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We really appreciate the referees during the revision process. We 
believe that their comments improved the quality of our paper more 
than what we expected.
In the following we answer each of the comments separately. Thanks 
again.

Reviewer #1:

-The authors presented algorithms for the Probabilistic Visibility Testing 
Problem (PVTP) and the Probabilistic Visibility Counting Problem (PVCP).
The probability is on whether a segment exists with some probability, which 
is not explained by any valid application.
The main results are standard: (1) it is #P-complete (a reduction from 
#perfect-matching), (2) when z=2 (i.e., whether a segment exists nor not 
exists 
with certain probability), PVTP can be solved in O(n\log n) time with 
dynamic programming. The remaining parts are just a combination of (2) 
with some 
standard tricks. I am not sure whether TCS is the best venue for this paper, 
somewhere like Computational Geometry or IPL might be more suitable.

The paper is in general well-written.

-Minor Comments: Page 5, fig 3, caption: "I'_1,I'_2,I'_3 are the 
intervals that can cover [a,b]", I guess "[a,b]" should be a'.

-You are right, Corrected

Also, sth like "p_isol(-)" looks weird, add a "\cdot" between p_i and 
sol(-).

-Corrected.

Reviewer #2: In this paper, authors study on the visibility testing and 
counting for uncertain segments. This paper presents the definitions of 
Probabilistic Visibility Testing Problem(PVTP) and Probabilistic Visibility 
Counting Problem(PVCP). Then, they show the PVTP is #P-complete. 
Meanwhile, they show that the PVTP can be answered in O(nlogn) time 
when the uncertainty is only about whether segments exist and not about 

*Revision Note



their location. And the PVCP can be solved in O(n2logn) time. This paper 
has excellent work about the Visibility Testing and Counting Problem for 
unique kind of uncertain segments.
However, there's some doubt in my mind. 

1. The authors only study the special case where the uncertainty is 
only about the existence of the segments and not about their location. 
It is very unique. 

-For the PVTP we proved that when uncertainty is about the location of 
segments the problem is #p complete. 
For PVCP , when the uncertainty is about the location of segments, we 
gave two approximation algorithms. 

2. The authors claimed "we can show that one can preprocess S in 
O(n5logn) time into a data structure of size O(n4), so that PVTP 
queries can be answered in O(logn) time. Our algorithm for PVTP 
combined with linearity of expectation gives an O(n2logn) time 
algorithm for PVCP." in abstract. It is inaccurate and mislead. The 
"preprocess" is a part of the process of PVTP or PVCP. If the ENTIRE 
process of the PVTP takes O(n5logn) time, the application of 
algorithm will be limited. The authors need to explain the 
circumstances under which the "preprocess" part can be processed 
separately from PVTP and PVCP in Section.1.

-You are right. We changed that part of the abstract to explain the running 
times accurately. 

3. The authors have proved their theories very well. However, the 
authors should also provide appropriate code to help understand the 
process of the algorithm. 

-We added the code as you said.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Visibility Testing and Counting for Uncertain Segments

Mohammad Ali Abam ∗ Sharareh Alipour† Mohammad Ghodsi ‡

Mohammad Mahdian §

December 11, 2018

Abstract

We study two well-known planar visibility problems, namely visibility testing and
visibility counting, in a model where there is uncertainty about the input data. The
standard versions of these problems are defined as follows: we are given a set S of
n segments in R2, and we would like to preprocess S so that we can quickly answer
queries of the form: is the given query segment s ∈ S visible from the given query
point q ∈ R2 (for visibility testing) and how many segments in S are visible from the
given query point q ∈ R2 (for visibility counting).

In our model of uncertainty, each segment may or may not exist, and if it does,
it is located in one of finitely many possible locations, given by a discrete probability
distribution. In this setting, the probabilistic visibility testing problem (PVTP, for
short) is to compute the probability that a given segment s ∈ S is visible from a given
query point q and the probabilistic visibility counting problem (PVCP, for short) is
to compute the expected number of segments in S that are visible from a query point
q. We first show that PVTP is #P -complete. In the special case where uncertainty is
only about whether segments exist and not about their location, we show that PVTP
is solvable in O(n log n) time. Our algorithm for PVTP combined with linearity of
expectation gives an O(n2 logn) time algorithm for PVCP.

Using the algorithm for PVTP, together with a few old tricks, we can show that
one can preprocess S in O(n5 log n) time into a data structure of size O(n4), so that
each PVTP query for a fixed segment s can be answered in O(log n) time.

We also give a faster 2-approximation algorithm for this problem. At the end, we
improve the approximation factor of the algorithm.

Keywords. computational geometry, visibility, randomized algorithm, approxima-
tion algorithm, probabilistic segments.

1 Introduction

Background. Visibility testing and visibility counting are basic problems in computa-
tional geometry. Visibility plays an important role in robotics and computer graphics.
In robotics, for example, the efficient exploration of an unknown environment requires
computing the visibility polygon of the robot or the number of visible objects from the
robot or test whether the robot sees a specific object. In some computer graphics appli-
cations, also, it is important to identify the objects in a scene that are illuminated by a
light source.

∗Computer Engineering Department, Sharif University of Technology
†School of Computer Science, Institute for Research in Fundamental Sciences (IPM)
‡Computer Engineering Department, Sharif University of Technology and School of Computer Science,

Institute for Research in Fundamental Sciences(IPM)
§Google research
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Two points p, q ∈ R2 are visible from each other with respect to S, if there exists
no segment s ∈ S intersecting line segment pq. We say that a segment st ∈ S is visible
from a point p, if a point q ∈ st can be found from which p is visible. In this paper,
we consider two planar visibility problems; visibility testing and visibility counting. For
a set S of n segments in R2 and a point q, in the visibility testing problem, we want to
test whether q sees a given segment s ∈ S. In the visibility counting problem we want to
count the number of segments in S that are visible from q. For simplicity we assume all
the segments are contained in an arbitrary bounding box, denoted by B.

Uncertain data. It is not surprising that in many real-world applications we face
uncertainty about the data. For geometric problems like visibility, this means uncertainty
about the location of the input set. There are multiple ways to model such uncertainty.
For example, we can assume each object lies inside some region, but not exactly where in
that region, and use this assumption to prove bounds on the quantity of interest. Such
a model is used in [15]. Alternatively, we can use a discrete probability distribution to
model uncertainty. This “stochastic” approach is used in [1, 12]. We choose the latter
approach in this paper. In particular, our model of uncertainty is very similar to the
model used in [12].

Related work. There is significant prior work on the non-stochastic version of the
problems studied in this paper. There are some work dedicated not only to the exact
computing [6, 13, 16] of the problem but also to approximate computing [3, 4, 5, 10, 13].
In both, time-space trade-offs haven been considered.

In real application there are situations where we need to model the problems based
on uncertain data (See [1, 15, 11]). In [7], Buchin and et.al computed the visibility
between imprecise points among obstacles. For example in robotics there are situations
where obstacles also are moving. We can model the movements of obstacle by considering
uncertainty in their locations. This leads us to define the uncertain model of two visibility
problems and propose algorithms to compute them.

Problem statement. Suppose we are given a set S of n uncertain segments. More
precisely, we are given a discrete probability distribution for each si ∈ S, that is, we have
a set Di = {si,1, · · · , si,mi} ∪ {si,0 =⊥} of possible locations with associated probabilities
pi,j such that Pr(si = si,j) = pi,j and

∑
j pi,j = 1. The special segment ⊥ indicates that

the segment si does not exist in S. In this setting, the set S can be seen as a random
variable (or random set) as it consists of probabilistic segments. This random variable
gets its value from a sample space of size Πi(mi + 1) with the probability being equal to
Πs∈SPr(s)Πs̸∈SPr(s =⊥) . Assume z = max{1 +mi}, i.e., z denotes the maximum size
of the given distributions. A special case that we will pay special attention to is when
z = 2. This is the case where the uncertainty is only about the existence of the segments,
and not about their location.

It is natural to define the probabilistic version of visibility testing and visibility count-
ing problems in the above setting where S is a random set:

• Probabilistic Visibility Testing Problem (PVTP): compute the probability that a
given segment s ∈ S is visible from a given query point q, denoted by PVTP(q).

• Probabilistic Visibility Counting Problem (PVCP): compute the expected number
of segments in S being visible from q, denoted by PVCP(q).

2
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Our results. We first show that PVTP is #P -complete. We then turn our attention
to the special case where z = 2. We present an algorithm running O(n log n) time that
answers PVTP. Then, we present a simple way of putting n uncertain segments into a
data structure of size O(n4) such that queries can be answered in O(log n) time. Finally,
we focus our attention to PVCP. Here, we present a polynomial-time 2-approximation
algorithm that approximately solves PVCP. We then show how to preprocess S into a
data structure of size O(n4) in order to approximately answer each query in O(log n)
time. At the end, by using a result of [3], we improve the approximation factor from 2 to
1.5.

2 Probabilistic visibility testing

We start by a simple polynomial-time reduction from #perfect-matching problem to
PVTP in order to show PVTP is #P -complete. The #perfect-matching problem of
computing the number of perfect matchings in a given bipartite graph, is known to be
#P -complete [14] even for 3-regular bipartite graphs [9]. We next explain the details.

Suppose a bipartite graph G = (U, V,E) is input to #perfect-matching problem where
U = {u1, · · · , un} and V = {v1, · · · , vn} are vertex parts of G and E is the edge set of G.
For the given bipartite graph, we construct an instance of PVTP and introduce a query
point q and a query segment s such that each perfect matching uniquely corresponds to
one element of the sample space of uncertain segments in which s is not visible from q.
Consider n intervals [i, i + 1] on the x-axis where i changes from 0 to n − 1. Imagine
the interval [i, i + 1] corresponds to the vertex vi; denoted by I(vi). For each vertex
ui ∈ U , we define an uncertain segment Di = {I(vj)|{ui, vj} ∈ E} with the uniform
distribution—note that in this instance each uncertain segment always exists. We add one
more uncertain segment s consisting of one segment with probability 1 whose endpoints
are (0,−1) and (n,−1). Finally, let q be the point in (n/2, n) (See figure 1).

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u1

u2

u4

u1

u3

u5

u2

u3

u5

u3

u4

u5

u1

u2

u4

I(v1) I(v2) I(v3) I(v4) I(v5)

s

q

Figure 1: Each matching in the left side corresponds to a set of segments that cover s in
the right side and each set of segments that cover s corresponds to a matching.

Segment s is not visible from q iff the interval [0, n] is completely covered by the
uncertain segments defined on the x-axis. There are n such uncertain segments and each
covers exactly 1 unit of [0, n]. Therefore, each uncertain segment must cover exactly one of
n unit intervals. So, the number of perfect matchings is equal to the number of ways that
s is covered by the uncertain segments. Therefore, we conclude the following theorem.

Theorem 2.1. PVTP is #P -complete.
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In the remainder of this section, we restrict ourselves to the special case where z = 2,
i.e., each uncertain segment either does not exist or exists in only one possible location.
Suppose we are given n uncertain segments s1, · · · , sn. Let Pr(si ∈ S) = pi which of
course implies Pr(si ̸∈ S) = 1− pi.

Next, we explain how to compute Pr(q sees s) for the given segment s and point q. If
s ̸∈ S, q of course cannot see s. Therefore, Pr(q sees s) = Pr(q sees s|s ∈ S)Pr(s ∈ S).
This reduces our task to computing of Pr(q sees s|s ∈ S). Let ∆ be a triangle with vertex
q and side s. Every other uncertain segment that does not intersect ∆, cannot prevent q
from seeing s. Therefore, we can restrict ourselves to uncertain segments intersecting ∆.
We project these uncertain segments to s with respect to q. Now, as the main ingredient,
we must solve the following problem (See figure 2):

s

q

s1

s2

s3

s4

s5
a b

I1

I4

I2

I5

Figure 2: The projection of uncertain segments on s according to q defines four uncertain
intervals.

• Suppose we are given n uncertain intervals I = {I1, · · · , In} on the real line; each
Ii exists with probability pi. Compute the probability that the given interval [a, b]
is covered by the uncertain intervals, denoted by Pr([a, b] is covered).

Computing the desired probability seems to need Θ(2n) time as the size of the sample
space can be Θ(2n) in the worst case. But, we next show how the dynamic programming
paradigm helps us to perform the computation in O(n logn) time. For simplicity, we can
assume the intervals have been sorted by their right endpoints and each Ii covers some
part of [a, b] i.e, Ii ∩ [a, b] ̸= ∅. Let r(Ii) (l(Ii)) be the right (left) endpoint of Ii. We
present the following recursive formula.

For each point a′ ∈ [a, b], let sol(a′) be the probability that [a′, b] is covered. So, sol(a)
is the probability that [a, b] is covered. Let S(a′) = {I ′1, ..., I ′l} be the set of intervals that
cover a′ and they are sorted according to their right endpoints (See figure 3).

Lemma 2.1. We define sol(b) = 1, then we have

sol(a′) =
∑l

j=1 p
′
j(
∏j−1

i=1 (1− p′i)) · sol(r(I ′j)).

Proof. Suppose that a′ ∈ [a, b], so if [a′, b] is covered, then at least one of the segments
in S(a′) should be chosen. There are l segments that cover a′. Since the segments in
S(a′) are sorted according to their right endpoints then, the probability that I ′j is the

first segment that covers a′ is p′j
∏j−1

i′=1(1 − p′i). Recursively [a′, b] is covered with the

4
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a b

I2

I1

I′2

I′1

I′3

a′

r(I′1)

r(I′2)

r(I′3)

Figure 3: I ′1, I
′
2 and I ′3 are the intervals that can cover a′, so we have sol(a′) = p′1 ·

sol(r(I ′1)) + p′2(1− p′1) · sol(r(I ′2)) + p′3(1− p′2)(1− p′1) · sol(r(I ′3)).

probability of sol(r(I ′j)). So, we have

sol(a′) =

l∑
j=1

p′j(

j−1∏
i′=1

(1− p′i)) · sol(r(I ′j)).

■

The steps of our algorithm is stated in Pseudocode 1. Each right endpoint of the
intervals can be covered by O(n) of the intervals. In the recursive formula, we call each
right endpoint at most once. For each sol(r(I ′j)) we have to compute

∏j−1
i′=1(1− p′i), since

the segments are sorted according to their right endpoint, for each sol(r(I ′j)) we multiply∏j−2
i′=1(1− p′i)(the value of previous step) by 1− p′j , which means we can compute sol(a)

in O(n2) time. Next we propose a faster algorithm.
To fill the array sol, we sweep the endpoints from right to left and keep track of all

intervals intersecting the sweep line in a binary search tree (BST, for short) over the right
endpoint of intervals supporting insertion/deletion in O(log n) time. We augment each
node of the BST with extra values in order to expedite our computation as we explain
next.

Upon processing a right endpoint, say r(Ii), we compute sol(r(Ii)), which is the sum of
all the nodes of tree. This can be computed in O(log n) time. Then, we implicitly multiply
all the nodes by (1 − pi) and then add r(Ii) to the tree with the value of pi · sol(r(Ii)).
For the left endpoint of an interval, l(Ii), we delete Ii, from the tree and implicitly divide
all the right endpoints greater than r(Ii) by (1 − pi). This also can be done in O(log n)
time. There are O(n) endpoints, so the running time is O(n log n).

Theorem 2.2. Given a point and a segment, PVTP can be answered in O(n log n) time
when z = 2.

Now, we preprocess the segments such that for any given query point q, PVTP can be
answered in O(log n) time. First, connect each pair of the endpoints by a line and extend
it until it hits the bounding box. These lines will partition the bounding box into O(n4)
regions. For a fixed segment s ∈ S, the answer to PVTP for all the points in a given

5
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Algorithm 1 Algorithm for PVTP

1: Let ∆ be the triangle with side s and vertex q.
2: For each s′ ∈ S, compute s′(∆), the part of s′ being inside ∆.
3: Project all s′(∆) into s with respect to q, and store all projected intervals on s in the

set I.
4: Let s be the interval [a, b], and let the endpoints of intervals in I be real numbers in

[a, b].
5: Let sol(a′) be the probability that [a′, b] is covered by I. Set sol(b) = 1
6: Process the right endpoints of intervals in I in the decreasing order as follows.
7: Upon reaching at the right endpoint a′, Let S(a′) = {I ′1, ..., I ′l} be the set of intervals

that cover a′ and they are sorted according to their right endpoints
8: Then, sol(a′) =

∑l
j=1 p

′
j(
∏j−1

i′=1(1− p′i)) · sol(r(I ′j)).

region is the same, because the combinatorial order of segments that cover s is the same
for all the points inside that region. Therefore, in the preprocessing time we choose a
point qi from each region ri and compute Pr(qi sees s) in O(n log n) time. So, for a given
set of segments S and a segment s ∈ S, we preprocess the segments in O(n5 log n) time
and O(n4) space such that for any given query point q, we locate the region ri containing
q in O(log n) time and return Pr(qi sees s) = Pr(q sees s).

3 Probabilistic visibility counting

In this section we study the probabilistic visibility counting problem. We start with some
notation. For each subset T ⊂ S, let mq(T ) be the number of segments visible from q
when the set of segments is T . So, the expected number of segments visible from q can
be written as: E(mq) =

∑
T⊆S Pr(T )mq(T ), where Pr(T ) denotes the probability that

the set of realized segments is T . Another way to compute E(mq) is using linearity of
expectations: E(mq) =

∑n
i=1Pr(q sees si).

For the case z = 2, we can use the above identity and the algorithm in the previous
section to compute E(mq) in O(n2 log n) time with no preprocessing. Also as in the
previous section, we can use preprocessing to reduce query time: the answer of PV CP is
the same for all the points in each region in the space partition. So, we can compute this
number for all the regions in O(n6 log n) preprocessing time and O(n4) space, such that
for any query point q, E(mq) can be answered in O(log n) time. Now, we show how to
approximately solve this problem more efficiently.

3.1 2-approximation of PVCP

In this section we propose a 2-approximation solution for PVCP. First, we present the
following theorem

Theorem 3.1. [5] Suppose that we are given a set S of n pairwise disjoint line segments
in the plane. Let mq be the number of visible segments from q. And let veq be the number
of visible endpoints of the segments from q, then we have

mq ≤ veq ≤ 2mq

Now, we use Theorem 3.1 to approximate PVCP.

6
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Theorem 3.2. Let S be a set of n uncertain segments where each segment si ∈ S has z
possible locations. There is a 2-approximation algorithm for PVCP which runs in O(n2z2)
time.

Proof. Let T ⊂ S. Suppose that mq(T ) and veq(T ) are the number of visible segments
and visible endpoints in T w.r.t T , so we have mq(T ) ≤ veq(T ) ≤ 2mq(T ). So, we can
conclude that, ∑

T⊂S
Pr(S = T )mq(T ) ≤

∑
T⊂S

Pr(S = T )veq(T )

≤
∑
T⊂S

Pr(S = T )2mq(T ).

In other words,

E(mq) ≤ E(veq) ≤ 2E(mq).

So, we compute

E(veq) =
n∑

i=1

Pr(r(si) sees q) +Pr(l(si) sees q).

We have

Pr(r(si) sees q)) =
∑z

j=1 pi,jPr(r(si,j) sees q).

Let sk,1′ , sk,2′ , ..., sk,l′ be the possible locations of sk in Dk that cross r(si,j)q, the proba-

bility that sk does not intersect r(si,j)q is pi,jk = (1− pk,1′ − pk,2′ − ...− pk,l′).

Pr(q sees r(si)) =
∑z

j=1 pi,jp
i,j
1 pi,j2 ....pi,jn

We have 2nz possible locations for the endpoints and we can compute P (q sees r(si)) in
O(zn), so E(veq) is computed in O(n2z2). ■

For z = 2 we present a faster algorithm. Suppose that a ∈ si is an endpoint of si. Let
s′1, s

′
2, ..., s

′
k be the set of segments that intersect aq, since the probability of selection of

the segments are independent, we have

Pr(q sees a) = pi(1− p′1)(1− p′2)...(1− p′k).

Which yields: E(vep) =
∑

a∈si Pr(q sees a).
So, for each endpoint, we need the segments that intersect aq. We use the following

theorem:

Theorem 3.3. [2, 8] Let S be a set of n segments in the plane and n ≤ k ≤ n2, we can
preprocess the segments in Oϵ(k) time such that for a given query segment s, the number of
segments crossed by s can be computed in Oϵ(n/

√
k) time. Where Oϵ(f(n)) = O(f(n)nϵ)

and ϵ > 0 is a constant that can be made arbitrarily small.

Note that in Theorem 3.3 if the segments are weighted, then in Oϵ(n/
√
k) time we

can compute the product of the weights of segments that are crossed by s. Thus, by
Theorem 3.3 we can compute Pr(q sees a) in O(n/

√
k). So, for 2n endpoints, E(vep) is

computed in n ·O(n/
√
k). If k = n

4
3 , then we have:

Theorem 3.4. Let, S be a set of given segments and q be a given point. If each segment
is chosen with probability pi, then, the expected number of visible endpoints from q can be
computed in Oϵ(n

4
3 ) which is a 2-approximation of E(mq).
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3.2 1.5-approximation of PVCP

In this section we use a result of [3] to improve the approximation factor of previous
subsection. Here we assume that z ≥ 2. For each point a ∈ si, let

−→qa be the ray emanating
from the query point q toward a and let a′ = extq(a) be the first intersection point of −→qa
and a segment in S or the bounding box. We say that a′ = extq(a) is covered by a or the
extension of a is a′. Let C1 be the set of segments, si such that both their end-points are
visible and extq(r(si)) and extq(l(si)) are on the bounding box or the same segment, i.e.
there exists sj ∈ S, such that (extq(r(si)) ∈ sj and extq(l(si)) ∈ sj) or (extq(r(si)) ∈ B
and extq(l(si)) ∈ B). In [3], it is proved that

mq ≤ veq − |C1| ≤ 1.5mq.

If the segments are uncertain, then by linearity of expectation we have

E(mq) ≤ E(veq)− E(|C1|) ≤ 1.5E(mq).

In the previous section, we explained how to compute E(veq). So, if we can compute
E(|C1|), then we improve the approximation factor.

For each segment si, let Pr(si ∈ C1) be the probability that si ∈ C1. So, E(|C1|) =∑n
i=1Pr(si ∈ C1). Now, we explain how to compute Pr(si ∈ C1).
For each realization si,j of si, first, we want to compute the probability that su,v is

a segment that extq(r(si,j)) ∈ su,v and extq(l(si,j)) ∈ su,v. Let sk,1′ , sk,2′ , ..., sk,l′ be the

possible locations of sk that cross qextq(r(si,j)) or qextq(l(si,j)). Suppose that P i,j,u,v
k =

(1− pk,1′ − pk,2′ − ...− pk,l′).
So, the probability that both end-points of si,j are visible to q and extq(r(si,j)) ∈ su,v

and extq(l(si,j)) ∈ su,v is P i,j,u,v = pi,jpu,vΠk ̸=i,uP
i,j,u,v
k . So,

Pr(si,j ∈ C1) =
∑
u̸=i

P i,j,u,v.

And

Pr(si ∈ C1) =

z∑
j=1

Pr(si,j ∈ C1).

We can compute P (si ∈ C1) in O(n2z2) time. So, overall we can compute E(|C1|) in
O(n3z3) which results the following theorem.

Theorem 3.5. Let, S be a set of given n probabilistic segments and q be a given query
point. We can compute E(veq)−E(|C1|) in O(n3z3) which is a 1.5-approximation answer
of PVCP(q).

4 Conclusion

We introduced a probabilistic variant of two well known visibility problems: visibility
testing and counting. We proved that visibility testing problem in general case is #P -
complete. Then, we proposed a polynomial time for a special case of these problems and
then gave an approximation algorithm for the probabilistic visibility counting problem.
In future we want to study the complexity of these problems in some other special cases.
Also, we want to study algorithms to approximate the answer of probabilistic visibility
testing problem.
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