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We study the problem of fair allocation for indivisible goods. We use the maxmin share paradigm introduced

by Budish [16] as a measure for fairness. Kurokawa, Procaccia, and Wang [36] were the first to investigate

this fundamental problem in the additive setting. They show that a maxmin guarantee (1-MMS allocation) is

not always possible even when the number of agents is limited to 3. While the existence of an approximation

solution (e.g. a 1/2-MMS allocation) is quite straightforward, improving the guarantee becomes subtler for

larger constants. Kurokawa et al. [36] provide a proof for the existence of a 2/3-MMS allocation and leave the

question open for better guarantees.

Our main contribution is an answer to the above question. We improve the result of Kurokawa et al. to
a 3/4 factor in the additive setting. The main idea for our 3/4-MMS allocation method is clustering the

agents. To this end, we introduce three notions and techniques, namely reducibility, matching allocation, and
cycle-envy-freeness, and prove the approximation guarantee of our algorithm via non-trivial applications of

these techniques. Our analysis involves coloring and double counting arguments that might be of independent

interest.

Onemajor shortcoming of the current studies on fair allocation is the additivity assumption on the valuations.

We alleviate this by extending our results to the case of submodular, fractionally subadditive, and subadditive

settings. More precisely, we give constant approximation guarantees for submodular and XOS agents, and a

logarithmic approximation for the case of subadditive agents. Furthermore, we complement our results by

providing close upper bounds for each class of valuation functions. Finally, we present algorithms to find such

allocations for additive, submodular, and XOS settings in polynomial time. The reader can find a summary of

our results in Table 1.
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1 INTRODUCTION
Suppose we have a set ofm indivisible items, and wish to distribute them among n agents. Agents

have valuations for each set of items that are not necessarily identical. How hard is it to divide the

items between the agents to make sure everyone receives a fair share?

Fair division problems have been vastly studied in the past 60 years, (see, e.g. [3, 5, 13, 16, 21,

36, 42]). This line of research was initiated by the work of Steinhaus [42] in which the author

introduced the cake cutting problem as follows: given a heterogeneous cake and a set of agents

with different valuation functions, the goal is to find a fair allocation of the cake to the agents.

In order to study this problem, several notions of fairness have been proposed, the most famous

of which are proportionality and envy-freeness, introduced by Steinhaus [42] and Foley [28]. A

division is called proportional, if the total value of the allocated pieces to each agent is at least

1/n fraction of his total value for the entire cake, where n is the number of agents. In an envy-free

division, no agent wishes to exchange his share with another agent, i.e., every agent’s valuation for

his share is at least as much as his valuation for the other agents’ shares. Clearly, proportionality is

implied by envy-freeness.

Dubins and Spanier [21] propose a simple moving knife procedure that can guarantee a pro-

portional division of the cake. For envy-freeness, Selfridge and Conway design an algorithm that

guarantees envy-freeness when the number of agents is limited to 3. Later, Brams and Taylor extend

this guarantee to an arbitrary number of agents in the additive setting [14]. However, their method

for allocating the cake makes an un-bounded number of cuts. Recently, bounded protocols are

proposed for envy-free allocation of cake and chore [6, 19].

The problem becomes even more subtle when we assume the items are indivisible. It is not hard

to show that for indivisible items, neither proportionality nor envy-freeness can be guaranteed;

for instance, when the number of items is smaller than the number of agents, at least one agent

receives no items.

From a theoretical standpoint, proportionality and envy-freeness are too strong to be delivered

in the case of indivisible goods. Therefore, Budish [16] proposed a newer notion of fairness for

indivisible goods, namely the maxmin share, which has attracted a lot of attention in recent years [1–
3, 7–9, 13, 23, 36]. Imagine that we ask an agent ai to partition a setM ofm items into n bundles

and collect the bundle with the smallest value. To maximize his profits, agent ai tries to divide M

in a way that maximizes the value of the bundle with the lowest value to him. Based on this, the

maxmin share of an agent ai , denoted byMMSi , is the value of the least valuable bundle in agent

ai ’s allocation; that is, the maximum profit ai can obtain in this procedure. Clearly,MMSi is the
most that can be guaranteed to an agent, since if all valuations are the same, at least one agent

obtains a valuation of at mostMMSi from his allocated set. The question is then, whether there

exists an allocation which guaranteesMMSi for every agent ai? Therefore, we call an allocation

MMS, if every agent ai receives a collection of items that are together worth at least MMSi to him.

Bouveret and Lemaitre [13] showed that for the restricted cases, when the valuations of the items

for each agent are either 0 or 1, or whenm ≤ n + 3, anMMS allocation is guaranteed to exist. In

other words, each ai can be guaranteed to receive a profit of at leastMMSi from his allocated items.

While the experiments support the existence of anMMS allocation in general [13], this conjecture
was refuted by the pioneering work of Kurokawa, Procaccia, and Wang [36]. Kurokawa et al. [36]
provided a surprising counter-example that admits no MMS allocation. They also show that a

2/3-MMS allocation always exists, i.e. there exists an algorithm that allocates the items to the

agents in such a way that every agent ai receives a share that is worth at least 2/3MMSi to him.



In particular, they show for n ≤ 4, their algorithm finds a 3/4-MMS allocation. However, their

algorithm does not run in polynomial time unless we assume the number of agents is bounded by

a constant number. Following this work, Amanatidis, Markakis, Nikzad, and Saberi [3], improve

this result by presenting a polynomial time algorithm for finding a (2/3 − ϵ)-MMS allocation to

any number of agents for constant ϵ . However, the heart of their algorithm is the same as [36]. In

addition to this, Amanatidis et al. prove that for n = 3, a 7/8-MMS allocation is always possible.

Note that, the counter example provided by Kurokawa et al. [36] requires a number of goods that

is exponential to the number of agents. Kurokawa et al.in [35] provided a better construction for

the counter-example with a linear number of goods.

In this work, we improve the result of Kurokawa et al. [36] by proving that a 3/4-MMS allocation
always exists. We also give a polynomial time algorithm to find such an allocation. Of course,

this only holds if the valuation of the agents for the items are additive. We further go beyond the

additive setting and extend this result to the case of submodular, XOS, and subadditive settings.

More precisely, we give constant approximation algorithms for submodular and XOS settings that

run in polynomial time. For the subadditive case, we prove that a 1/10⌈logm⌉-MMS allocation is

guaranteed to exist. We emphasize that finding the exact value ofMMSi for an agent is NP-hard.

Furthermore, to the best of our knowledge, no PTAS is known for computing the MMS values

in non-additive settings. Thus, any α-MMS allocation algorithm in non-additive settings must

overcome the difficulty that the value ofMMSi is not known in advance. Therefore, our algorithms

don’t immediately follow from our existential proofs.

In order to present the results and techniques, we briefly state the fair allocation problem. Note

that you can find a formal definition of the problem with more details in Section 2. The input to a

maxmin fair allocation problem is a set M ofm items and a set N of n agents. Fix an agent ai ∈ N

and let Vi : 2
M → R+ be the valuation function of ai . Consider the set Πr of all partitions of the

items inM into r non-empty sets. We define MMSrVi (M) as follows:

MMSrVi (M) = max

P ∗=⟨P ∗
1
,P ∗

2
, ...,P ∗

r ⟩∈Πr
min

1≤j≤r
Vi (P

∗
j ).

In the context of fair allocation, we denote the maxmin value of an agent ai byMMSi = MMSnVi (M).

The fair allocation problem is defined as follows: for a given parameter α , can we distribute the items
among the agents in such a way that every agent ai receives a set of items with a value of at least
αMMSi to him? Such an allocation is called an α-MMS allocation. We consider the fair allocation

problem in both additive and non-additive settings (including submodular, XOS, and subadditive

valuations). For non-additive settings, we use oracle queries to access the valuations. Note that, for

non-additive settings, eliciting the entire valuation function of each agent needs an exponential

number of queries. However, our methods for allocating the items in non-additive settings only

use a polynomial number of queries.

There are many applications for finding fair allocations in the additive and non-additive settings.

For example, spliddit, a popular fair division website
2
suggests indisputable and provably fair

solutions for many real-world problems such as sharing rents, distributing tasks, dividing goods,

etc. For dividing goods, spliddit uses the maximum Nash welfare allocation (the allocation that

maximizes the product of utilities). In [17], Caragiannis et.al., proved with a tight analysis that a

maximum Nash welfare allocation is a 2/(1 +
√
4n − 3)-MMS allocation. However, the current best

approximation guarantee and the state-of-the-art method for allocating indivisible goods is based

on the result of [36] that guarantees a 2/3-MMS allocation. We believe our results can improve

2
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Table 1. Summary of the results

Previous work Additive Submodular XOS Subadditive

Existential proof 2/3-MMS [36] 1/10-MMS [9] - -

Polytime algorithm 2/3 − ϵ-MMS [3] 1/31-MMS [9] - -

Upper bound 1 − ϵ-MMS [36] - - -

Our results Additive Submodular XOS Subadditive

Existential proof 3/4-MMS 1/3-MMS 1/5-MMS 1/10⌈logm⌉-MMS
Theorem 1.1 Theorem 4.7 Theorem 1.2 Theorem 1.5

Polytime algorithm 3/4 − ϵ-MMS 1/3-MMS 1/8-MMS -

Theorem 1.1 Theorem 4.8 Theorem 1.3

Upper bound - 3/4-MMS 1/2-MMS 1/2-MMS
Theorem 4.2 Theorem 4.1 Theorem 4.1

their performance. We would like to mention that despite the complexity of analysis, the idea

behind our algorithm is simple and it can be easily implemented
3
.

It is worth mentioning that other than maximin share, there are other fairness criteria that

attracted considerable attention, especially in recent years: envy-free up to one good (EF1) and

envy-free up to any good (EFX). In these settings, we seek to find allocations with limited (but

not necessarily zero) envy between the agents [10, 17, 41]. Also, recent studies have established a

connection between Nash Social Welfare (NSW) and these fairness criteria [10, 17]. NSW is defined

as the geometric mean of the agents’ utilities. Maximizing NSW has been subject to many recent

studies [4, 10, 11, 18].

1.1 Our Results and Techniques
Throughout this paper, we study the fair allocation problem for additive and non-additive agents.

Kurokawa et al. [36] study the fair allocation problem and show a 2/3-MMS allocation is guaranteed
to exist for any number of additive agents. We improve this result in two different dimensions: (i)

we improve the factor 2/3 to a factor 3/4 for additive agents. (ii) we provide similar guarantees for

submodular, fractionally subadditive, and subadditive agents. Moreover, we provide algorithms that

find such allocations in polynomial time. A brief summary of our results is illustrated in Table 1.

1.1.1 Additive Setting. As mentioned before, the pioneering work of Kurokawa et al. [36] present
the first proof to the existence of a 2/3-MMS allocation in the additive setting. On the negative

side, they show that their analysis is tight, i.e. their method cannot be used to obtain a better

approximation guarantee. However, whether or not a better bound could be achieved via a more

efficient algorithm remains open as Kurokawa et al. [36] pose it as an open problem.

We answer the above question in the affirmative. Our main contribution is a proof to the existence

of a 3/4-MMS allocation for additive agents. Furthermore, we show that such an allocation can be

found in polynomial time.

Theorem 1.1. Any fair allocation problem with additive agents admits a 3/4-MMS allocation.
Moreover, a (3/4 − ϵ)-MMS allocation can be found in time poly(n,m) for any ϵ > 0.

3
The reader can find a set of materials including the implementation of our method and an animated explanation of our

algorithm in https://www.cs.umd.edu/∼saeedrez/fair.html.
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The result of Theorem 1.1 is surprising, since most of the previous methods provided for proving

the existence of a 2/3-MMS allocation were tight. This convinced many in the community that 2/3

is the best that can be guaranteed. This shows that the current techniques and known structural

properties of maxmin share are not powerful enough to prove the bounds better than 2/3. In this

paper, we provide a better understanding of this notion by demonstrating several new properties

of maxmin share. For example, we introduce a generalized form of reducibility and develop double

counting techniques that are closely related to the concept of maxmin-share.

For a better understanding of our algorithm, we start with the case where valuations of the

agents for all items are small enough. More precisely, let 0 < α < 1 be a constant number and

assume for every agent ai and every item bj , the value of agent ai for item bj is bounded by αMMSi .
In this case, we propose the following simple procedure to allocate the items to the agents.

• Arrange the items in an arbitrary order.

• Start with an empty bag and add the items to the bag one by one with respect to their order.

• Every time the valuation of an agent ai for the set of items in the bag reaches (1 − α)MMSi ,
give all items of the bag to that agent, and continue with an empty bag. In case many agents

are qualified to receive the items, we choose one of them arbitrarily. From this point on, we

exclude the agent who received the items from the process.

We call this procedure the bag filling algorithm. One can see this algorithm as an extension of the

famous moving knife algorithm for indivisible items. It is not hard to show that the bag filling
algorithm guarantees a (1 − α)-MMS allocation to all of the agents. The crux of the argument is to

show that every agent receives at least one bag of items. To this end, one could argue that every

time a set of items is allocated to an agent ai , no other agent aj loses a value more than MMSj .
This, together with the fact that Vi (M) ≥ nMMSi , shows that at the end of the algorithm, every

agent receives a fair share ((1 − α)-MMS) of the items.

This observation sheds light on the fact that low-value items can be distributed in a more efficient

way. Therefore, the main hardness is to allocate the items with higher values to the agents. To

overcome this hardness, we devise a clustering method. Roughly speaking, we divide the agents

into three clusters according to their valuation functions. We prove desirable properties for the

agents of each cluster. Finally, via a procedure that is similar in spirit to the bag filling algorithm
but more complicated, we allocate the items to the agents.

Our clustering method is based on three important principles: reducibility, matching allocation,
and cycle-envy-freeness. We give a brief description of each principle in the following.

Reducibility: The reducibility principle is very simple and elegant but plays an important role

in the allocation process. Roughly speaking, consider a situation where for an agent ai and a set S
of items we have the following properties: Vi (S) ≥ αMMSi , and for all aj , ai , MMSn−1j (M \ S) ≥
MMSj , where Vi (S) is the valuation of agent ai for subset S of items. Intuitively, since the maxmin

shares of all agents except ai for all the items other than set S are at least as much as their current

maxmin shares, allocating set S to ai cannot hurt the guarantee. In other words, given that an

α-MMS allocation is possible for all agents except ai with items not in S , we can allocate set S to

agent ai and recursively solve the problem for the rest of the agents. Although the definition of

reducibility is more general than what mentioned above, the key idea is that reducible instances of

the problem can be transformed into irreducible instances (see Observation 2.1). This makes the

problem substantially simpler, since α-irreducible instances of the problem have many desirable

properties. For example, in such instances, the value of every agent ai for each item is less than

αMMSi (see Lemma 2.2). By setting α = 1/2, this observation along with the analysis of the



bag filling algorithm, proves the existence of a 1/2-MMS allocation. It is worth to mention that a

special form of reducibility, where |S | = 1 is used in the previous works [3, 36].

Matching allocation: At the core of the clustering part, we use a well-structured type of

matching to allocate the items to the agents. Intuitively, we cluster the agents to deal with high-

value or in other words heavy items. In order to cluster a group of agents, we find a subset T of

agents and a subset S of items, together with a matchingM from S to T . We choose T , S , andM in

a way that (i) every item assigned to an agent has a value of at least β to him, (ii) agents who do

not receive any items have a value less than β for each of the assigned items. Such an allocation

requires careful application of several properties of maximal matchings in bipartite graphs (see

[30] for details). A matching with similar structural properties is previously used by Kurokawa et
al. [36] to allocate the bundles to the agents. We reveal more details and precisely characterize the

structure of such matchings.

Cycle-envy-freeness: Envy-freeness is itself a well-known notion for fairness in the resource

allocation problems. However, this notion is perhaps more applicable to the allocation of divisible

goods. In our algorithm, we use a much weaker notion of envy-freeness, namely cycle-envy-freeness.
A cycle-envy-free allocation contains no cyclic permutation of agents, such that each agent envies

the next agent in the cycle. In the clustering phase, we choose a matchingM in a way that preserves

cycle-envy-freeness for the clustered agents. More details about this can be found in the full version

[30].

Cycle-envy-freeness plays a key role in the second phase of the algorithm. As aforementioned,

our method in the assignment phase is closely related to the bag filling procedure described above.

The difference is that the efficiency of our method depends on the order of the agents who receive

the items. Based on the notion of cycle-envy-freeness, we prioritize the agents and, as such, we

show the allocation is fair. An analogous concept is previously used in [39], albeit with a different

application than ours.

In section 3, we present the ideas behind each step of the algorithm and show how the entire

algorithm leads to a proper allocation.

1.1.2 Submodular, XOS, and Subadditive Agents. Although the problem was initially proposed

for additive agents, it is very well-motivated to extend the definition to other classes of set functions.

For instance, it is quite natural to expect that an agent prefers to receive two items of value 400,

rather than receiving 1000 items of value 1. Such a constraint cannot be imposed in the additive

setting. However, submodular functions which encompass k-demand valuations are strong tools

for modeling these constraints. Such generalizations have been made to many similar problems,

including the Santa Claus max-min fair allocation, welfare maximization, and secretary problems [12,

24, 25, 31]. The most common classes of set functions that have been studied before are submodular,

XOS, and subadditive functions. We consider the fair allocation problemwhen the agents’ valuations

are in each of these classes. In contrast to the additive setting in which finding a constantMMS
allocation is trivial, the problem becomes much more subtle even when the agents’ valuations

are monotone submodular. For instance, the bag filling algorithm does not promise any constant

approximation factor for submodular agents, while it is straight-forward to show it guarantees a

(1 − α)-MMS allocation for additive agents.

We begin with submodular set functions. In Section 4, we show that the fair allocation problem

with submodular agents admits a 1/3-MMS allocation. In addition, we show, given access to query
oracles, one can find such an allocation in polynomial time. We further complement our result by

showing that a 3/4-MMS is the best guarantee that one can hope to achieve in this setting. This is



in contrast to the additive setting for which the only upper bound is that 1-MMS allocation is not

always possible. We begin by stating an existential proof.

Theorem 4.7. The fair allocation problem with submodular agents admits a 1/3-MMS allocation.

Our proof for submodular agents is fundamentally different from that of the additive setting.

First, without loss of generality, we assume MMSi = 1 for every agent ai ∈ N . Moreover, we

assume the problem is 1/3-irreducible since otherwise we can reduce the problem. Next, given a

function f (.), we define the ceiling function f x (.) as follows:

f x (S) = min{x , f (S)} ∀S ⊆ ground(f ).

An important property of the ceiling functions is that they preserve submodularity, fractionally

subadditivity, and subadditivity (see Lemma 4.4). We define the bounded welfare of an allocationA

as

∑
V 2/3

i (Ai ). Given that, we show an allocation that maximizes the bounded welfare is 1/3-MMS.
To this end, let A be an allocation with the maximum bounded welfare and suppose for the sake

of contradiction that in such an allocation, an agent ai receives a bundle of worth less than 1/3

to him. Since MMSi = 1, agent ai can divide the items into n sets, where each set is of worth at

least 1 to him. For a valuation function V , define the contribution of an item bj in set S (bj ∈ S)
as V (S) −V (S \ {bj }). Now, we randomly select an element bj which is not allocated to ai . By the

properties of submodular functions, we show that if we allocate bj to ai , the expected contribution

of bj to the bounded valuation function of ai would be more than the current expected contribution

of bj to the bounded welfare of the allocation. Therefore, there exists an item bj such that if we

allocate that item to agent ai , the total bounded welfare of the allocation will be increased. This

contradicts the maximality of the allocation.

Notice that Theorem 4.7 is only an existential proof. A natural approach to find such a solution

is to start with an arbitrary allocation and iteratively increase its bounded welfare until it becomes

1/3-MMS. The main challenge though is that we do not even know what the MMS values are.

Furthermore, unlike the additive setting, we do not have any PTAS algorithm that provides us a

close estimate to these values. To overcome this challenge, we propose a combinatorial trick to

guess these values without incurring any additional factor to our guarantee. The high level idea

is to start with large numbers as estimates to theMMS values. Every time we run the algorithm

on the estimated values, it either finds a desired allocation, or reports that the maxmin value of

an agent is misrepresented by at least a multiplicative factor. Given this, we divide the maxmin

value of that agent by that factor and continue on with the new estimates. Therefore, at every step

of the algorithm, we are guaranteed that our estimates are not less than the actualMMS values.
Based on this, we show that the running time of the algorithm is polynomial, and that the resulting

allocation has the desired properties. The reader can find a detailed discussion in Section 4.

Theorem 4.8. Given access to query oracles, one can find a 1/3-MMS allocation to submodular
agents in polynomial time.

Finally, we show that in some instances with submodular agents, no allocation is better than

3/4-MMS.

Theorem 4.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n
submodular agents where no allocation is better than 3/4-MMS.

We show Theorem 4.1 by a counter-example. In this counter-example we have n agents and 2n
items. Moreover, the valuation functions of the first n − 1 agents are the same, but the last agent

has a slightly different valuation function that makes it impossible to find an allocation which is

better than 3/4-MMS. The number of agents in this example can be arbitrarily large.



We also study the problem with fractionally subadditive (XOS) agents. Similar to the submodular

setting, we provide an upper bound on the quality of any allocation in the XOS setting. We show

Theorem 4.2 by a counter-example.

Theorem 4.2. For any integer number c , there is an instance of the fair allocation problem with
XOS agents where n ≥ c and no allocation is better than 1/2-MMS.

Next, we state the main theorem for XOS valuations.

Theorem 1.2. The fair allocation problem with XOS agents admits a 1/5-MMS allocation.

Our approach for proving Theorem 1.2 is similar to the proof of Theorem 4.7. Again, we scale the

valuations to make sureMMSi = 1 all agents and define the notion of bounded welfare, but this

time as

∑
V 2/5

i (Ai ). However, as XOS functions do not adhere to the nice structure of submodular

functions, we use a different analysis to prove this theorem. Let A be an allocation with the

maximum bounded welfare. In case all agents receive a value of at least 1/5, the proof is complete.

Otherwise, let ai be an agent that receives a set of items whose value to him is less than 1/5. In

contrast to the submodular setting, giving no item alone to ai can guarantee an increase in the

bounded welfare of the allocation. However, this time, we show there exists a set S of items such

that if we take them back from their recipients and instead allocate them to agent ai , the bounded
welfare of the allocation increases. The reason this holds is the following: sinceMMSi = 1, agent

ai can split the items into 2n sets where every set is worth at least 2/5 to ai , otherwise the problem
is 1/5-reducible. Moreover, since the valuation functions are XOS, we show that giving one of these

2n sets to ai will increase the bounded welfare of the allocation. Therefore, if A is maximal, then

A is also 1/5-MMS.
Finally, we show that a 1/8-MMS allocation in the XOS setting can be found in polynomial time.

Our algorithm only requires access to demand and XOS oracles. Note that this bound is slightly

worse than our existential proof due to some computational hardnesses. However, the blueprint of

the algorithm is based on the proof of Theorem 1.2.

Theorem 1.3. Given access to demand and XOS oracles, we can find a 1/8-MMS allocation for the
problem with XOS agents in polynomial time.

We start with an arbitrary allocation and increase the bounded welfare until the allocation

becomes 1/8-MMS. The catch is that if the allocation is not 1/8-MMS, then there exists an agent ai
and a set S of items such that if we take back these items from their current recipients and allocate

them to agent ai , the bounded welfare of the allocation increases. In order to increase the bounded

welfare, there are two computational barriers that need to be lifted. First, similar to the submodular

setting, we do not have any estimates to theMMS values. Analogously, we resolve the first issue

by iteratively guessing theMMS values. The second issue is that in every step of the algorithm, we

have to find a set S of items to allocate to an agent ai that results in an increase in the bounded

welfare. Such a set S cannot be trivially found in polynomial time. That is where the demand and

XOS oracles take part. The high-level idea is the following: first, by accessing the XOS oracles, we

determine the contribution of every item to the bounded welfare of the allocation. Next, we set

the price of every element equal to three times the contribution of that element to the bounded

welfare and run the demand oracle to find which subset has the highest profit for agent ai . We

show this subset has a value of at least 1/4 to ai . Next, we sort the elements of this set based on the

ratio of contribution to the overall value of the set over the price of the item, and select a prefix for

them that has a value of at least 1/4 to ai . Finally, we argue that allocating this set to ai increases
the bounded welfare of the allocation by at least some known lower bound. This, married with



the combinatorial trick to guess theMMS values, gives us a polynomial time algorithm to find a

1/8-MMS allocation.

An immediate corollary of Theorems 1.3 and 4.8 is a polynomial time algorithm for approximating

the maxmin value of a submodular and an XOS function within factors 1/3 and 1/8, respectively.

Corollary 1.4. Let f be a submodular/XOS function on a set of ground elements S , and let n be
an integer number. Given access to query oracle/demand and XOS oracles of f , we can partition the
elements of S into n disjoint subsets S1, S2, . . . , Sn such that

n
min

i=1
f (Si ) ≥ c ·MMSnf

where MMSnf denotes the maxmin value for function f on n subsets. Constant c equals 1/3 if f is
submodular and is equal to 1/8 for the XOS case.

Finally, we investigate the problem when the agents are subadditive and present an existential

proof based on a well-known reduction to the XOS setting.

Theorem 1.5. The fair allocation problem with subadditive agents admits a 1/10⌈logm⌉-MMS
allocation.

1.2 Organization of the Paper
The organization of the rest of the paper is as follows: Section 2 contains the notations and

definitions, including different set functions and the tools to be needed for the main results. Next, in

Section 3 we briefly review the general ideas behind our 3/4-MMS allocation algorithm. In interest

of space, the detailed description of the algorithm and the approximation proof are removed from

this version. You can find the details and the approximation proof and a flowchart of the algorithm

in the full version [30].

In Section 4, we present our results for the submodular setting. The proofs for the XOS and the

subadditive settings follow from the same ideas and can be found in the full version [30].

2 PRELIMINARIES
Throughout this paper we assume the set of agents is denoted byN and the set of items is referred

to by M. Let |N | = n and |M| = m, we refer to the agents by ai and to the items by bi , i.e.,
N = {a1,a2, . . . ,an} andM = {b1,b2, . . . ,bm}. We denote the valuation of agent ai for a set S of

items by Vi (S). Our interest is in valuation functions that are monotone and non-negative. More

precisely, we assume Vi (S) ≥ 0 for every agent ai and S ⊆ M, and for every two sets S1 and S2
we have Vi (S1 ∪ S2) ≥ max{Vi (S1),Vi (S2)}. Due to obvious impossibility results for the general

valuation functions , we restrict our attention to four classes of set functions:

• Additive: A set function V (.) is additive if V (S1) +V (S2) = V (S1 ∪ S2) +V (S1 ∩ S2) for every
two sets S1, S2 ∈ ground(V ).

• Submodular: A set function V (.) is submodular if V (S1) +V (S2) ≥ V (S1 ∪ S2) +V (S1 ∩ S2)
for every two sets S1, S2 ∈ ground(V ).

• Fractionally Subadditive (XOS): An XOS set function V (.) can be shown via a finite set of

additive functions {V1,V2, . . . ,Vα } where V (S) = max
α
i=1Vi (S) for any set S ⊆ ground(V ).

• Subadditive: A set function V (.) is subadditive if V (S1) +V (S2) ≥ V (S1 ∪ S2) for every two

sets S1, S2 ⊆ ground(V ).

For additive functions, we assume the value of the function for every element is given in the input.

However, representing other classes of set functions requires access to oracles. For submodular

functions, we assumewe have access to query oracle defined below. Query oracles are great identifier



for submodular functions, however, they are too weak when it comes to XOS and subadditive

settings. For such functions, we use a stronger oracle which is called demand oracle. It is shown
that for some functions, such as gross substitutes, a demand oracle can be implemented via a query

oracle in polynomial time [38]. In addition to this, we consider a special oracle for XOS functions

which is called XOS oracle. Access to query oracles for submodular functions, XOS oracle for XOS

functions, and demand oracles for XOS and subadditive functions are quite common and have been

very fruitful in the literature [20, 24–27, 38, 43]. In what follows, we formally define the oracles:

• Query oracle: Given a function f , a query oracle O is an algorithm that receives a set S as

input and computes f (S) in time O(1).
• Demand oracle: Given a function f , a demand oracle O is an algorithm that receives

a sequence of prices p1,p2, . . . ,pn as input and finds a set S such that f (S) −
∑

e ∈S pe is

maximized. We assume the running time of the algorithm is O(1).
• XOS oracle: (defined only for an XOS functions f ) Given a set S of items, it returns the

additive representation of the function that is maximized for S . In other words, it reveals the

contribution of each item in S to the value of f (S).

Let Πr be the set of all partitions of M into r disjoint subsets. For every r -partitioning P∗ ∈ Πr ,

we denote the partitions by P∗
1
, P∗

2
, . . . , P∗

r . For a set function f (.), we define MMSrf (M) as follows:

MMSrf (M) = max

P ∗∈Πr
min

1≤j≤r
f (P∗

j ).

For brevity we refer to MMSnfi (M) by MMSi .
An allocation of items to the agents is a vector A = ⟨A1,A2, . . . ,An⟩ where

⋃
Ai = M and

Ai ∩Aj = ∅ for every two agents ai ,aj ∈ N . An allocation A is α-MMS, if every agent ai receives
a subset of the items whose value to that agent is at least α times MMSi . More precisely, A is

α-MMS if and only if Vi (Ai ) ≥ αMMSi for every agent ai ∈ N .

We define the notion of reducibility for an instance of the problem as follows.

Definition 2.1. We say an instance of the problem is α-reducible, if there exist a set T ⊂ N of

agents, a set S of items, and an allocation A = ⟨A1,A2, . . . ,A |T |⟩ of S to agents of T such that

∀ai ∈ T Vi (Ai ) ≥ αMMSi

and

∀ai < T MMSn−|T |

Vi
(M \ S) ≥ MMSi .

Similarly, we call an instance α-irreducible if it is not α-reducible. The intuition behind Definition

2.1 is the following: In order to prove the existence of an α-MMS allocation for every instance of

the problem, it only suffices to prove this for the α-irreducible instances.

Observation 2.1. Every instance of the fair allocation problem admits an α-MMS allocation if
this holds for all α-irreducible instances.

The reducibility argument plays an important role in both the existential proofs and algorithms

that we present in the paper. As we see, irreducible instances of the problem exhibit several desirable

properties for additive and non-additive agents. We take advantage of these properties to improve

the approximation guarantee for different classes of set functions. As an example, Lemma 2.2 shows

a simple consequence of irreducibility.

Lemma 2.2. For every α-irreducible instance of the problem we have

∀ai ∈ N ,bj ∈ M Vi (bj ) < α .
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3 A BRIEF OVERVIEW OF THE 3/4-MMS ALGORITHM
The purpose of this section is to present an abstract overview over the ideas behind our algorithm

for finding a 3/4-MMS allocation in the additive setting. For simplicity, we start with a simple

1/2-MMS algorithm mentioned in Section 1.1. Recall that the bag filling procedure guarantees a
1 − α approximation solution when the valuations of the agents for each item is smaller than α .
Furthermore, we know that in every α-irreducible instance, all the agents have a value less than α
for every item. Thus, the following simple procedure yields a 1/2-MMS allocation:

(1) Reduce the problem until no agent has a value more than 1/2 for any item.

(2) Allocate the items to the agents via a bag filling procedure.

Figure 1 shows a schematic representation of this algorithm. We can extend the idea in 1/2-MMS
algorithm to obtain a more efficient algorithm. Here is the sketch of the 2/3-MMS algorithm:

consider a 2/3-irreducible instance of the problem. In this instance, we have no item with a value

more than or equal to 2/3 to any agent. Nevertheless, the items are not yet small enough to run

a bag filling procedure. The idea here is to divide the agents into two clusters C1 and C2. Along

this clustering, the items with a value in range [1/3, 2/3) are given to the agents. In particular, one

item is allocated to every agent in C1 that is worth at least 1/3 to him and less than 1/3 to any

agent not in C1. Next, we refine Cluster C1. In the refining procedure, if any remaining item could

singly satisfy an agent in C1, we do so. After building C1 and C2 and refining C1, the remaining

items preserve the following two invariants:

(1) The value of every remaining item is less than 1/3 to every remaining agent.

(2) No remaining item can singly satisfy an agent in C1 (regarding the item that is already

allocated to them)

These two invariants enable us to run a bag filling procedure over the remaining items. For this case,

the bag filling procedure must be more intelligent: in the case that multiple agents are qualified

to receive the items of the bag, we prioritize the agents. Roughly speaking, the priorities are

determined by two factors: the cluster they belong to, and the cycle-envy-freeness property of the

agents in C1. In Figure 2 you can see a flowchart for this algorithm.
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Our method for a 3/4-MMS allocation takes one step further from the previous 2/3-MMS
algorithm. Again, we assume that the input is 3/4-irreducible since otherwise it can be further

simplified. Via similar ideas, we build Cluster C1 and refine it. Next, we build Clusters C2 and C3

and refine C2. After refining Cluster C2, the following invariants are preserved for the remaining

items:

(1) Almost every remaining item has a value less than 1/4 to every remaining agent. More

precisely, for every remaining agent ai , there is at most one remaining item bj withVi ({bj }) ≥
1/4.

(2) No remaining item can singly satisfy an agent in C1 and C2 (regarding the item that is already

allocated to them).

Finally, we run a bag filling procedure. Again, in the bag filling procedure, the priorities of the
agents are determined by the cluster they belong to, and the cycle-envy-freeness of the clusters. In

Figure 3, a flowchart for this algorithm is shown. Our assumption is that the input is 3/4-irreducible.

Hence, we describe our algorithm in two phases: a clustering phase and the bag filling phase, as
shown in Figure 4.

We show that all the steps of the algorithm can be implemented in polynomial time. Furthermore,

we show that the assumption that the input is 3/4-irreducible is without loss of generality. In fact,

we show that it suffices to check some invariants of irreducibility to be held in certain points of the

algorithm.

As a future work, one can consider a more generalized form of this algorithm, where the agents

are divided into more than 3 clusters (see Figure 5). We believe that this generalization might yield

a (1 − ϵ)-MMS allocation, where ϵ is a small value that depends on the number of agents. However,

such a generalization is faced with two main barriers. First, In order to extend the idea to more

than 3 clusters, we need a generalized form of reducibility for more than two items. Furthermore, a

challenging part of our approximation proof is to show that the second cluster is empty at the end

of the algorithm. For this, we define a graph on the items in the second cluster and prove some

bounds on the number of edges in this graph. To extend the idea for more clusters, we need to

define hypergraphs on the items in the clusters and show similar bounds, which requires deeper

and more complicated techniques.

4 SUBMODULAR AGENTS
Previous work on the fair allocation problem was limited to the additive agents [3, 36]. In real-world,

however, valuation functions are usually more complex than additive ones. As an example, imagine

an agent is interested in at most k items. More precisely, he is indifferent between receiving k items

or more than k items. Such a valuation function is called k-demand and cannot be modeled by

additive functions. k-demand functions are a subclass of submodular set functions which have been

extensively studied the literature of different contexts, e.g., optimization, mechanism design, and

game theory [15, 29, 32–34, 37, 40, 43].

In this section, we study the fair allocation problemwhere the valuations of agents are submodular.

We begin by presenting an impossibility result; We show in Section 4.1 that the best guarantee



that we can achieve for submodular agents is upper bounded by 3/4. Next, we give a proof to the

existence of a 1/3-MMS allocation in this setting. This is followed by an algorithm that finds such

an allocation in polynomial time. This is surprising since even finding theMMS of a submodular

function is NP-hard and cannot be implemented in polynomial time unless P=NP [22]. In our

algorithm, we assume we have access to query oracle for the valuation of agents; That is, for any

set S and any agent ai , Vi (S) can be computed via a given query oracle in time O(1).

4.1 Upper Bound
We begin by providing an upper bound. In this section, we show for some instances of the problem

with submodular agents, no allocation can be better than 3/4-MMS. Our counter-example is generic;

We show this result for any number of agents.

Theorem 4.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n
submodular agents where no allocation is better than 3/4-MMS.

Proof. We construct an instance of the problem that does not admit any 3/4 + ϵ-MMS allocation.

To this end, let n be the number of agents andM = {b1,b2, . . . ,bm} wherem = 2n. Furthermore,

let f : 2
M → R be as follows:

f (S) =



0, if |S | = ∅

1, if |S | = 1

2, if |S | > 2

2, if S = {b2i ,b2i+1} for some i

3/2, if |S | = 2 and S , {b2i ,b2i+1} for any i .

Notice thatMMSnf = 2. Moreover, in what follows we show that f is submodular. To this end,

suppose for the sake of contradiction that there exist sets S and S ′ such that S ⊆ S ′ and for some

element bi we have:

f (S ′ ∪ {bi }) − f (S ′) > f (S ∪ {bi }) − f (S). (1)

Since f is monotone and S ′ , S , f (S ′ ∪ {bi }) − f (S ′) > 0 holds and thus S ′ cannot have more

than two items. Therefore, S ′ contains at most two items and thus S is either empty or contains a

single element. If S is empty, then adding every element to S has the highest increase in the value

of S and thus Inequality (1) doesn’t hold. Therefore, S contains a single element and S ′ contains
exactly two elements. Thus, f (S) = 1 and f (S ′) ≥ 3/2. Therefore, f(S ∪{bi }) − f (S) ≥ 1/2 and

f (S ′ ∪ {bi }) − f (S ′) ≤ 1/2 which contradicts Inequality (1).

Now, for agents a1,a2, . . . ,an−1 we set Vi = f and for agent an we set Vn = f (inc(S)) where bi
is in inc(S) if and only if either i > 1 and bi−1 ∈ S or i = 1 and bm ∈ S .

The crux of the argument is that for any allocation of the items to the agents, someone receives

a value of at most 3/2. In case an agent receives fewer than two items, his valuation for his items

would be at most 1. Similarly, if an agent receives more than two items, someone has to receive

fewer than 2 items and the proof is complete. Therefore, the only case to investigate is where

everybody receives exactly two items. We show in such cases, minVi (Ai ) = 3/2 for all possible

allocations. If all agents a1,a2, . . . ,an−1 receive two items whose value for them is exactly equal to

2, then by the construction of f , the value of the remaining items is also equal to 2 to them. Thus,

an ’s valuation for the items he receives is equal to 3/2. �



Remark that one could replace function f with an XOS function

д(S) =



0, if |S | = ∅

1, if |S | = 1

2, if |S | > 2

2, if S = {b2i ,b2i+1} for some i

1, if |S | = 2 and S , {b2i ,b2i+1} for any i .

and make the same argument to achieve a 1/2-MMS upper bound for XOS and subadditive agents.

Theorem 4.2. For any n > 1, there exists an instance of the fair allocation problem with n XOS
agents where no allocation is better than 1/2-MMS.

4.2 Existential Proof
In this section we provide an existential proof to a 1/3-MMS allocation. Due to the algorithmic

nature of the proof, we show in Section 4.3 that such an allocation can be computed in time

poly(n,m). For simplicity, we scale the valuation functions to ensure MMSi = 1 for every agent ai .
We begin by introducing the ceiling functions.

Definition 4.3. Given a set function f (.), we define f x (.) as follows:

f x (S) =

{
f (S), if f (S) ≤ x

x , if f (S) > x .

A nice property of the ceiling functions is that they preserve submodularity, fractionally subad-

ditivity, and sub-additivity.

Lemma 4.4. For any real number x ≥ 0, we have:
(1) Given a submodular set function f (.), f x (.) is submodular.
(2) Given an XOS set function f (.), f x (.) is XOS.
(3) Given an subadditive set function f (.), f x (.) is also subadditive.

The idea behind the existence of a 1/3-MMS allocation is simple: Suppose the problem is 1/3-

irreducible and let A = ⟨A1,A2, . . . ,An⟩ be an allocation of items to the agents that maximizes the

following expression: ∑
ai ∈N

V 2/3

i (Ai ) (2)

We refer to Expression (2) by ex(2/3)(A). We prove Vi (Ai ) ≥ 1/3 for every agent ai ∈ N . By the

reducibility principal, it only suffices to show every 1/3-irreducible instance of the problem admits

a 1/3-MMS allocation. The main ingredients of the proof are Lemmas 2.2, 4.5 and 4.6.

Lemma 4.5. Let S1, S2, . . . , Sk be k disjoint sets and f1, f2, . . . , fk be k submodular functions. We
remove an element e from

⋃
Si uniformly at random to obtain sets S∗

1
= S1\{e}, S

∗
2
= S2\{e}, . . . , S

∗
k =

Sk \ {e}. In this case we have

E[
∑

fi (S
∗
i )] ≥

∑
fi (Si )

|
⋃
Si | − 1

|
⋃
Si |

.

The high-level intuition behind the proof of Lemma 4.5 is as follows: For submodular functions,

the smaller the size of a set is, the higher the marginal values for adding items to that set will

be. Based on that, we show the summation of marginal decreases for removing each element is

bounded by the total value of the set and that completes the proof.



Lemma 4.6. Let f be a submodular function and S1, S2, . . . , Sk be k disjoint sets such that f (Si ) ≥ 1

for every set Si . Moreover, let S ⊆
⋃
Si be a set such that f (S) < 1/3. If we pick an element {e} of⋃

Si \ S uniformly at random, we have:

E[f (S ∪ {e}) − f (S)] ≥
2k/3

|
⋃
Si \ S |

.

The proof of Lemma 4.6 is very similar to that of Lemma 4.5. The main point is that in submodular

functions, the marginal increase decreases as the sizes of sets grow.

Next, we show the fair allocation problem with submodular agents admits a 1/3-MMS allocation.

Theorem 4.7. The fair allocation problem with submodular agents admits a 1/3-MMS allocation.

Proof. By Lemma 2.1, the problem boils down to the case of 1/3-irreducible instances. Let the

problem be 1/3-irreducible and A be an allocation that maximizes ex(2/3). Suppose for the sake of
contradiction that Vi (Ai ) < 1/3 for some agent ai . In this case we select an item br fromM \Ai
uniformly at random to create a new allocation Ar

as follows:

Ar
j =

{
Aj \ {br }, if i , j

Aj ∪ {br } if i = j .

In the rest we show E[ex(2/3)(Ar )] > ex(2/3)(A) which contradicts the maximality of A. Note

that by Lemma 4.5 the following inequality holds:

E[
∑
j,i

V 2/3

j (Ar
j )] ≥

∑
j,i

V 2/3

j (Aj )
|M \Ai | − 1

|M \Ai |
. (3)

Moreover, by Lemma 4.6 we have

E[Vi (A
r
i ) −Vi (Ai )] ≥

2n/3

|M \Ai |
. (4)

Inequality (3) along with Inequality (4) shows

E[ex(2/3)(Ar )] = E[
∑
j,i

V 2/3

j (Ar
j )] + E[Vi (A

r
i )]

≥
∑
j,i

V 2/3

j (Aj )
|M \Ai | − 1

|M \Ai |
+ E[Vi (A

r
i )]

≥
∑
j,i

V 2/3

j (Aj )
|M \Ai | − 1

|M \Ai |
+

2n/3

|M \Ai |
+Vi (Ai )

≥
∑
j,i

V 2/3

j (Aj )
|M \Ai | − 1

|M \Ai |
+

2n/3

|M \Ai |
+V (2/3)

i (Ai )

≥
∑
j,i

V 2/3

j (Aj )
|M \Ai | − 1

|M \Ai |
+

2n/3

|M \Ai |
+V (2/3)

i (Ai )
|M \Ai | − 1

|M \Ai |

= ex(2/3)(A)
|M \Ai | − 1

|M \Ai |
+

2n/3

|M \Ai |
.

(5)

Recall that by Lemma 2.2, the value of agent ai for any item alone is bounded by 1/3 and thus

E[Vi (A
r
i ) −Vi (Ai )] = E[V

2/3

i (Ar
i ) −V

2/3

i (Ai )]. Notice that by the definition,V (2/3)

j is always bounded



by 2/3 and also Vi (Ai ) < 1/3, therefore, ex(2/3)(A) ≤ 2n/3 − 1/3 and thus

E[ex(2/3)(Ar )] ≥ ex(2/3)(A)
|M \Ai | − 1

|M \Ai |
+

2n/3

|M \Ai |

≥ ex(2/3)(A) +
1/3

|M \Ai |

≥ ex(2/3)(A) + 1/3m.

(6)

�

4.3 Algorithm
In this section we give an algorithm to find a 1/3-MMS allocation for submodular agents. We show

our algorithm runs in time poly(n,m).

For simplicity, we assume for every agent ai , MMSi is given as input to the algorithm. However,

computing MMSi alone is an NP-hard problem. Nonetheless, we show that such a computational

barrier can be lifted by a combinatorial trick. We refer the reader to the full version for a more

detailed discussion. The procedure is illustrated in Algorithm 1: Based on Theorem 4.7, one can show

ALGORITHM 1: Finding a 1/3-MMS allocation for submodular agents

Data: N ,M, ⟨V1,V2, . . . ,Vn⟩, ⟨MMS1,MMS2, . . . ,MMSn⟩
1 For every aj , scale Vj to ensureMMSj = 1;

2 while there exist an agent ai and an item bj such that Vi ({bj }) ≥ 1/3 do
3 Allocate {bj } to ai ;

4 M =M \ bj ;

5 N = N \ ai ;

6 A = an arbitrary allocation of the items to the agents;

7 while minV
2/3

j (Aj ) < 1/3 do
8 i = the agent who receives the lowest value in allocation A;

9 Find an item be such that:

ex(⟨A1 \ {be },A2 \ {be }, . . . ,Ai−1 \ {be },Ai ∪ {be },Ai+1 \ {be }, . . . ,An \ {be }⟩) ≥ ex(A) + 1/3m;

10 A = ⟨A1 \ {be },A2 \ {be }, . . . ,Ai−1 \ {be },Ai ∪ {be },Ai+1 \ {be }, . . . ,An \ {be }⟩;

11 For every ai ∈ N allocate Ai to ai ;

that in every iteration of the algorithm value of ex2/3(A) is increased by at least 1/3m. Moreover,

such an element be can be easily found by iterating over all items in time O(m). Furthermore,

the number of iterations of the algorithm is bounded by 2nm, since ex2/3(A) is bounded by 2n/3.
Therefore, Algorithm 1 finds a 1/3-MMS allocation in time poly(n,m).

Theorem 4.8. Given access to query oracles, one can find a 1/3-MMS allocation for submodular
agents in polynomial time.

As a corollary of Theorem 4.8, one can show that the problem of finding the maxmin value of a

submodular function admits a 3 approximation algorithm.

Corollary 4.9. For a given submodular function f , we can in polynomial time split the elements
of ground set into n dijsoint sets S1, S2, . . . , Sn such that for every 1 ≤ i ≤ n,

f (Si ) ≥ MMSnf /3.
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