure when we like to extract 
bipartite sub-graph with desired density between 
hubs and authorities. Figure 3 shows the details of 
the Extract-Bipartite-Cores-with-Fixed-
CoverDensity procedure. 

 
2.5 Putting It All Together  

Up to now, we have presented algorithms for HITS-
Ranking and bipartite core extraction based on hub 
and authority ranks. Our goal is to extract a set of 

Procedure Extract-Bipartite-Cores-with-Fixed-Size 
       Input: graph: G=(V,E) , integer: 
BipartiteCoreSize, NewMemberCount; 
                  vector: h,a. 
1)       HubSet = ∅; 
2)       AuthoritySet= Add v with highest a(v) to             
                     AuthoritySet; 
3)       While |AuthoritySet| + |HubSet| <  
                     BipartiteCoreSize do 
 
4)     HubSet = HubSet ∪ (Find Top 

NewMemberCount h(v) where v,w∈ E 
and w in AuthoritySet and v not in 
HubSet); 

 
5)      AuthoritySet= AuthoritySet ∪ (Find Top 

NewMemberCount a(v) where w,v∈ E 
and v in AuthoritySet and w not in 
HubSet );      

 
6)       End While 
       output:  HubSet, AuthoritySet 
End Procedure 



 

desired number of seeds to crawl and download 
pages from different web communities with high 
PageRank in less iteration. We use the proposed 
algorithms to achieve this goal. We assume that we 
have a web graph of crawled web pages. Then we 
run HITS-Ranking algorithm on the whole graph 
and use one of the bipartite core extraction 
algorithms we have presented. Then we select 
arbitrarily one of the nodes in the extracted hub set 
and add it to our seeds set. Finally, we remove the 
extracted core from the input graph and repeat these 
steps until we find the ideal number of seeds. 
 

 
Figure 2. Steps of bipartite sub-graph creation with 
NewMemberCount equal to 1. Hub nodes are shown in 
grey and authority nodes are shown in white. (a) shows the 
sub-graph after adding the highest authority rank node and 
adding hub with highest rank that refer to this authority 
node. In (b), the next authority with highest rank which 
was not added previously in authority set and is linked by 
the only node in the hub set is added. In (c), the second 
hub node with highest hub rank which was not already in 
the hub set and linked to one of the nodes in authority set 
is added. In (d) resulted sub-graph after 4 steps is shown. 
 

We can use one of these two bipartite core 
extraction algorithms that we have proposed: 
Extract-Bipartite-Cores-with-Fixed-Size,   Extract-
Bipartite-Cores-with-Fixed-CoverDensity. If we 
wish bipartite cores to have a fixed size we use the 
first algorithm and if we are looking for bipartite 
cores having desired cover density, then we use the 
second algorithm. For example, if we like the 
density of bipartite cores to be complete we should 
use the second algorithm.  

We have experimented both of these algorithms. 
As we cannot guess the suitable size of a web 
community, we use the second method. The second 
method can calculate the density of links between 
hubs and authorities. If we have a complete bipartite 
core then we are sure that all the authority pages are 
from the same community. By decreasing the Cover-
Density measure, we decrease the degree of 
relationship between authority pages. Because the 

second method is more reliable than the first one, in 
this paper we only present experimental results 
achieved from using Extract-Bipartite-Cores-with-
Fixed-CoverDensity. Figure 4 shows the seeds 
extraction algorithm we have used in our 
experiments in this paper.  

 
Figure 3. Extracting Bipartite Cores with Fixed Density  

The Extract-Seeds algorithm receives a directed 
graph G and SeedCount as input. At the initial step, 
algorithm sets SeedSet to empty.  While the size of 
SeedSet is less than SeedCount, the algorithm keeps 
running. In the first line of While section, algorithm 
calls HITS-Ranking procedure with G as the input 
graph and 60 as HITSIterationCount. Kleinberg's 
work shows that HITSIterationCount equal to 20, is 
enough for convergence of  hub and authority ranks 
in a small sub-graph [7]. We have found 
experimentally that a number of more than 50 is 
enough for convergence of hub and authority ranks 
with the dataset we use. HITS-Ranking algorithm 
returns two vectors, h and a, containing result of hub 
and authority ranks of all nodes in graph G. In the 
next line algorithm calls Extracting-Bipartite-Cores-
with-Fixed-CoverDensity with G as input graph, 100 
as cover density value, and  h and  a as hub and 
authority vectors. This function finds complete 

(a) (b) 

(c) (d) 

Procedure Extract-Bipartite-Cores-with-Fixed-
CoverDensity 
       Input: graph: G=(V,E) , integer: 
CoverDensity; 
                  vector: h,a. 
1)       HubSet = ∅; 
2)       AuthoritySet = Add v with highest a(v) to 
AuthoritySet; 
3)      CoverDensityCur = 100; 
4)       While CoverDensityCur ≥ CoverDensity do       
5)              HubSet = HubSet ∪ (Find Top 

NewMemberCount h(v) where v,w∈ 
E                                                            
and w in AuthoritySet and v not in 
HubSet); 

 
6)               AuthoritySet= AuthoritySet ∪ (Find 

Top NewMemberCount a(v) where 
w,v∈ E and v in AuthoritySet and w 
not in HubSet ); 

7)              CoverDensityCur = 

||||
|),(|*100

etAuthoritySHubSet
etAuthoritySHubSetE ; 

8)       End While 
       output:  HubSet, AuthoritySet 
End Procedure 



 

bipartite cores in the input graph and returns 
complete bipartite nodes in HubSet and AuthoritySet. 
In the next line, a node randomly is selected from 
hub set and is added to the SeedSet. Now algorithm 
removes the hub and authority nodes and their edges 
from graph G. The removal step helps us to find 
seeds from different communities. 

 
Figure 4. Seeds Extraction Algorithm 

2.6 Complexity of Proposed Seeds 
Extraction Algorithm  

The running time of Seeds-ExtractionAlgorithm, 
(Figure 4), is O(n), where n is the number of nodes 
in the input graph. 

The While loop of lines 2-12 is executed at most 
|SeedCount| times.  The work of line 4 is done in 
O(n). Because the complexity of HITS-Ranking is 
equal to Θ(K*2*L*n) where K is 
|HitsIterationCount|, L the average number of  
neighborhoods of a node and n is the number of 
nodes in the input graph. This complexity is 
multiplied by 2 because there are two steps for this 
kind of computation, one for hub vector and the 
other for authority vector. In addition, the 
normalization steps can be done in Θ(3n).  So, the 
complexity of HITS-Ranking is O(n). 

The running time of Extracting-Bipartite-Cores-
with-Fixed-CoverDensity in line 4 is O(n). The 
While loop of lines 4-8, in figure 3, is executed at 
most |HubSet + AuthoritySet| times which can be 
viewed as a constant number k. Finding and adding 
a distinct hub node with highest rank to hub set, in 
line 5, takes Θ(k*n). Finding and adding a distinct 

authority node with highest rank to authority set, in 
line 6, takes Θ(k*n). So, the running time of 
Extracting-Bipartite-Cores-with-Fixed-
CoverDensity is at most O(n). 

The removal steps of lines 6-11, in Figure 4, 
takes O(n) for removing identified hubs and 
authorities. 
Therefore, the total running time of Seed-Extraction 
Algorithm is O(|SeedCount|*n), which is equal to 
O(n). 

3 EXPERIMENTAL RESULTS  

In this section, we apply our proposed algorithm, to 
find seeds set from previously crawled pages. Then, 
we start a crawl using extracted seeds on the same 
graph to evaluate the result. To show how applying 
algorithm on old data can provide good seeds for a 
new crawl, we start the crawl on a newer graph 
using seeds set extracted from a previous crawl. 
 
3.1 Data Sets  

The laboratory for Web Algorithmics at the 
University of Milan provides different web graph 
data sets [10]. In our experiments, we have used 
UK-2002 and UK-2005 web graph data sets 
provided by this laboratory. These data sets are 
compressed using WebGraph library. WebGraph is a 
framework for studying the web graph [11]. It 
provides simple ways to manage very large graphs, 
exploiting modern compression techniques. With 
WebGraph, we can access and analyze a very large 
web graph on a PC. 

3.1.1 UK-2002 

This data set has been obtained from a 2002 crawl of 
the .uk domain performed by UbiCrawler in 2002 
[12]. The graph contains 18,520,486 nodes and 
298,113,762 links. 

3.1.2 UK-2005 

This data set has been obtained from a 2005 crawl of 
the .uk domain performed by UbiCrawler in 2005. 
The crawl was very shallow, and aimed at gathering 
a large number of hosts, but from each host a small 
number of pages. This graph contains 39.459.935 
nodes and 936,364,282 links. 
 
 

Procedure Extract-Seeds 
         Input: graph: G=(V,E) , integer: SeedCount; 
1)       SeedSet = ∅  
2)       While |SeedSet| < SeedCount do 
3)               h, a = HITS-Ranking( G , 60); 
4)               HubSet, AuthoritySet = Extracting-

Bipartite-Cores-with-Fixed-
CoverDensity(G, 100,  h, a); 

5)              SeedsSet = SeedsSet ∪ Select a node 
arbitrarily from HubSet; 

6)             For all v in HubSet do 
7)                    Remove v and all E(v) from G; 
8)             End For             
9)             For all v in AuthoritySet do 
10)                   Remove v and all E(v) from G; 
11)            End For              
12)       End While 
            output:  SeedsSet 
End Procedure 
 



 

   

Figure 5. diagram of Log-Log In-Degree and Out-Degree 
of  UK 2002 and UK 2005. 

3.2 Data Set Characteristics  

3.2.1 Degree Distribution 

We had investigated the degree distribution of UK-
2002 and UK-2005. Figure 7.a and 7.b show In-
degree and Out-degree distribution for UK-2002 in 
log-log form. Figure 7.c and 7.d show In-degree and 
Out-degree distribution for UK-2005 in log-log 
form. The results show that the In-degree and Out-
degree distribution are power laws in these two 
datasets. 

3.2.2 Diameter  

The diameter of a web-graph is defined as the length 
of shortest path from u to v, averaged over all 
ordered pairs (u,v) [13]. Of course, we omit the 
infinite distance between pairs that there is not a 
path between them. This is called average connected 
distance in [6]. We estimated this measure on UK-
2002 and UK-2005 data sets through experiments. 
Table 1 shows the estimated diameter of these data 
sets together with the number of nodes and edges. 
We use the resulted diameter to evaluate the 
distances between extracted bipartite cores resulting 
from our method. 

Table 1. UK 2002 and 2005 Data Sets information before 
pruning. 

Data Set Nodes Edges Diameter 
Estimate

UK-2002 18,520,486 298,113,762 14.9 
UK-2005 39.459.935 936,364,282 15.7 

Table 2. UK 2002 and 2005 Data Sets information after 
pruning. 

Data Set Nodes Edges
UK-2002 18,520,486 22,720,534 
UK-2005 39.459.935 183,874,700 

 
 

3.3 Date Preparation  

3.3.1 Pruning 

Most of the links between pages in a site are for 
navigational purposes. These links may distort the 
result of presented algorithm. The result of the 
HITS-Ranking algorithm on this un-pruned graph 
will result in hub and authority pages to be found in 
a site. To eliminate this effect we remove all links 
between pages in the same site.  

We assume pages with the same host-name are 
in the same site. Table 2 shows the number of nodes 
and edges after pruning in the UK data sets. 
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3.4 Results of Extracted Seeds using 
Proposed Algorithm  

We run our algorithm for seeds extraction, Extract-
Seeds, on UK-2002 and UK-2005. This algorithm, 
as Figure 4 shows, sets CoverDensity to 100 for 
seeds extraction. It searches and extracts complete 
bipartite cores and then, at each step, selects the 
seeds from hub nodes in the bipartite sub-graph (see 
Figure 2). Figure 6 shows the size of extracted hubs 
and authorities in different iteration from UK-2002. 
It is clear that these cores are complete-bipartite. To 
reduce the impact of outlier hub sizes in the 
graphical presentation, we have used a log-log 
diagram. Figure 7 depicts the size of the extracted 
hubs and authorities in different iterations for UK-
2005. 
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Figure 6. Log-Log diagram of Hub and Authority sizes 
Extracted from UK 2002 in different iteration.  
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Figure 7. Log-Log diagram of Hub and Authority sizes 
Extracted from UK 2005 in different iteration 

Normally, the hub sizes are bigger than the 
authority sizes. We obtained bipartite cores with 
very large hub sizes in UK-2002. So, we have 
limited the number of hubs to 999 in UK-2002 data 
set. 

 
3.5 Quality Analysis  

3.5.1 Metrics for Analysis  

We used some different metrics to evaluate the 
quality of extracted seeds. The first metric is the 
distance between extracted seeds. As we have 
mentioned earlier, a crawler tends to extract web 
pages from different communities. Using HITS-
Ranking and Iterative pruning we can conclude that 
extracted seeds are from different communities. To 
prove this, we measure the distances between 
extracted cores. We have defined core-distances as 
the nearest directed path between one of the nodes in 
the source core to one of the nodes in the destination 
core. 

The second metric, is the PageRank of pages that 
will be crawled starting from these seeds. 
Previously, we have defined the most suitable pages 
in the web to be the pages with high PageRanks. 
Therefore, if the average PageRank of crawled 
pages, at each step of crawl, is bigger than a random 
crawl, especially at the beginning, then we can 
conclude that a crawl that starts from those seeds 
identified by our algorithm will result in better 
pages. 

The third metric is the number of crawled pages 
at each step of crawling. We focus on a crawler 
whose goal is to download good pages in small 
iteration. Thus, if the number of crawled pages 
starting from extracted seeds by our method at each 
step is bigger than the number of crawled pages 
starting at random set, then we can conclude that our 
method leads a crawl toward visiting more pages in 
less iteration too. 

For the first metric, we measure the distance 
between the cores. For the other two metrics, we 
need to crawl the graph starting from seeds extracted 
with our method and compare it with a crawl starting 
from randomly selected seeds.  

3.5.2 Result of Bipartite Core Distances  

We have measured the distance between all bipartite 
cores that were extracted from UK datasets and they 
had a reasonable distance in comparison with the 
diameter of the related graph. Figure 8, shows the 
graphical representation of distances between 56 
cores extracted from UK-2002. The number on top 
of each node indicates the iteration number in which 
the core has been extracted. Because the distance 
graph between nodes may have not an Euclidian 
representation, distances in this figure do not exactly 
match with real distances. The other important 
information is that bipartite cores in close iterations 
have a distance equal or bigger than average 
distance of related web graph. In addition, the cores 
that are close to each other (there is a short directed 



 

path between them) are identified in far iteration. As 
an example, the distance between core extracted 
from iteration 32 and the core extracted from 
iteration 47 is one. In this sample, the minimum 
distance between nodes is 1 and maximum distance 
is 13. The average distance is 7.15. As the diameter 
of UK-2002 data set is 14.9, core distances are fine. 

 
Figure 8. Graphical representation of distances between 56 
extracted seeds from UK-2002 by our algorithm. The 
number on top of each node(core) indicates the iteration 
number in which the related node has been extracted. 
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pages starting from 10 seeds extracted by our method on 
UK-2002 and Random Seeds.  
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of pages visited at each Iteration starting from 10 seeds 
extracted by our method and 10 seeds selected randomly 
from UK-2002. 
 

 
Figure 11. Comparison between PageRank of Crawled 
pages starting 10 seeds extracted from UK-2005 by our 
method and 10 Random seeds selected from UK-2005.  

 
Figure 12. Comparison between Log Count Diagram of 
pages visited at each Iteration starting from 10 seeds 
extracted by our method from UK-2005 and 10 seeds 
selected randomly on UK-2005. 

3.5.3 Result of Average PageRank and Visit 
Count  

In this section, we evaluate the second and third 
metrics defined for evaluation. For UK-2002 we 
have executed the  Extract-Seed algorithm with 
SeedCount=10. Therefore, the algorithm extracts one 
seed from each core in iteration. Then, we have 
started a crawling on UK-2002 data set 
implementing BFS strategy and measured the 
average PageRank of visited pages in each crawl 
depth, and the number of pages visited in each crawl 
depth. Then, we have compared the results with 
those gained from a crawl starting from random 
seeds for the same graph.  

Figure 9 shows the comparison of average 
PageRank of crawl starting from seeds extracted 
with our method and a crawl starting from random 
seeds. Except the first depth (iteration) of crawl, in 
the other steps, up to step 4, the average PageRank 
of pages crawled with our method appear to be 
better. Specially, in the second and third iterations, 
the difference is superior. In the later iterations 
average PageRank of visited pages are close. 
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Figure 10 shows the comparison of log-number of 
pages visited in each depth of crawl on UK-2002. 
For better graphical representation, we have 
computed log-count of visited pages. Apparently, 
the results of our method are always better than 
crawl starting random seeds and a crawl with seeds 
extracted with our method downloads more pages in 
less iteration. Figures 11 and 12 show the 
experiments on UK-2005. The same results appear 
here too. 
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Figure 13. Comparison between PageRank of Crawled 
pages starting 11 seeds extracted from UK-2002 by our 
method and 11 Random seeds selected from UK-2005.  
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Figure 14. Comparison between Log Count Diagram of 
pages visited at each Iteration starting from 11 seeds 
extracted by our method from UK-2002 and 11 seeds 
selected randomly on UK-2005.  

3.5.4 Good Seeds for a New Crawl  

Using proposed algorithm we have discovered seeds 
from UK 2002 and UK 2005. Then we have 
evaluated the utility of these seeds using three 
evaluation criteria. These evaluations are good, but a 
real crawler has not access to seeds of a web graph 
which it is going to crawl. We should show that the 
result is always good if we start the crawl using 
seeds extracted from an old crawled graph.  

In this section, we show the result of crawling on 
UK 2005 using seeds extracted by proposed 
algorithm and we compare it by randomly crawled 

seeds to simulate the real environment. Before 
algorithm's execution, we have checked the validity 
of seeds found from UK-2002 in UK-2005 data set. 
If a seed does not exist in a newer graph, then we 
remove that seed from our seeds set. Our 
experiments show that only 11 percent of seeds exist 
in the new data set. In fact, we have extracted 100 
seeds from UK 2002 to be sure that we have 11 valid 
seeds in UK 2005. 

Figure 13, shows the comparison of average 
PageRank of crawl starting from seeds extracted 
with our method and a crawl starting from random 
seeds. The result of our method is better until 
iteration 3. Figure 14, shows the comparison of log-
number of pages visited in each depth of the crawl. 
In this case, the result of our method is better than 
the random case between steps 4 and 15. In fact, our 
method download pages with high Page Rank till 
iteration 3 and next it crawls more pages than the 
random case till iteration 15. After that, the result is 
nearly the same. Therefore, we can conclude that a 
crawler can download qualified web pages in less 
iteration; starting generated seeds set using our 
algorithm in less iteration. 

5 CONCLUSION AND FUTURE 
WORKS  

Crawlers like to download more good pages in less 
iteration. In this paper, we have presented a new fast 
algorithm with running time O(n) for extracting 
seeds set from previously crawled web pages. In our 
experiments we have showed that if a crawler starts 
crawling from seeds set identified by our method, 
then it will crawl more pages with higher PageRank 
in less iteration and from different communities, 
than starting a random seeds set. In addition, we 
have measured the distance between selected seeds 
to be sure that our seeds set contains nodes from 
different communities. According to our knowledge, 
this is the first seeds extraction algorithm that is able 
to identify and extract seeds from different 
communities.  

Our experiments were on graphs containing at 
most 39M nodes and 183M edges. This method can 
be experienced on larger graph in order to 
investigate the resulting quality on them too.  
Another aspect where improvement may be possible 
is the implementation of the seeds that are not found 
in a new crawl. In our experiments, we have simply 
ignored nodes present in an older graph but not in 



 

the newer one. This aspect may be improved by 
finding similar nodes in the newer graph. 
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