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1. Basic Equations of Solid Mechanics (3-D) 
 
1.1- Stress and strain 
 
State of stress in a volume (3D) 
  { } { }zxyzxyzyx

T τττσσσσ =

 =zyx σσσ ,, Normal components of stress 
=zxyzxy τττ ,,  Components of shear stress 

 
Strain   { } { }zxyzxyzyx

T γγγεεεε =

 
1.2- Strain-displacement equations (Kinematics equations)  
u , v and w are displacements in x,y and z directions, respectively. 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
222

2
1

x
w

x
v

x
u

x
u

xε  

Retaining only the first order term and neglecting second order: 

z
w

y
v

x
u

zyx ∂
∂

=
∂
∂

=
∂
∂

= εεε  
. 

Only for small deformation, that each derivative is much smaller than unity 
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for large deformation higher terms must be retained  “ geometric 
nonlinearity ” 
 
 1.3- Linear Constitutive Equations  
The stress tensor and strain tensor are related. These relations depend on the 
nature of the material and are called constitutive laws. We shall be 
concerned in most of this text with linear elastic behavior, wherein each 
stress components is linearly related, in the general case, to all the strains by 
equations of the form( and vice versa): 

 

klijklij C ετ =  
C’s are at most functions of position. This law is called generalized Hook’s 
law.  
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Since τij and εkl are second-order tensor fields and symmetric, Cijkl must be 
symmetric in ij and kj and also fourth-order tensor field. We may assume 
that the material is homogeneous( same composition throughout) so Cijkl is 
constant for a given reference.   
 
Hook’s law in one dimensional space can be written as:  DoneE −= )( εσ  
The generalized Hook’s law in matrix notation can be written as. 
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Starting with 81 (34) terms for Cijkl due to symmetry only 21 terms are 
independent for Linear elastic, anisotropic  and homogeneous material. 
Therefore, [C] and [D] are symmetric with 21 experimental evaluation of 
elastic constant. 
 
For linear orthotropic, [C] becomes: 
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The stress-strain equations for orthotropic materials may be written in terms 
of the young’s moduli and poisson’s ratios as dollows: 
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There are 12 material parameters which only 9 are independent. This is 
because of the followings: 
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Linear Isotropic Elasticity 
Isotropic material are those that have point of symmetry, that is, every plane 
is a plane of symmetry of material behavior. This property requires that 
mechanical properties of a material at a point are not dependent on 
direction. Thus a stress such as τxx must be related to all the strains εij for 
reference xyz exactly as the stresses  τx’x’ is related to all the strains ε’ij for a 
reference x’y’z’ rotated relative to xyz. Accordingly, Cijkl must have the 
same components for all references. A tensor  such as Cijkl whose 
components are invariant wrt a rotation of axes is called isotropic tensor.  
Only two independent elastic constants are necessary to represent the 
behavior for linear, isotropic and elastic material, the stress-strain relation in 
this case can be written as: 
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or in terms of stress components: 
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It is well to know that a material may be both isotropic and inhomogeneous 
or, conversely, anisotropic and homogeneous. These two characteristics are 
independent. 
 
1.4 Potential Energy for a Linear Elastic Body (general form) 
The potential energy can be written as: 
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S1 is surface of the body on which surface tractions are prescribed. 
d(u,v,w) is strain energy per unit volume (strain energy density). 
The last two integrals represent the work done by the constant external 
forces, that is, the body forces  and surface tractions 

. A bar at the top of a letter indicates that the quantity is 
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For springs on the boundary we can write for a 2-D case: 
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2-Dimensional Specializations of Elasticity 
Some times due to geometry and loading configurations a 3-D problem may 
reduce to problem in one or 2-D.  
 
2.1- Plane Strain 
In this case, strain normal to the plane is zero. Long body whose geometry 
and loading do not vary significantly in the longitudinal direction are taken 
as plain strain cases, such as dams, retaining walls, etc. 
 
In plain stress problems, we may consider only a slice of unit thickness. 
If f(x,y) is variable at a cross section some distance away from the ends, we 
may assume w=0 (displacement along the z direction. Then 
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nonzero strains are εx , εy and εz. Then we can write: 
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2.2- Plane Stress 
In this case, stress normal to the plane is zero such that problem can be 
characterized by very small dimensions in the z direction for example thin 
plate loaded in its plane. No loading are applied on the surface of the plate, 
then: 
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xyyx and τσσ ,  are averaged over the thickness and independent of z. 
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 Plane stress: thin plate with in-plane loading 
 
2.3- Axisymmetric Problem 
In this case, axisymmetric solids subjected to axially symmetric loading. 
Due to symmetry, stress components are independent of angular 
coordinates. Hence, all derivatives wrt θ vanish and component 

zrzrv θθθθ ττγγ ,,,, become zeros. Then nonzero components relation can be 
written as: 
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3. Plane Elasticity 
In a domain of Ω for i=1,2,3 and j=1,2,3 we have: 
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These three set of equations have to be satisfied within the two dimensional 
domain of Ω. Further, these are also subjected to some boundary conditions. 
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 yy 

τnn υ 
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Ω  τxy 

τyy 
 

x  x 
Following three sets of boundary conditions occur commonly in plane 
elasticity. 
 

a) Homogeneous boundary conditions 
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jυ =components of unit outward normal 
ST=Stress free part of the boundary 
Su=Part of the boundary where displacements are specified to be zero 
 

b) Mixed homogeneous boundary conditions 
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ijα  =Constants such as spring constant 
SM=Part of the boundary where mixed conditions are specified (e.g. springs 
or elastic foundation etc.) 
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c) Non homogeneous boundary conditions (Mixed) 
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Where quantities with the bar on the top are specified. 
 
Let us consider the following condition for now: 
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Potential energy expression is then given by (t=thickness): 
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equation 1  

where the last two integrals are the boundary integrals (line integrals). 
 
3.1- Strain Energy in Plane Elasticity 
Previously, the strain energy had been written either in tensor notation or 
matrix notation.  
In x, y coordinates, strain energy can be written as: 
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In plane stress formulation, if we change ν with ν/(1-ν)  and E with E/(1-ν2) 
then the constitutive equations would be for plane strain. 
You can compare the different boundary conditions of above with the  
boundary conditions obtained in assignment no.1 problem 4. 
 
3.2- Kinematic Relations for FE Analysis of Plane Stress and Strain 

Problems 
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Where [D] is the elasticity matrix obtained previously. [D] for plane stress 
and strain problems are different. [L] is the linear operator matrix. 
 
Next consider approximations for u(x,y) and v(x,y). Suppose those are 
given by (within an element): 
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Substituting above equations into the strain energy, we get strain energy 
within an element: 
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Assuming homogeneous boundary conditions i.e. the last two integrals in 
equation 1are zero. The body force term then yields: 
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3.3- Initial Stresses and Strains 
We showed that stresses are given by: 
{ } [ ]{ }ετ D=  
In general, material within the element boundaries may be subjected to 
initial strain { }0ε such as may be due to temperature changes, shrinkage etc.. 
In addition, the body may be stresses by some known stresses { }0τ  (residual 
stresses, …), such stresses, for instance could be measured but the 
prediction of which, without the full knowledge of the material history is 
impossible. When both, initial stresses and strains are taken into account, 
then the stresses due to externally applied loads are given by: 
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Expanding the above equation yields: 
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The first term on the LHS is the same as that we obtained before: 
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The second and third terms are equal: 
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Now if we rewrite the potential energy expression , 
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Initial strains and stresses (know priori) contribute to the load vector. 
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4- Plane Stress Rectangular Element 
We have four corner nodes and it is logical to have u and v displacements 
as dof at each node. Hence, there are 8 dof per elements. 
 y, η 
 
 
 v4 v3 3  u44  η=y/a  

1 2 
v2

v1

u3

u1

 b ξ=x/a  
 x, ξ u2 a  
 
Let the generalized forces at the ith node be Ui and Vi. Assume the 
polynomials (within the element) for u and v: 

{
bilinearLinear

hgfev
dcbau

ξηηξηξ
ξηηξηξ

+++=
+++=

43421
),(
),(

 

The ξη terms are bilinear, because for constant η, u and v are linear in ξ, 
and for constant ξ, u and v are linear in η. 
 
Check for convergence can be done by following requirements: 

a) Rigid body modes 
Two translation u )tan( tConseva ==  
One rotation )tan( tConsfcvu

−=
∂
∂

−
∂
∂

ξη
 

b) Constant strain 
This implies that u and v should be arbitrary linear functions 
i.e. gyfxevcybxau ++=++=  

c) Continuity 
Both displacements u and v are required to be continuous between 
elements. "continuity of disp. And its derivative to the order of (n-1) where n is 
the highest derivatives in the PE function". 

d) Spatial Isotrophy 
Inclusion of xy instead of x2 or y2 (ξη instead of ξ2 or η2) satisfies  
this requirement. 

Requirements a, b, c and d are all satisfied by the equation of the 
displacements. Note along the edges u and v are linear. e.g. edge 1-2: 
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Therefore, we have to match displacements at only two nodes (1 and 2) 
to make u and v continuity along an edge. 
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Therefore, displacements equations for u and v satisfy the convergence 
requirement. 
Now find constants a to h in displacement equations in terms of  
generalized degree of freedom (nodal dof) ui's and vi's. 
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Solving the above equations for a to h in terms of ui's to get: 
Similarly for vi's . 
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Then matching  will make u continuous along the 
boundary between the two elements. Similarly for v displacement. 

mpmp uanduuandu 3241 ,
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4.1- Stiffness Matrix 
Substitute u and v in the expression for strain energy: 
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Castigliano's Theorem (1st) 
i

e
i u

U
F

∂
∂

=  Ue is the strain energy of the 

element, ui is the generalized displacement and Fi is the generalized force 
corresponding to the generalized displacement ui. 
Then the first row of the stiffness matrix is given by: 
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Similarly we can determine the other components, finally: 
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4.2- Load Vector 
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In order to determine the load vector for an element we need to know the 
loading, i.e. body forces, boundary stresses etc..  
Consider the case of gravity loading: fy=-γ where γ is the specific weight. 
The work done by gravity is: 
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Next considering an element pth with one edge coinciding with the 
boundary of the domain as shown on the figure: 
Suppose both normal and shear stresses are prescribed on this boundary. 
Therefore, work done by the boundary stresses is: 

3 Boundary edge4 
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Further suppose the normal and tangential stresses vary along edge 2-3 
boundary stresses may then be approximated by a parabolic expression: 
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Normal and tangential (or shear) stresses can now be approximated by 
above equation using the stress values at the temporary boundary nodes 1,2 
and 3 i.e. let: 
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In order to use them in the equation of potential energy, we also need to 
know u and v distribution along the edge2-3. From before we know it is 
linear: 
If any of the other edges have prescribed stresses on it, i.e. more than one 
edge coincides with the stress boundary, then we can generate another load 

vector similar to above vectors, with non zero entry indifferent positions of 
the load vector. For example, if edge 3-4 also has prescribed stresses, then 
F1

eT= F2
eT =F3

eT =F4
eT=0 the new { FT

e} for 3-4 is then added to { FT
e} for 

edge2-3. 
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4.3- Strains and Stresses in Rectangular Element  
 
Recall: 
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Stresses are then obtained from equations { } [ ]{ }ετ D= . [D] can be etermined 
based on the problem at hand is plane stress or plane strain. 
Note strain εxx is linear in η and εyy linear in ξ where as γxy is complete 
linear. Further, these are not continuous across the interelement boundaries. 
It is convenient to obtain strains at the centroid of the element, i.e. at 
ξ=η=0.5 
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Then proceed to obtain stresses at the centroid from theses strains. 
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5- Plane Stress Triangular Elements 
 
5.1- Constant Stress Triangular Element (C.S.T) 
Note: cheap element 
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Assume linear displacements, i.e.  
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Here, we have three node triangle with two dof per node- six dof per 
element. We have six parameters a, b, c, d, e, and f to go with six dof. 
We can proceed in exactly the same manner as we did for the plane stress 
rectangle. However, we will follow a more general approach involving 
transformation matrix. 
Define x and y as the global coordinates and ξ and η and the local 
coordinates for a triangular element as shown in the figure. Specify the 
nodal coordinate as (x1,y1), (x2,y2) and (x3,y4) for nodes 1, 2 and 3, 
respectively. 
The calculated a, b, c and  θ are:  
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Now assume displacement in ξ and η system: 
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now find in terms of nodal displacements  621 ....,, aaa 311 ....,,
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Note that det[T]=-c2(a+b) ≠0 for practical triangles, hence [T] is 
nonsingular and can be inverted  {A}=[T]-1 }{
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δ . 
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Strain Energy Calculation 
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Now transform to generalized displacement in local axes. Note that 
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Where is the stiffness matrix in local coordinate system.  Next transform 

from coordinates to u and v in x, y coordinate or global 
coordinates. 
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Consider rotation between ξ, η and x, y. η, v 
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 v

ξ, u 
v uθ  

 u x, u 
Why do we neglect translation between x, y and ξ, η? 
Because rigid body translation of an element does not contribute to strain 
energy, hence we neglect it. 
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Again strain energy is invariant and: 
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[k] is the final stiffness matrix in the global coordinate system. 
 
Computing Steps 
 
1- Specifying global coordinates of element nodes (x1,y1), (x2,y2) and (x3,y3) 
 
2- Calculate a, b, c and θ 
 
3- Calculate [T] and invert numerically 
 
4-Calculate [ ], multiply [T]

−
k -1[R]=[Q] 

 
5- Calculate [k]=[Q]T[ ][Q] 

−
k

 
6- Return [k] to the main program 
 
Accuracy of Constant Stress Triangles 
We have u and v linear in x and y. Error in u and v from taylor's series is 
f(l2) where l is some typical size of an element. Therefore, error in 
strain(constant) is f(l). Hence, errot in strain energy is given by f(l2), if 
l=L/N where N is number of elements along a typical length of a problem, 
then the error in strain energy is given by f(1/N2). 
Unfortunately, we do not know the constant of proportionality α in the error 
=α/N2.  
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5.2- Linear Stress Triangular Element (L.S.T.) 
 
Linear stress implies, we need quadratic or parabolic displacement field: 
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+++++=
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Note that six parameters a1,…,a6 and six u1,…..,u6 and similarly, six 
b1,…,b6 and six v1,…..,v6  are equivalents for 12 dof per element. 
We have assumed complete polynomial of degree 2. 
A complete polynomial is invariant regarding rotation and allows order of 
error to be determined from Taylor expression, with expression in 
displacement function, we also satisfy the convergence requirement i.e. 
rigid body modes, constant strains, and spatial isotrophy of the 
displacement field. 
 
 y,v 
 

3 
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1 u2
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4 2

v2
u6 

v6  
 
 
 
 
 
 
 
What about continuity? 
Along and edge, u and v will be quadratic function of edge coordinate. For 
the quadratic shown along the edge, we have 3 parameters α, β and γ and 3 
dof u1, u4 and u2. Therefore, equating, these u’s along the edge will satisfy 
the continuity requirement.  
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5.3- Quadratic Stress Triangular Element (QST) 
Again use the same coordinate system (local) as for CST, i.e. ξ, η (u ). 
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v
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For stress to be quadratic within the element,  need a polynomial which is at 
least cubic: 
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To transform the generalized coordinates a1, . . . , a20 into the nodal degrees 
of freedom, we need to decide on discretization in terms of dof and the 
number of nodes. 

a) At each nodes the dof are u . We require 10 dof in  and 10 dof in 
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3 2
4 u4, v4

b) at each corner nodes take u  as the dof and u  at the 
centroid. Thus, we have six dof per corner nodes and 18+ 2=20  dof 
per element. 
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Determinant of [Tb]=c14(a+b)14/729 which is nonzero for all practical 
problems. 
Regardless of which discretization we use, we always compute [ k ] in 
generalized coordinates a
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Now transform to nodal variables (DOF) in local coordinates, then 
transform to global coordinates i.e. into u, v etc. 
 
 
 



5.4- Boundary with Springs 
Recall  
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suppose edge 1-2 of the element shown is on an elastic foundation. 
Foundation modulus of spring stiffness can be approximated by: 

 ξξξ NNN KKK 21 )1()( +−=
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For CST, v displacement along the edge is given by: 
ξξξ 21 )1()( vvv +−=  

the last term in equation of the PE (on the RHS) is: 

ξξξ dvKlU N
l

B )()(
2
1 2

0
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Contribution to the nodal forces is then given by: 
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For tangential springs along edge 1-2: 
ξξξ TTT KKK 21 )1()( +−=  

and: 
ξξξ 21 )1()( uuu +−=  

and: 
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6- Natural Coordinates and Shape Functions "C0" 
 
Natural Coordinates are dimensionless, homogeneous and independent of 
size and shape of the elements. 
 
6.1- Line and Rectangular Elements 
Relation between natural and global coordinates: 
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Line element in global and natural coordinate system  
 
Here N1 and N2 are functions of the natural coordinates s and are called 
element shape functions or interpolation functions. These shape functions or 
interpolation functions can be used in describing the linear displacement 
field u within the bar or line element. 
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Note above equation for U provides only C0 continuity since only U is 
continuous across the node between two adjacent elements. 
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Hence, strain-displacement transformation matrix [B] is given by: 
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Where [J] is the Jacobian relating the element length in global coordinate 
system to an element length in natural sys. For one dimensional problem: 
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This is the stiffness matrix of the line element.  
 
For rectangular elements, the natural coordinates take in the values of E1 on 
the edges of the rectangle as shown. 
 
For four node rectangles, the interpolation functions or shape functions are: 
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Recall bilinear polynomials used for u and v in rectangular plane stress 
element. If the origin of x and y co-ordinates for the element is chosen at 
the centroid, the shape functions φ1 , .., φ4 are the same as N1, .., N4 except 
we have s and t coordinates instead of ξ and η (ξ=x/a, η=y/b) 
We can use natural coordinates to express u and v within the element as: 
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i.e. u and v vary linearly along edge 1-2, therefore equating the nodal 
displacements u and v at nodes along an edge provides continuity of the 
displacements i.e. C0 continuity.  
 
 
6.2- Triangular elements (x,y) 

p(L1, L2, L3) 
L2=0 L1=0 A1 A2 Use area coordinates L1, L2 and L3 
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The only two of the area coordinates L1, L2 and L3 are independent. Relation 
between area coordinates and the global coordinates of any point p is given 
by: 
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Geometric interpolation of the terms in above equation is as follows: 
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. Constant Stress Triangles (CST) 

Area O23=A23
Area Oij=Aij
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Three dof in u and v for a total of six dof (3 nodes) 
 

This gives a linear approximation for u and v within the element. Or N1=L1, 
N2=L2 and N3=L3. Note that L1, L2 and L3 are linear function of x and y. 
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B. Linear Stress Triangles (LST) 
Six dof in u and v for a total of 12 dof (6 nodes) 
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C. Quadratic Stress Triangles (QST) 
Ten dof in u and v for a total of 20 (10 nodes). Again C0 continuity. 
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. Tetrahedrals 
gles: 

 

 
D
As we saw in trian

E. Derivation of Stiffness Matrix for Plane Stress CST element 
Strain energy Ue given by: 
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The integrand in above eqn. consistes of all constant terms and integration 
is simply multiplication with area A: 
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to convert plane stress to plane strain replace E by E and ν by ν 
 
E=E/(1-ν2)      ν=ν/(1-ν) 
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7- Curved, Isoparametric Elements 
 
-Elements with curved boundaries are useful for problems with curved 
edges or surfaces for 3-dimensional problems. 
-Unless edges of triangular elements are very small, we may introduce error 
due to approximation of curved boundaries by straight lines. 
-We end up facing both the mathematical problem as well as shape problem 
 
Elements of basic one-, two- or three dimensional types will be mapped into 
distorted shapes in the manner indicated in the following figures. In both 
figures s, t or L1, L2 and L3 coordinates can be distorted into curvilinear set 
when plotted in Cartesian coordinates. Similarly, single straight line can be 
transformed into a curved line in Cartesian coordinate and flat sheet can be 
distorted into a three dimensional space. Figure 3 indicates two examples of 
two dimensional (s, t) element mapped into a three dimensional (x, y and z) 
space. 

 
 

Figure 1. Two dimensional mapping of some elements 
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Figure 2. Thrre-dimensional mapping of some elemnts 
 
 
 

 
 

Figure 3. Flat elements (of parabolic type) mapped into thre dimensions 
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Coordinate transformations are required: 
 

However, to apply the principle of transformations, there must exist a one to 
one correspondence between Cartesian and curvilinear coordinates i.e. no 
severe distortion- folding back or for a line element α i.e. no cross over etc. 

.
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A most convenient method of establishing co-ordinate transformations is to 
use shape functions discussed in the previous section and already used to 
represent the variation of unknown quantities or functions. 
 
Express x and y for each element as: 
 

...''
...''

2211

2211

++=
++=

yNyNy
xNxNx  

 
when the shape functions of local coordinates s, t or L1, L2 and L3 in two 
dimensional problems (fig. 1). Here the shape in x-y coordinate system is 
distorted and triangular or square shapes in local coordinates are called 
parent elements. 
In above equations N'i are the shape functions with unit values at the nodes. 
For curved shapes in x-y, these must be nonlinear functions of  s, t or L1, L2 
and L3. x1, x2 … and y1, y2 … are nodal coordinates. 
 
 
7.1- Geometric Conformability of elements  
This requires that by the shape function transformation, the mapping of the 
parent element into real object should not leave any gaps or holes, figure4. 
 
Theorem 1: If two adjacent elements are generated from parent 
elements in which the shape functions satisfy continuity requirements, 
then the distorted elements will be continuous. 
 
The theorem above is obvious and follows from C0 continuity implied by 
shape functions for any function that is approximated. Here, the functions 
are x and y and if the adjacent elements are given the same coordinates at 
the common nodes, continuity is implied. 
 
Unknown Function within Distorted, Curvilinear Elements and Continuity 
Requirements 
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So far we have defined the shape of distorted elements by the shape 
functions N'I for a parent element. 
Suppose the unknown function to be determined in φ and can be 
approximated by: 

 

where Ni are the usual shape functions and for now assume these are 
different from N'i. φi are the nodal dof. 

elementsperdofofnumbermN ii

m

i

== ∑
=

φφ
1

 
Theorem 2: If the shape functions Ni are such that continuity of φ is 
preserved in parent co-ordinates (or local coordinates)- then continuity 
requirements will be satisfied in distorted elements. 
 
Proof is same as for theorem 1 
 
The nodal values φI may or may not be associated with the same nodes as 
used to specify the element geometry. 

Subparametric Isoparametric  Super parametric  

Points at which φI are specified

Nodes used for element geometry,  
coordinates are specified 
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Isoparametric   Ni=N'i
Super-parametric Variation of geometry is more general than the 

unknown φ 
Sub-parametric More nodes to define φ (i.e. more general) than to 

define geometry 
 
Subparametric elements have been used more often in practice. 
 
7.2-      Constant Derivative Condition 
 
This means that constant stress should be included in the approximation. 

Consider φ in equation . Constant derivative condition requires: ii

m

i

N
i

φφ ∑
=

=
1

 
 yx 321 αααφ ++=

Where α1, α2 and α3 are generalized param
At nodes (xi, yi): 

Therefore, constant derivative condition will be obtained if equations ii  
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here xi and yi are element nodal coordinates. For isoparametric elements  

eters. 
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are satisfied. Recall co-ordinate transformation in equation of: 
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yNy

xNx '∑=

w
Ni=N'I therefore, equations of above are automatically satisfied.  

Need 1=∑ N  i
i
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Theorem 3: The constant derivative condition will be satisfied for  

heorem alid for sub parametric  
I can be expressed as a  

where Cij are constants. It is obvious that for the case of subparametric  
elements, N'I i and above equation can be easily 

 

es) 

 

all isoparametric elements providing 1=∑ i
i

N  

The same requirement is necessary and t  v
elements provided the shape function N'
linear combination of Ni i.e.: 

iij
i

i NCN ∑='  

 are of lower order than N
satisfied, however not so far superparametric elements. Some numerical
tests may have to be performed in order to satisfy above equations.  
(Perhaps, a patch test should be performed, also an eigenvalyue analysis  
of the stiffness matrix may reveal the presence of constant stress nod
 
 

 

 
 
 

Figure 4. Compatibility requiremen in real subdivision for 
transformation 
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8- Quadrilateral Iso parametric Elements 
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coordinate transformation: 

yNy ∑
=

=
4
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4

displacement approximations: 
 

are the  degrees of freedom of node I in global coordinate system 

8.1- Four node Quadrilateral Element 

 
 
Local coordinates in s and t: 
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note x and y are linear function of s and t , the local coordinates straight 
edges remain straight from parent to distorted element after transformation. 

ted for this 
lement. 
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Both equation for displacement and coordinates satisfy the requirements of 
theorem 1, 2 and 3 in the previous section and hence the convergence 
criteria. 
 
8.2.1- Element Properties (Evaluation of stiffness Matrix) 
 
Displacement 
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But Ni are functions of s and t and so are z, y functions of s and t. Therfore, 
using chain rule: 
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The matrix [J] is called the Jacobian matrix and can be found explicitely in 

rms of local coordinates s and t, and xi and yi using equation 2. The left 
and side of above eqn can also be evaluated using shape functions. 
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8.2.2- Stiffness Matrix 
Stiffness matrix is then given by: 

dsdtJdxdy

dxdyBDBtk T

A

]det[

][][][][ 163333161616

=

= ×××× ∫∫  

 
and the limits of integration -1 to +

dsdtJ ]

here the integration ]det[][][][ 16333316 JBDB ××× , the entire expression is same 
complicated function of s and t. Although the lim

T

numerical integration. simple elements, integration can 
be carried out exactly. 
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8.2.3- Comment on det[J] 
A well known condition for one-to-one mapping desired for cured edge 
elements is that the sign of det[J] should remain unchanged at all points of 
the domain mapped i.e. s, t plane. Violent distortions may cause alteration 

f sign of det[J]. 

⎩ yp
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for gravity load px=0 and py=-γ (γ= weight per unit volume, constant). From 
above equations: 
 

1

vectorloadconsistentdsdtJpNtf T
b ∫ ∫

+ +

=  

e integrated numerically. For gravity loading , 

further, for constant load, 

e. by hand. If {p} is a function of x 
nterpolate {p} from the nodal values in terms of 

shape functions Ni i.e. 
8

1

 where  are the values of px(x,y) at the 

nodes, similarly for p . 
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8.2.4- Body Forces 
Suppose there are body forces px and py per unit volume involved in the 
problem being considered  for stress analysis. 
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This integration can be done exactly i.
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8.2.5- Specific Boundary Stress (stress boundary condition) 
Boundary work done by  given by

iiT dsuTtW = ∫
−

 stresses is : 

T

s
T

y

xT
T

S

fds
p
p

ut }{}{}{ δ=
⎭
⎬
⎫

⎩
⎨
⎧

= ∫  

irections (((global system) on 
the boundary. ST is part of boundary on which the stress are prescribed. {u} 
is now given by: {u}=[Ns]{δ} where [Ns] is the same as [N] except its value 
on the boundary under consideration. Further, if px and py are functions of x 
and y on the boundary, again we can use the shape functions Ni to 
interpolate stress px and py but for Ni on the boundary. For example, 

W
{

TT sonstresstoDueS

where px and py are the stresses in x and y d

consider edge 2-6-3 of the element shown. 
Stress acting on this boundary is px(x,y) as shown. For edge 2-6-3, s=+1 
therefore, only nonzero Ni on s=+1 are: 
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But x and y are given by above equations i.e. f(t) along 2-6-3. Therefore, dl, 
the infinitesimal element of length along 2-6-3 is given by: 
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This procedure can be repeated for other edges as well. One have to be 
careful as to s or t =E etc. 
9- Numerical Integration (Gauss Quadrature) 
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+1ξ1=-0.774597 
H1=0.55556 

ξ2=0.000 
H2=0.88889 

ξ1=+.774597 
H1=0.55556 

f(ξ1) 

f(ξ2)

f(ξ3)

n=3 Exact for 5th degree polynomial 2n-1=5 

I=0.55556f(-0.774597)+0.88889f(0.000)+0.55556f(+0.774597) 

-1

Integration may be done analytically by using closed form formulas from a 
table of integrals. Alternatively, integration may be done numerically. 
Gauss quadrature is a commonly used form of numerical integration. 
Instead of using Newton cotes quadrature method where point at which the 
function is to be found (i.e. numerical value) are determined a priori 
(usually equal intervals) we shall use Gauss Quadrature method. The 
coordinates of sampling points are determined for best accuracy. 
 
9.1- Line Integration 

If f(s) is a polynomial, n-point Gauss quadrature yields the exact integral if 
f(s) is of degree 2n-1 or less. Assume a polynomial expression to estimate I. 
For n sampling points we have 2n unknown (Hi and si) for which a 
polynomial of degree 2n-1 can be constructed and integrated exactly. This 
yields an error of order O(∆2n). Thus, for n=3, a polynomial of degree 5 can 
be integrated exactly using Gaussian quadrature method. 
Thus the form f(s)=a+bs is exactly integrated by a one-point rule. The form 
f(s)=a+bs+cs2 is exactly integrated by a two-point rule, and so on. Use of an 
excessive number of points, for example, a two-point rule for f(s)=a+bs still 
yields the exact result. 

 
 

points are used. Convergence toward exact result may not be monotonic. 

)()(
1

1

1
ii

n

i

sfHdssfI ∑∫
=

=

−

==  

In above equation,  
n=number of sampling points often called Gauss points. 
Hi=Weighting constants 
si=Coordinates of sampling points 
For any given n (by choice) Hi and si can be obtained from the tables. 
 
 
 
 
 
 
 
 

 
 
If f(s) is not a polynomial, but (say) the ration of two polynomials, Gauss 
quadrature yields an approximate result. Accuracy improves as more Gauss 
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9 points 

 Rectangle 

can use the same tables. Exact for polynomial of 
ction, s and t. 

btain the element 
, we have to determine  

int (s , t ) 

 t
f order n over a hexahedron in s  
3 points. Three summations and the  
roduct of three i t  factors. 

bscissae And Weight Coefficients Of The Gaussian Quadrature Formula 

 
9.2- Gauss Quadrature Numerical Integration over a
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Example of n=3, we 
degree 5 in each dire
Let us use n=3 for integration of above equation to o
stiffness matrix [k]. Thus
[B]T[D][B]det[J] at each sample po i i
 
In hree dimensions, Gauss quadrature 
o volve
n
p we gh
 
 
 
A
 

 
9.3- Comment on Numerical Integration 

t may introduce additional errors and 
ducing the error as much as possible. This 

Numerical integration, instead of exac
first attempt may be directed at re



may not be very economical. Therefore, the following should be 
etermined: 

a) The minimum integration requirement permitting convergence 
f 

convergence which would results if exact integration were used. 
Let p be the order of degree of complete polynomial and m be the order of 
differentials occurring in the strain energy expression. Providing the 
integration is exact to the order 2(p-m) or shows an error of O(h2(p-m)+1, or 
less, then no loss of convergence order will occur. 
In curvilinear coordinates take a curvilinear dimension h of an element. For 
C0 problem (m=1), the integration is of the following order: 
p=1, Linear displacement  O(h) 
p=2, Quadratic displacement O(h3) 
p=3,   Cubic displacement          O(h5) 
With numerical integration , singular stiffness matrix may result for low 
integration orders making lower order integrations impractical. In general, 
there should be at least as many integration points as required to yield a 
number of independent relations equal or greater than the number of overall 
unknowns. 
Consider again the plane eight-node isoparametric element discussed 
previously. Its stiffness matrix integrand [B]T[D][B]det[J] is an 16 by 16 
matrix. Because it is a symmetric matrix, only 136 of 256 coefficienta sre 
different from one another. Each of these coefficients has the form f(s,t) and 

. In compu er programming, a 

erable 
com
 

 in 

ately integrated 
ints.  Should we use very few points 
 many points to improve the accuracy 

d

b) The integration requirements necessary to preserve the rate o

each must be integrated over the element area t
p-point integration rule requires p passes through a integration loop. Each 
pass requires ebaluation of [B] and det[J] at the coordinates of a Gauss 
point, computation of the product [B]T[D][B]det[J], and multiplication by 
weight factor. Each pass makes a contribution to [k] which is fully formed 
when all p passes have been completed. Clearly, there is consid

putation required in this process.  

TFor an element of general shape, each coefficient in matrix [B] [D][B]det[J] 
is the ration of two polynomials in s and t. The polynomial in the 
denominator comes from J-1 when [J] is inverted det[J] becomes the 
denominator of every coefficient in J-1 and hence appears the 
denominator of every coefficient in [B]. Analytical integration of [k] would 
require the use of cumbersome formulas. Numerical intehration is simpler 

 ct, s t [k] is only approximbut in general it is not exa o tha
regardless of number of integration po
for low computational expense or very
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of integration? The answer is neither, for reasons explained in the 
following. 
 
9.4- Choice of Quadrature Rule, Instabilities 
A FE model is usually inexact, and usually it errs by being too stiff. 

auss points sense no strain under a certain deformation mode, the resulting 

Overstiffness is usually made worse by using more Gauss points to 
integrate element stiffness matrix because additional points capture more 
higher-order terms in [k]. these terms resist some deformation modes that 
lower-order terms do not, and therefore act to stiffen an element. 
Accordingly, greater accuracy in the integration of [k] usually produce less 
accuracy in the FE solution, in addition to requiring more computation. 
On the other hand, use of too few Gauss points produces an even worse 
situation known by various names, Instability, spurious singular mode, 
mechanism, kinematic mode, zero energy mode, and hourglass mode. 
Instability occurs if one or more deformation modes happen to display zero 
strain at all Gauss points. One must regard Gauss points as strain sensors. If 
G
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a b c d 

 
 
 
 
 
 
 

[k] will have no resistance to that deformation mode. 
 
A simple illustration of instabilities are shown. Four-node plane elements 
are integrated by a one-point Gauss rule. In the lower left element with c a 
constant, the three instabilities shown have respective forms  
b)u=cxy   v=0 
c)u=o v=-cxy 
d)u=cy(1-x)  v=cx(y-1) 
We easily check that each of these displacement fields produces strains 
εxx=εyy=γxy=0  at the Gauss point, x=y=0. 
 
 
 

a) Undeformed plane 2 by 2 four-node square elements,  
Gauss  points are shown by square 
B, c, d Instability displacement modes 

 
 
Nonrectangular elements behave in the same way. Even if the mesh had just 
enough supports to prevent rigid body motion it could still display these 



modes, without strain at the Gauss points, and hence without strain energy. 
The FE model would have no ressistance to loadings that would activate 
these modes. The global [k] would be singular re
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Mesh of four-node square elements with all nodes fixed at the 
support. 
Gauss points are shown by square 
H ode in a single 8-node element ourglass instability displacement m
integrated by Gauss points 

gardless of how the 
tructure is loaded. 

ovided by the 
ess and less with increasing distance from it. 
node element whose stiffness matrix is integrated with four 

rglass instability shown. 

 often most accurate at Gauss points. It happens that the 

s, and common 

auss points for stiffness 
tegration and stress calculation. Stresses at nodes or at other element 
cations are obtained by extrapolation or interpolation from Gauss point 

alues. 

s
When supports are adequate to make [k] nonsingular, there may yet be near-
instability that is troublesome. In the figure, all dof are fixed at the support 
and each element is integrated with one point. Restraint pr
support is felt l
A plane eight-
Gauss points has the hou
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is no way that two adjacent elements can both display this mode 
while remaining connected. 
 
9.5- Stress Calculation and Gauss Points 
Calculated stress are
locations of greatest accuracy are apt to be the same Gauss points that were 
used for integration of the stiffness matrix. 
In summary, it is common practice to use an order 2 Gauss rule (four 
points) to integrate [k] of four- and eight-node plane element
practice to compute strains and stresses at these same points. Similarly, 
three-dimensional elements often use eight G
in
lo
v


