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1. Basic Equations of Solid Mechanics (3-D)
1.1- Stress and strain

State of stressin avolume (3D)
{0_ }T :{O_x Gy O-z Z-xy Z-yz sz }
o,.0,,0, = Normal components of stress

7.7, T, = Components of shear stress
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1.2- Strain-displacement equations (Kinematics equations)
u, v andw aredisplacementsin x,y and z directions, respectively.
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Retaining only the first order term and neglecting second order:
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Only for small deformation, that each derivative is much smaller than unity
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1.3- Linear Constitutive Equations

The stress tensor and strain tensor are related. These relations depend on the
nature of the material and are called constitutive laws. We shall be
concerned in most of this text with linear elastic behavior, wherein each
stress componentsis linearly related, in the general case, to al the strains by
equations of the form( and vice versa):

Tij :Cijkl €y

C's are at most functions of position. This law is called generalized Hook’ s
law.



Since t; and g are second-order tensor fields and symmetric, Ci;q must be
symmetric in ij and kj and also fourth-order tensor field. We may assume
that the material is homogeneous( same composition throughout) so Cijy is
constant for a given reference.

Hook’ slaw in one dimensional space can bewrittenas. (o = E¢) one—D
The generalized Hook’ s law in matrix notation can be written as.
3-D  {o}=[C]{¢}

{e}=[D] {o}

Starting with 81 (3%) terms for Cij« due to symmetry only 21 terms are
independent for Linear elastic, anisotropic and homogeneous material.
Therefore, [C] and [D] are symmetric with 21 experimental evaluation of
elastic constant.

For linear orthotropic, [C] becomes:

Cll C12 C13

C22 C23
C .
s 9 constants

Cup -

C55
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The stress-strain equations for orthotropic materials may be written in terms
of the young's moduli and poisson’s ratios as dollows:
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There are 12 material parameters which only 9 are independent. This is
because of the followings:

E_5 B _E E _E

X z z _ =X

1 v 1Y L L 1

Xy yX yz 7y X Xz

Linear |sotropic Elasticity
| sotropic material are those that have point of symmetry, that is, every plane
is a plane of symmetry of material behavior. This property requires that
mechanical properties of a material a a point are not dependent on
direction. Thus a stress such as 1, must be related to al the strains g;; for
reference xXyz exactly asthe stresses t. isrelated to all the strains ¢';; for a
reference x'y’'z' rotated relative to xyz. Accordingly, Cij must have the
same components for all references. A tensor such as Cj whose
components are invariant wrt a rotation of axesis called isotropic tensor.

Only two independent elastic constants are necessary to represent the
behavior for linear, isotropic and elastic material, the stress-strain relation in
this case can be written as.
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It iswell to know that a material may be both isotropic and inhomogeneous
or, conversely, anisotropic and homogeneous. These two characteristics are
independent.

1.4  Potential Energy for a Linear Elastic Body (general form)

The potential energy can be written as:
r=U-W

U = Strain Energy
W = Potential Energy of the Applied Loads(body forces and surface traction)

ﬂz”fdu(u,v,w)—_m(fxu+ %yv+ fzwjdv —J-I(-I:xu+-]_-yv+-|:szdsl

S, is surface of the body on which surface tractions are prescribed.
d(u,v,w) is strain energy per unit volume (strain energy density).
The last two integrals represent the work done by the constant external

forces, that is, the body forces f,, f ,and f, and surface tractions

T.,T,andT.. A bar at the top of a letter indicates that the quantity is
specified.
du(u,v, w) :%{g}T {oldv =

gl oorf

where {ul' ={u v w}
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For springs on the boundary we can write for a2-D case:

1, 1 1 10? )
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du =du+> {}[a]{}

springs on the boundary must be added to du = du + ;a uu.
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2-Dimensional Specializations of Elasticity
Some times due to geometry and loading configurations a 3-D problem may
reduce to problem in one or 2-D.

2.1- Plane Strain

In this case, strain normal to the plane is zero. Long body whose geometry
and loading do not vary significantly in the longitudinal direction are taken
as plain strain cases, such as dams, retaining walls, etc.

In plain stress problems, we may consider only a slice of unit thickness.

If f(x,y) isvariable at a cross section some distance away from the ends, we
may assume w=0 (displacement along the z direction. Then

£&,=7,=Vx=0 then o,=v(o,+0,)

nonzero strains are g, , &, and &,. Then we can write:

o, £ 1-v v 0 &,
Uy = 1% 1— 1% 0 Sy
(1+v)1-2v) 1-2v
Ty 0 0 > Y xy
Earth dam

2.2- Plane Stress
In this case, stress normal to the plane is zero such that problem can be
characterized by very small dimensions in the z direction for example thin

plate loaded in its plane. No loading are applied on the surface of the plate,
then:

1%
TyZ:TZX:O'Z:O then SZ:E(EX'FEy)



o,,0, and r,, are averaged over the thickness and independent of z.

1
= 14
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" v
Plane stress: thin plate with in-plane loading

2.3- Axisymmetric Problem

In this case, axisymmetric solids subjected to axially symmetric loading.
Due to symmetry, stress components are independent of angular
coordinates. Hence, al derivatives wrt 6 vanish and component
V. 7r0 Yar Tro» Ty, DECOME Z€Eros. Then nonzero components relation can be

written as;
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Cylinder under axisymmetric loading




3. Plane Elasticity
Inadomain of Q for i=1,2,3 and j=1,2,3 we have:
T =T Equilibrium Equations

T = Ejéq Constitutive Equations

&j =%(ui’j +U;;) Kinematics Equations

These three set of equations have to be satisfied within the two dimensional
domain of Q. Further, these are also subjected to some boundary conditions.

T
y y
A Thn A o
Ths
Txx <—¢
Tyy
> >
X

Following three sets of boundary conditions occur commonly in plane
elasticity.

a) Homogeneous boundary conditions
r;0; =0 on S;
u =0 on S,
v; =components of unit outward normal

Sr=Stress free part of the boundary
S,=Part of the boundary where displacements are specified to be zero

b) Mixed homogeneous boundary conditions

7;0; =0 on S,

u =0 on S,

T;0; tou; =0 onSy

a; =Constants such as spring constant

Sv=Part of the boundary where mixed conditions are specified (e.g. springs
or elastic foundation etc.)

10



¢) Non homogeneous boundary conditions (Mixed)
(e =-|_-i onS;

i =Ui onS

1 u

T;0; + U =C; on Su
Where quantities with the bar on the top are specified.

L et us consider the following condition for now:
T;0; =T, onS;
u =0 ons,

T;0; toU; =0 onSy

Potential energy expression is then given by (t=thickness):

7=t leijgide—I fiuidQ— J‘-Fl U,dS 'i‘1 J‘aululds
2 2
Q Q St Swm
equation 1

where the last two integrals are the boundary integrals (line integrals).

3.1- Strain Energy in Plane Elasticity

Previoudly, the strain energy had been written either in tensor notation or
matrix notation.

In X, y coordinates, strain energy can be written as:

U = Strain Energy

U __J.J.J. Tx€xx TTyEyy +7xygxy)dv

if tisconstant then:

0= a7,

Substltutl ng for stresses from constitutive equations of plane stress:

Etl 2 1-v 2
2(1 % )J.IJ. [ w t2ve,e, +T}/Xy jdXdy
Substituting for strains from kinematic relations:
Etl 1-v
=20y )m. [ JH2mu, JFT(Uy +vx)2jdxdy

11



In plane stress formulation, if we change v with v/(1-v) and E with E/(1-v?)
then the constitutive equations would be for plane strain.

Y ou can compare the different boundary conditions of above with the
boundary conditions obtained in assignment no.1 problem 4.

3.2- Kinematic Relations for FE Analysis of Plane Stress and Strain
Problems

il |
H o ZI -l

0o 0

Loy ox]
In ssimplified notation:

{r}=[De}

Where [D] is the elasticity matrix obtained previously. [D] for plane stress
and strain problems are different. [L] is the linear operator matrix.

Next consider approximations for u(x,y) and v(x,y). Suppose those are
given by (within an element):

LI(X, y) = ¢1U1 + ¢2U2 + ¢3U3

V(X,Y) =V, + 4V, + 45V,

G PEIEN

vj [0 4 0 ¢, 0 4

b
te)
)
)

T

——

=[¢1{5°}

[LI[41{5°}

[Dl{e} = [DI[LI[#}{5°}

" —[Dl{e}={5°} " (LI[4])'[D] note: [D]" =[D]

Substituting above equations into the strain energy, we get strain energy
within an element:

12



U, =2 [[ koo ) o1] fuisiesy b
.

[B] = [L1[#]
t, e e e
Ue={o }Tg [B]"[D][BldQ° {5°)

{5°%}is independent of x and y

Assuming homogeneous boundary conditions i.e. the last two integrals in
equation lare zero. The body force term then yields:

J {E}T{u}dge:tje {u}T{E}dge
- 1]

t {u}T{E}dQe =t{5E}TJ [¢]T{fx}dQe —we

o fy

i.e. work done by body forces or PE of body forces

2 =%{56}Tg (8] [D][B]dQ" {56}—t{59}1£ [¢1T{?}dﬂe

o7, =5{56}T Ht” [B]T[D][B]dQe J{ge}_(t-" [¢]T{f}dgeﬂ
0 Qf
[Kel{ﬁe}—{é}:o

13



3.3- Initial Stresses and Strains
We showed that stresses are given by:

{r=[Dle;

In general, material within the element boundaries may be subjected to
initial strain {¢,}such as may be due to temperature changes, shrinkage €tc..
In addition, the body may be stresses by some known stresses {r,} (residual
stresses, ...), such stresses, for instance could be measured but the
prediction of which, without the full knowledge of the materia history is
impossible. When both, initial stresses and strains are taken into account,
then the stresses due to externally applied loads are given by:

r)=[DJ{e}—{go))+ {ro)
{r}=[DJie}~[DHeo} + {ro}

now the strain energyin the jth element is given by :

s o

{g} = Strain causin g stress = {¢} - {g,}

:—tI D' [DI({e} - {eo ) dQe“_[ —{eo)) {ro}d0°

QB

Expanding the above equation yields:

Ue =2t (o7 101} - (o1 D1 oo}~ oo} TDMe} + oo} [0V 0 +
tj {5}T {To}dQe—tI {SO}T {rojdQ°

Q° Q°

Thefirst term on the LHS is the same as that we obtained before:
_ t T e
U= | e} D}

QE
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The second and third terms are equal:
=—t_[ T[Dl{eld® - tI T[Dle,Jd0® + lzj 66\ [D]{go Q" +
Q°

] el ol =t o] frofae

Qe
—_—
*

=t [ o) feloe -tj eo) [DM{e}o* =t [ (fro)” ~{eo] DI LItgI0" )
o

Qe
={|59}T{5e}:tf{ }T[L][¢dQe5e —t {} Bld0® {5 |
Qe

where

(i} -l -l

Hence :

{Ee}T =t£ (BT ({£o - [D]e 02"

Now if we rewrite the potential energy expression,

;{56} [K ]{ e} { }T{ e} {Fe}T{5e}+Constants

Minimizing Yields:
[KE]{5Q}={?}—{&}T

Initial strains and stresses (know priori) contribute to the load vector.

15



4- Plane Stress Rectangular Element
We have four corner nodes and it is logical to have u and v displacements
as dof at each node. Hence, there are 8 dof per elements.

y:n
A
AV4 VaA 3
4 s S
> > = /a
Us n=y
b —
AV1 A E=x/a
V2
> >—> .
1 U, 2 U };
< a >

Let the generalized forces at the i™ node be U; and Vi. Assume the
polynomials (within the element) for uand v:
u,n)=a+b&+cnp+dén
v(§.m)=e+ fE+gn+ hin

| —— ——

Linear bilinear

The &n terms are bilinear, because for constant n, u and v are linear in &,
and for constant &, u and v arelinear inn.

Check for convergence can be done by following requirements:
a) Rigid body modes
Two trandation u=a v=e (Constant)
Onerotation & - _c_t (Constant)
on 05
b) Constant strain
This implies that u and v should be arbitrary linear functions
i.e u =a+bx+cy v=e+ fx+gy
c) Continuity
Both displacements u and v are required to be continuous between
elements. "continuity of disp. And its derivative to the order of (n-1) where n is
the highest derivatives in the PE function".
d) Spatial Isotrophy
Inclusion of xy instead of x? or y? (&n instead of &2 or n°) satisfies
this requirement.
Requirements a, b, ¢ and d are all satisfied by the equation of the
displacements. Note along the edges u and v are linear. e.g. edge 1-2:

16



u(é,m)=a+b¢
V(f,ﬂ) =€+ ff

Therefore, we have to match displacements at only two nodes (1 and 2)
to make u and v continuity along an edge.

u =uy  ub=uj 3 a
v o=vp o vh =y P
1 4 2 3 1 2
4 3
m
1 2

Therefore, displacements equations for u and v satisfy the convergence

requirement.
Now find constants ato h in displacement equations in terms of
generalized degree of freedom (nodal dof) u'sand v;'s.

u; =u(0,0)=a

U, =u@0)=a+b

ug=ulll)=a+b+c+d

u, =u(0)=a+c

Solving the above equations for ato h in terms of u;'sto get:
Similarly for vj's.

ué,n)=QQ-8A-nu, +&@-n)u, +énuz +(1-En u,
V(&) =1-8)A-n) v, +EA-n) v, +én v+ (L-&)n v,
or

wEm=3 4 vEm=3hv

where :

¢ =Q1-8)1-1) ¢,=c1-n) ps=¢n  p.=01=S)

uP(&,n)=@-&)ul +&uf along edge 1-2(y =0)
u" (&) =@A-&)ul +&ul along edge 3-4(y =1)

Then matching ufand uf,ufand uy will make u continuous aong the
boundary between the two elements. Similarly for v displacement.

17



4.1- Stiffness Matrix
Substitute u and v in the expression for strain energy:

Etl J’J‘J’( 2 Lo LU +12 (u +V ) jdxdy=%{5}T[Ke]{5}

2(1 v2)
{5}T—{U1 Vi Uy V2 Uz V3 Uy V4}

1 2v
- hl, ¢|5¢J§U itz PinlinViVi g diedintivi*
- 2)
2(1-v*©) 00

1 2 1
( j{b—2¢in¢m”i“j *op Pindictivi +a—2¢i§¢j§ViVJ

summation over i =1,2,34 j=1,2,34
_% o 2 (Loh Y19
Pn=on P Tor (a e ”'j(a o

Castigliano's Theorem (1%) F - aal:e
element, u; is the generalized displacement and F; is the generalized force
corresponding to the generalized displacement u.

Then the first row of the stiffness matrix is given by:

11
Eabt
K. .5: = Ve
.19 aul e VZ)H

U

}dfdn

e IS the strain energy of the

2¢1§ eV + ¢1:¢J¢V *

5 dédnp
( 2 ]{bz ¢h7¢m i ab¢b7¢Jévj}

Eabt

20-v? )”{ 22 Pt ( ;;j{%%ul}}dédn

¢ =—(1-n) ¢, =-(1-%) and after integration

Et b 1-v)a
Kyi=—— 4220w =L |2
et 12(1—1/2){ e )Ezszb}

b .
call — =S aspect ratio
a

e11¥Y1 =

Similarly we can determine the other components, finally:
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=

K
kK, ki SYMM.
ke —ko K
[K.]= Et Ks Ky ky ks
2 120-vY) k, -k, k, -k Kk
ke ko ks ke ko K
k4 5 k7 2 ks a k5 kl
_ks 6 kz 9 ks klO - kz k3_
k, =4S +§(1— V) k, = §(1+ V) K, =g+ 2(1-v)S
K, =25 -2(1-v) ke = —>(1-3v) Ky =~ 1+ (1-1)S
S 2 S
K, :-23—%(1—@ ky =—4S +%(1—v) K, =—§—(1—v)s

Ky, = é— 2(1-)S

4.2- Load Vector
Fel=[kepe ]
{Fe}T:{Ul Vi U, V, Uz V3 Uy V4}

recall :

F*"T=8We F ¢ fis not known yet
e y

In order to determine the load vector for an element we need to know the
loading, i.e. body forces, boundary stresses etc..

Consider the case of gravity loading: f,=-y where vy is the specific weight.
The work done by gravity is:

wy® =t —yv(é,n)dA=—tﬁ y ¢ viabdédy

oW, ° At
R = v =—t”7¢1abd§df7— ias
1
similarly,
oW,,° At
e = avg = 74 =F’=F
2

gravity load is given by

el =- 7At{o 1010101

19



Next considering an element p" with one edge coinciding with the
boundary of the domain as shown on the figure:

Suppose both normal and shear stresses are prescribed on this boundary.
Therefore, work done by the boundary stressesis:

W; =tj T, u;ds integration is counter clockwise manner
St
4 3 > Boundary edge
A f—»
Tns _>
b —>
’Cnn
E=9b —>
—>
—>
1 g I
2

Further suppose the normal and tangential stresses vary along edge 2-3
boundary stresses may then be approximated by a parabolic expression:
Boundary node

4 3 Ps number
A
p(S) = C; +CoS +C38°
=s/b

p=pO) =, b &

b 2
P2 = IO(E) =G HC ot
P3 = p(b) = ¢ +Cob +cgp? v
solve for ¢;'sintermsof b;'s 1

P(&) = (1-3E +28%) py + (4 —AE%) py + (=& +2E7) ps
3

JEEDIAGL:

i=1

o =(1-36+25%) 0, =(45-45°%) p3=(-£+28%)

Normal and tangential (or shear) stresses can now be approximated by
above equation using the stress values at the temporary boundary nodes 1,2
and 3i.e. let:

Px1 = Tm1 Px2 = Tm2 Px3 =7Tms

Py1 = Thnsa Py2 = Thns2 Pys = Tns3

20



In order to use them in the equation of potential energy, we also need to
know u and v distribution along the edge2-3. From before we know it is
linear:

If any of the other edges have prescribed stresses on it, i.e. more than one
edge coincides with the stress boundary, then we can generate another load
u(@)=QA-Su+Sus

V() =(1-8) v+ Vs

1 1

Wy =bt[ p,()u@de+ bt[ py()v(e)de
0 0

on integration, we obtain :

W; zb_g[(pleFprz)Uz +(2px2 + px3)u3 +(py1+2py2)"2 +(2py2 + py3)‘/3]

FleT _ FZSeT _ F7eT _ FSeT -0
oW, bt

FT = =—(pg+2
3 ou, 6 (Pt +2Py2)
oW bt
F eT _ T — +2
4 6V2 6 (pyl pyZ)
oW bt
F eT _ T — 2 +
5 —8u3 5 ( Px2 px3)
FseT :%:E(Zpyz + pys)

ov; 6
due to stresses on edge 2—3only :
T bt
{FTe} :E[O 0 (px1+2px2) (py1+2py2) (2px2+ px3) (Zpy2+ py3) 0 0]

then for this element, total load vector is then given by :

Fol= ol bl

vector similar to above vectors, with non zero entry indifferent positions of
the load vector. For example, if edge 3-4 also has prescribed stresses, then
F.= B =F5% =F,'=0 the new { F;%} for 3-4 is then added to { F%} for
edge2-3.

21



4.3- Strains and Stresses in Rectangular Element

Recall:

uié,n)=00-8A-nu +&d-n)u,+énu +(1-E)nu,
V(&) =QA-8)A-n) v, +EA-n) v, +En v+ (1-E)n v,

ou 1lou 1
gxx=&:g%:g[—ul+u2+(ul—u2+u3—u4)77]

ov lov 1
gyy2526526[—V1+V4+(V1—V2+V3—V4)§]

S0+ v v
~du ov_lau lov b a

7xy__ ~ T L +— -
0 ox bo ao 1 1
y i 5 E(Ul—uz+U3—U4)§+5(V1—V2+V3—V4)I7

Stresses are then obtained from equations {r}= [D]{E} . [D] can be etermined
based on the problem at hand is plane stress or plane strain.

Note strain & is linear in n and gy, linear in & where as v,y is complete
linear. Further, these are not continuous across the interelement boundaries.
It is convenient to obtain strains at the centroid of the element, i.e. at
E=n=0.5

1
€ :z_a[_u1+u2+u3_u4]
1
£, =2—b[—v1—v2 +V, 4V, ]
1 1
7 xy :Z_b(_ul_uz+u3+u4)+2_a(_V1+V2 +V3_V4)

Then proceed to obtain stresses at the centroid from theses strains.
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5- Plane Stress Triangular Elements

5.1- Constant Stress Triangular Element (C.S.T)
Note: cheap element
Assume linear displacements, i.e.

u(x,y)=a-+bx+cy
v(x,y)=d +ex+ fy

Here, we have three node triangle with two dof per node- six dof per
element. We have six parameters a, b, ¢, d, e, and f to go with six dof.

We can proceed in exactly the same manner as we did for the plane stress
rectangle. However, we will follow a more general approach involving
transformation matrix.

Define x and y as the global coordinates and £ and n and the local
coordinates for a triangular element as shown in the figure. Specify the
nodal coordinate as (Xi,y1), (X2,y2) and (X3ys) for nodes 1, 2 and 3,

respectively.
Thecaculated a, b, cand 0 are:
AYV 1 V3

\ =
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X
cosé =

27X _ XX

(a+b)
sng=J2=Y1_Yo— ¥

r

(a+b)

r

2

r-= (Xz - X1)2 + (yz - yl)z

a=(x, —X3)cos0 - (ys - y,)sin 0 = %[(Xz —X3)%2 = X1) = (Y3 = Y2 Y2 = ¥1)]

b

(X3 —X;)cos6+(ys — y;)sin 6 = %[(Xs =¥, X = %)+ (V3= Y y2 — y1)]

c=(y3— y1)cos0 —(x3 —x,)sin @ = %[(Y3 =y )Xg = %)= (X3 = X, Ny2 = y1)]

Now assume displacement in & and n system:

G(45’77) =@y +a,5 +agy

\_/(5177) =a, +asé +ag7

now find a,, a,

u; = u(~b,0) = —a, —ba,

u, =u(a,0) =a, +aa,

us; =u(0,c) =a, +cay

{8} =[THA
@ =l w

{A}T:{al a, ag

P O kR O K

0

Note that detf[T]=-c*(atb) =0 for practi

-b

o O O 9 O

O O O O O

0

O +r O KL, O

1

V2
0 O]
-b O
0O O
a o0
0O O
0 c

cal triangles, hence [T]

nonsingular and can beinverted {A}=[T] (s} .
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Strain Energy Calculation

U, =

Ug=a, Uy =2as

V,g :a5

V,q :a6

2
(1 (6.2, 1_(]
U +V"+2vU eV p+——|Up+V, d&dn
2(1—1/2) . [ 3 U sV 2 nTV.e

U, :Lz” (azz +ag’ +21a,a, +1_—V(a32 +2a585 + asz)Jdgdq
201-v7) 3] 2

Integrand consists of constant terms and j I dédy = % (a+b)c
A

1 6 6 _ 1 _
Ue=52 2 ki aa; =—{ATKA
i=1 j=1
U U
a; Oa,
(00 0 O
01 0 O
1-v
[Iz]_Et(a+b)c 00 > 0
© 2(1-v2) |0 0 1o 0
00 Yo
2
0ov 0 O

Now transform

Ue =510 1K10} =510 (112 1km1ay from this equation (k-1 Ty

|_\
o o
<

|or\>‘
B OO0 O < o

=
<

onN

ou
kzjal e —

e

oa,

etc.

to generalized displacement in local axes. Note that

Where [k] is the stiffness matrix in local coordinate system. Next transform

[k from u,vin & pcoordinates to u and v in x, y coordinate or global

coordinates.

Consider rotation between &, n and X, v.

U=ucosd —-vsingd v=usin@ +vcoséd

or

U=ucosd+vsn@ v=-usn@ +vcosd

Y,V

4

<

\

<

I

I

Why do we neglect trandation between x, y and &, n?
Because rigid body trandation of an element does not contribute to strain
energy, hence we neglect it.

25
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{5}T:{U1 Vi Uy Vp U V3}

{6} =[RI{5}
(1l [0 [0] |
[R]{[O] (1] [O]] [r]{co.sg S”H} [01{0 0}
—sind cosé 00
0 [ [r]

Again strain energy isinvariant and:

U, =2{0) K} = S (RU IKI(RIY)

- (oY RT'KIRK} = S{8) [KI{2)

[K]=[RI'[K][R] =[RI"[TT™ [KI[TT{R]

[K] isthe final stiffness matrix in the global coordinate system.

Computing Steps

1- Specifying global coordinates of element nodes (X1,y1), (X2,y2) and (X3,y3)
2- Calculatea, b, cand 6

3- Calculate [T] and invert numerically
A-Calculate [«], multiply [T][R]=[Q]

5- Calculate [K]=[Q] '[«][Q]
6- Return [K] to the main program

Accuracy of Constant Stress Triangles

We have u and v linear in x and y. Error in u and v from taylor's series is
f(1®) where | is some typica size of an element. Therefore, error in
strain(constant) is f(l). Hence, errot in strain energy is given by (19, if
I=L/N where N is number of elements along a typical length of a problem,
then the error in strain energy is given by f(1/N?).

Unfortunately, we do not know the constant of proportionality o in the error
=a/N?.
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5.2- Linear Stress Triangular Element (L.S.T.)

Linear stressimplies, we need quadratic or parabolic displacement field:

U(X, Y) =2, +aX-+a,y+a,X +aXy+ay
V(X Y) =b, +hx-+hyy-+hC +hxy+oyy?

Note that six parameters a,...,as and SIX Uj,.....,Us and similarly, six
by,...,be and six v,.....,Vs are equivalentsfor 12 dof per element.

We have assumed complete polynomial of degree 2.

A complete polynomial is invariant regarding rotation and alows order of
error to be determined from Taylor expression, with expression in
displacement function, we also satisfy the convergence requirement i.e.
rigid body modes, constant strains, and spatial isotrophy of the
displacement field.

\4

What about continuity?

Along and edge, u and v will be quadratic function of edge coordinate. For
the quadratic shown along the edge, we have 3 parameters o, 3 and y and 3
dof uy, us and u,. Therefore, equating, these u's along the edge will satisfy
the continuity requirement.

A N

\ 2

U=a+BE+yE’

Y

27



5.3- Quadratic Stress Triangular Element (QST)

Again use the same coordinate system (local) asfor CST, i.e. &, 1 (u,v).
For stress to be quadratic within the element, need a polynomia whichis at
least cubic:

y’ v n, \Y ( ) a’ l]
K XS,YS
A 3 (X2,y2)
a
1
(X1y1) b
XU
UK Y) =8, +a,E +ag7+ 8,8+ AT +a s +aEalif +aygr
V(X Y)=a, LAl Al g +a s+ AT +ayT
(J:lzolagmnﬂ mM=0102103210
i=1
Q:iamf“n“ #=oo010120123
i=l
To transform the generalized coordinates &, . . . , @y into the nodal degrees

of freedom, we need to decide on discretization in terms of dof and the
number of nodes.

a) At each nodes the dof are u,v. We require 10 dof in u and 10 dof in

v for ay, . .., @y Then obtain:
{6} =[T.HA
where :
{5‘}T =(u vy U, v, Uy Vi
(A" =[a, a, a5 . . . . .. 8|

1 Centroidal node
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b) at each corner nodes take u,u,u,,v,v.,v, asthe dof and u,v at the
centroid. Thus, we have six dof per corner nodes and 18+ 2=20 dof
per element.

Then obtain:

{6} =[T,{A

where :

{5}T:|:U1 l]lg ljllr; \;1 \;1§ \;1” ..Uy V4i|
(A" =[a, a, a, . . . . .. 2 |

Determinant of [Ty]=c*(a+b)**/729 which is nonzero for al practical
problems.

Regardless of which discretization we use, we always compute [k] in
generalized coordinates ay, . . . , .

Et -, T - - 1-y(- - ¥
u = U:s+V, +2vU sV, +——|U,+V d
e 2(1—1/2)'[;[ ( & ,f7 £V > ( 7 ,éj ] &n

10

_ 10 - 10

-1, 2 m+m;—2 n;+n;

Ue = z ameE™n” U —E z aa;mm Ty
i=1

i=1 =1l

.” ljl,gzdfdnzi iaiajmimj_ﬂ 5mi+mi*277”i+njd§d77
A

A i=1 i=1

Get general integral like

F(m,n) — .[J- gmnndgdn — Cm—l[am+1 _ (_b)m+1]
A

After evaluation of all terms:

m! n!
(m+n+2)!

U, = (AT KA

Now transform to nodal variables (DOF) in local coordinates, then
transform to global coordinatesi.e. into u, v etc.
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5.4- Boundary with Springs
Recall

Q

1 - 1
=t Ejfijgijdg—j fiuidQ— J‘TI U,dS +E Iau,u,ds
Q St Sw
suppose edge 1-2 of the element shown is on an elastic foundation.
Foundation modulus of spring stiffness can be approximated by:

KY(&) =K, (1-&)+K,"¢&

g

T <

TR

For CST, v displacement along the edge is given by:
V(&) =vi(1-8)+ V¢
the last term in equation of the PE (on the RHYS) is:

U, :%'l SIGIEGLE

Contribution to the nodal forcesisthen given by:

Uy, V1
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ouU
82653 where {S}=[u, v, U, Vv, Uy Vo]=[6, &, 5, &, I &)

o s _ s _ | _ _
R = = o~ KON -8y, cla- e

: {Kl“ KZN} {Kl” KZN} }
F,” = + v, + + v,
4 12 12 12
N N N N
F4B=6UB=8UB=| Ki" | Ko v+ Ki" | Ko v,
s,  ov, 12 12 12 4
K' K" K K"
5 + +
R 4 12 12 12 v,
KV K" K K" v,
+ +
12 12 12 4
For tangential springs along edge 1-2:
KT'(&) =K, 1-&)+K, &

and:
u(@) =u,(1-38)+u,é

and:

Ki' K2') [Ki' K2
+ +
{,:18 } | 4 12 12 12

- K 1T K 2T K 1T K 2T
+ +
12 12 12 4

addition to the stiffness matrix is as follows :

Rl (X - X - - -8
Rl - Y - v - -5,
Rl (X - x - - —||s,
Ell- Yy - v - -,
- - - - - —||&
] |- - - - = -l
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6- Natural Coordinates and Shape Functions "'C""*

Natural Coordinates are dimensionless, homogeneous and independent of
size and shape of the elements.

6.1- Line and Rectangular Elements
Relation between natural and global coordinates:

1 1
X==—0A-9)X;+=(1+9s)X
2( )Xq 2( )X

X=DNXi Ni(©)=20-9) Ny(9)=5+9)

2
i=1

Y Constant A and E
A
S=-1 S=+1
U, S U, 2
1 > >
)
< X2 > X, U
< >

Line element in global and natural coordinate system

Here N; and N, are functions of the natural coordinates s and are called
element shape functions or interpolation functions. These shape functions or
interpolation functions can be used in describing the linear displacement

field u within the bar or line element.
U =%(1—5)U1+%(l+s)u2

2

U=> NU; U(D=U; UED=U,
i=1

~dUu _dU ds Up-U; ds

“dX  ds dX 2 dX
Note above equation for U provides only Cq continuity since only U is
continuous across the node between two adjacent elements.

X _Xp-Xy | ds 2

ds 2 2 dxX |
u,-uU

e=—2_"1 asexpected

|
Hence, strain-displacement transformation matrix [B] is given by:
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|
[K]:Aj [B]"[D][B]dX Where [D]=E modulus of elasticity
0

A+1 1
[K]:I—Zj {+1}E[—1 +1[[37] ds

Where_[J] Is the Jacobian relating the element length in global coordinate
system to an element length in natural sys. For one dimensional problem:

dX:st=lds
2
+1
-2 [ et
120 [-1 1]2 I |-1 1
Thisisthe stiffness matrix of the line e ement.

For rectangular elements, the natural coordinates take in the values of E1 on
the edges of the rectangle as shown.

For four node rectangles, the interpolation functions or shape functions are:

N= @900 Np=Z@r)A-) Uy Ve t=+] Us, V3
Ng = %(1+ S(Lrt) N, = %(1— s)(L+1) 4 3
s=1 iT—g s+1
1 2
U, V1 t=-1 U, V2

Recall bilinear polynomials used for u and v in rectangular plane stress
element. If the origin of x and y co-ordinates for the element is chosen at
the centroid, the shape functions ¢, , .., ¢, are the same as Ny, .., N4 except
we have s and t coordinates instead of & and n (§=x/a, n=y/b)

We can use natural coordinates to express u and v within the element as:

u:z“:Niui v:zéllNivi
i=1

i=1
u-L-Y=u; u(+1L-)=u, etc.

v(-1-)=v; Vv(+L-1)=v, efc. Z t
further along edge1-2,t=-1 S

1 1
u=—(1-s)u; +—(@+s)u
2( Uy 2( U

1 1
v=—(A-s)v; +—(A+5s)Vv
S A=+ (A9,



i.e. u and v vary linearly along edge 1-2, therefore equating the nodal
displacements u and v at nodes along an edge provides continuity of the
displacements l.e. Co continuity.

/
X (0.0.1) (X3,y5)

6.2- Triangular elements

) _ X,
Use area coordinates L, L, and L3 L,=0 (x.y)

(L11 L2! I—3)

A A A
L, - L, -2 Ly -3

A A A (X2.y2)
A= Area of trianngle 1-2-3 (0.1.0)
Ll + L2 + L3 = 1

The only two of the area coordinates L4, L, and Lz are independent. Refstion
between area coordinates and the global coordinates of any point p is given

by:
1 1 1L
{xl X5 xgHLZ} inverting
Y1 Y2 VYsllLs

Ly 1 XoY2—=X3Y2 Ya2—VY3 Xzg—X|[1
L, :ﬂ X3Y1 = XYz Yz—Y1 X=Xz [§X

Ls | X1Y2 = Xo¥1 Yi— Y2 Xo—=Xg|lY

Ll 1 _2A23 bl al 1
L 2A;, b3 ag|ly

{F=TH{Z} {(FT=[L L L] {z37=) x y]
Geometric interpolation of the termsin above equation is as follows:
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Area O12=A,

y y Area O13=A;
A 3 a A Area023=A
Iy Area Oij=A;
3 J
3
b, by
2
1 b3 1 2
g
X ] / / X
A
A13
Differentiation
By chainrule:

0 & oy 6 oy o o, o Oy o

& & oxoL x oo ax oL,  ox g
0 1 o oL b,

—=— bj — since —=—

ox 2A& L ox  2A

similarly,

o 1 . oL a

—=—>» a,— since —=—L

oy 2”& oL oy  2A
Integration :

dA=bhdL, = bh(1-L,)dL,
1 2 L
L2 43 1 bh A
jA leA_l by (A-L)dLy =bh(-——7) [ =2 =3

ingeneral :

” L,PL, L, dA=
A

2A p'gtr!
+q+r+2)!
(p+q ) h

A. Constant Stress Triangles (CST) b=b(1-L.)
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Threedof inuand v for atotal of six dof (3 nodes)

This gives a linear approximation for u and v within the element. Or N;=L,
N,=L, and N3s=L3. Notethat L, L, and Lzarelinear function of x and y.

B. Linear Stress Triangles (LST)

Six dof inuand v for atotal of %2 dof (6 nodes)

Ny = Ly(2L, 1)

N, =4L,L,

N, = L,(2L, -1) Ng =4L,L, A
3 3
u= N.u. v= N:.v 6
; i ; ivi V2
u
1 /i 5 2
X,uU
A

>

Co continuity

C. Quadratic Stress Triangles (QST)
Ten dof inu and v for atotal of 20 (10 nodes). Again C, continuity.

N; =L, (3L -3l -
-D(BL,-2)/2

N, =L,(3L,

N3 = L3(3L; -D(BLs -

2)/2

2)/2

N, =9L,Ls(3L, —1)/2

10 10
U:Z Niui V:Z NiVi
i=1 i=1

Ng =9L,L,(3L, —1)/2
N, =9L,L,(3Ls —1)/2
Ng =9LsL, (3L; —1)/2
Ng =9L,L, (3L, —1)/2

Ny = 271, L, L,




D. Tetrahedrals
Aswe saw in triangles:

1 1 1 1 1jL
X; X X X L

_| 7 "2 73 a2 o<l <1
Y| [Ya Y2 Y3 VYal|ls
z Zy I, I3 Z4||L4

Volume V = det[ 1]
L = \\//—' volume coordinate s

V; =V, volume of Tetrahedral surrounded by vertices jkl at point p

ijklp
e'g'V1:V234p V, :V134p etc.
Iglrls!
Integration : ”j L LI, L, dV = 6vp!q!r!s!
v (p+q+r+s+3)!

E. Derivation of Stiffness Matrix for Plane Stress CST element
Strain energy Ue given by:

Ve = 2(1-v )” ( E

u=Lu; +Lyu,+Lius

2 ve e

wxEyy T Y 7Xy2)dXdy t = thickness

3

><><=a_u=i b;u;
ox 2AH~H
¢ ﬂ—ig ay,
Yooy A& MY
ou av 1
Vyy = Z (ajuj +b;vp)

6y ax
Substituti ng above equatlons intoU,

bibjuju; +aja;viv; + 2vbja;uv; +

Et T
Ue:8A2(1—V2)J-J ZZ 12 {a

a;u;u; + 2a;bu;v; +bbvv

dxdy
(Rl Rl Rl | itivj }
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The integrand in above egn. consistes of all constant terms and integration

issimply muItipIicaIion with area A:

Etzz {bb+ aa}uu +{aa+ bb}vv+

i=1 j=1
8A(1_V ) 2{Voa +1 a;b; }
2

S

fbiag + by |
ajag +/0.bs
Pbrag +azh,
aag + /,bs
#hzaz +yasbs

{}" :[Ul Vi U Vp Uz V3]2[51 O, O3 04 Os 56] 1€.01=U; 6, =V; O3 =U,
therefore
2 2
U ] _
Kyg = ‘ > = ’ > = 2 2 {blz +(1_v)a13}
052  ou?  4A1-v?) 2
02U 02U -
12 = —= == = 2 |:Vblal +(1_V)a1bl:|
651652 aulavl 4A(1— 1% ) 2
o%U o%U
13 = € — ¢ = Et 5 {bl o+ (—)alaz}
05,05, 0u0u,  AA(L—v?)
ou, 0%, Et 2 A-v. 2
2= = = oo a1 + ()b,
06,05, vV,  4A(l—v?) 2
02U 02U Et 1-v
24 = f = . [3132 +( )b1b2:|
00,00, OV40V, 4A(1— 2) 2
Et 1-v
leta=———— pB=v y="r
AA1-v?) 2
‘biby +a,8;  Bbjag+pah; bbb, +jaa,  Aa, +jab,  bibs+ra5a,
qa +by  Pagb, +ba,  aap +bb,  Babs +biag
[k] = bob, +r85a,  Aba, +yayb,  bybs+jazas
aa, +7hb,  pajbs +byas
Symmetric bsbs +ra5a5

to convert plane stressto plane strain replace E by E and v by v

E=E/(1-vY)  v=v/(1-V)

38
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7- Curved, Isoparametric Elements

-Elements with curved boundaries are useful for problems with curved
edges or surfaces for 3-dimensional problems.

-Unless edges of triangular elements are very small, we may introduce error
due to approximation of curved boundaries by straight lines.

-We end up facing both the mathematical problem as well as shape problem

Elements of basic one-, two- or three dimensional types will be mapped into
distorted shapes in the manner indicated in the following figures. In both
figures s, t or Ly, L, and L3 coordinates can be distorted into curvilinear set
when plotted in Cartesian coordinates. Similarly, single straight line can be
transformed into a curved line in Cartesian coordinate and flat sheet can be
distorted into a three dimensional space. Figure 3 indicates two examples of
two dimensional (s, t) element mapped into a three dimensional (x, y and z)
Space.

Local co-ordinates

Canesian map

Figure 1. Two dimensional mapping of some elements
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L gl
X

Cartesian map

Local co-ordinates

40

/X\fAX\/X % K\Y
\/\/\/\/\/\/\/
LXK X \x X x/\v/
VANAVAVAVNAYAY, \

\ , : , \
\WAVAYAYAYAVNAYAN
X X X X X X Y
(AN AVYAVYAVYANAN
X X X X X Y
NINININ NSNS

XX X X XY
\YAVAVYAYANS
oo s XX X x Y
//./ NSNININS
X X x v
A ANAN
X x/\
N/
x,\
,\

S/

Figure 2. Thrre-dimensional mapping of some elemnts
Figure 3. Flat elements (of parabolic type) mapped into thre dimensions



Coordinate transformations are required:
Ll

X S
=l
However, to apply the principle of transformations, there must exist a one to
one correspondence between Cartesian and curvilinear coordinates i.e. no
severe distortion- folding back or for aline element o i.e. no cross over etc.
A most convenient method of establishing co-ordinate transformations is to

use shape functions discussed in the previous section and already used to
represent the variation of unknown quantities or functions.

etc.

Express x and y for each element as:

XIN'1X1+N'2 X2+...
y=N'7y;+N'5 y, +...

when the shape functions of local coordinates s, t or Ly, L, and L3 in two
dimensional problems (fig. 1). Here the shape in x-y coordinate system is
distorted and triangular or square shapes in local coordinates are called
parent elements.

In above equations N'; are the shape functions with unit values at the nodes.
For curved shapes in x-y, these must be nonlinear functionsof s,tor Ly, L,
and Ls. X3, X ... and yq, Y, ... are nodal coordinates.

7.1- Geometric Conformability of elements
This requires that by the shape function transformation, the mapping of the
parent element into real object should not leave any gaps or holes, figure4.

Theorem 1: If two adjacent elements are generated from parent
elements in which the shape functions satisfy continuity requirements,
then the distorted elements will be continuous.

The theorem above is obvious and follows from C, continuity implied by
shape functions for any function that is approximated. Here, the functions
are x and y and if the adjacent elements are given the same coordinates at
the common nodes, continuity isimplied.

Unknown Function within Distorted, Curvilinear Elements and Continuity
Requirements
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So far we have defined the shape of distorted elements by the shape
functions N', for a parent element.

Suppose the unknown function to be determined in ¢ and can be
approximated by:

m
¢ = Z N;¢, m = number of dof per elements
i=1

where N; are the usual shape functions and for now assume these are
different from N';. ¢; are the nodal dof.

Theorem 2: If the shape functions N; are such that continuity of ¢ is
preserved in parent co-ordinates (or local coordinates)- then continuity
requirements will be satisfied in distorted elements.

Proof is same as for theorem 1

The nodal values ¢, may or may not be associated with the same nodes as
used to specify the element geometry.

[
]

D

| soparametric Super parametric Subparametric

D Points at which ¢, are specified

® Nodes used for element geometry,
coordinates are specified
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| soparametric Ni=N;

Super-parametric Variation of geometry is more general than the
unknown ¢
Sub-parametric More nodes to define ¢ (i.e. more general) than to

define geometry
Subparametric elements have been used more often in practice.
7.2-  Constant Derivative Condition

This means that constant stress should be included in the approximation.
Consider ¢ in equation 4= Z N;¢, . Constant derivative condition requires:
i=1
=01 +aX+azy
Where a4, a, and o3 are generalized parameters.
At nodes (x;, Vi):

$i = ap+ X +agy;

¢:Z Nigi :z Ni(ay +azX; +azy;)

¢=alz Ni+azz Nixi+a3z N;y;
i i i

equating above equation yields :

DUNi=1 Y Nix=x > Ny=y (i)

Therefore, constant derivative condition will be obtained if equationsii
are satisfied. Recall co-ordinate transformation in equation of:

where x; and y; are element nodal coordinates. For isoparametric elements
N;=N'| therefore, equations of above are automatically satisfied.

Need > N; =1
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Theorem 3: The constant derivative condition will be satisfied for

all isoparametric elements providing >’ n; =1

The same requirement is necessary and theorem valid for sub parametric
elements provided the shape function N', can be expressed as a
linear combination of N; i.e.:

N =D CyN;
i

where C;; are constants. It is obvious that for the case of subparametric
elements, N'| are of lower order than N; and above equation can be easily
satisfied, however not so far superparametric elements. Some numerical
tests may have to be performed in order to satisfy above equations.
(Perhaps, a patch test should be performed, also an eigenvalyue analysis
of the stiffness matrix may reveal the presence of constant stress nodes)

Figure 4. Compatibility requiremen in real subdivision for
transformation



8- Quadrilateral Iso parametric Elements

8.1- Four node Quadrilateral Element

y,V V4 V3 t
A (XaYa) U (1+1) 4 (+1,+1)
(-1,+41) (X3.Y3
(+1,+1) s
Vi ~
(X1,y1)
(1-1) (Xayz) W2 (-1,-1) (1,-1)
(L-1) 5y u
Distorted Element Parent Element

Local coordinatesin sand t:
Shape functions

N, =(1-s)A-t)/4 -1<s<+1 -1<t<+1
N, =(1+s)1-t)/4

N; =(@+s)1+t)/4

N,=@-s)1+t)/4

coordinate transformation:

x:i N; X;
i=1
4
VZZ N;Yi
i=1

displacement approximations:

4

u= Z N;u;
i=1
4

V= z N;v;
i=1

u; and v; are the degrees of freedom of node | in global coordinate system
X,Y.
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note x and y are linear function of sand t , the local coordinates straight
edges remain straight from parent to distorted element after transformation.
8.2- Eight Node Quadrilateral Element (Plane Elasticity)

A detailed derivation of isoparammetric elements is presented for this
element.

t
(1+) 1 (14D

6
ol g 20
(_1’_1) (11_1)
Globa system Local co-ordinates

Sandt are curvilinear coordinates here

Shape functionsin local coordinates:

N; =—(1-s)@-t)1+s+t)/ 4 Ng =(1-s?)@-1)/2
N, = —(1+s)(1-t)(1-s+t)/4 Ng = A-t?)(1+5)/2
Nj =—(1+s)L+t)1-s-t)/4 N, = (A-s?)1+1)/2
N, =—(1-s)@+t)A+s-t)/ 4 Ng = (1-t?)1-5s)/2

Try the following coordinate transformation:

8
X= lelzf(s,t)
=1

8
y=> Niyi=g(s,1)
i=1
Displacements are approximated by:

8
u :Z N;u;
i=1
8
V:Z N;v,
i=1
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Both equation for displacement and coordinates satisfy the requirements of
theorem 1, 2 and 3 in the previous section and hence the convergence

criteria.

8.2.1- Element Properties (Evaluation of stiffness Matrix)

Displacement

ul [N, 0 N, O N, O N, O N, O N
v |0 N, O N, O N, O N, O N, O
{up=[N){s}  {w"=[u v] (&} =[u v, u, v,
{e}=[Bl{s}  [B]=[L][N]
u1
_ v,
N, N, N,
0 0 u
£, OX OX OX 2
N Vv
{e}=3e,¢=| O Ny, o N 5 Ny ?
oy oy oy
Yw) |oN, ON, ON, ON, ON, ON,
| oy  OX oy OX oy OX U,
V8

{€}s3q =[Blsas{ 0} 164

0O N, 0 N, O

N, O N,

0 N,

But N; are functions of sand t and so are z, y functions of sand t. Therfore,
using chain rule:
ON; _ ON; ox  oN; oy
s ox 0s oy 0s
ON; N, ax ON; gy

= - 412
ot ox ot oy ot

N [
oS (_|0s Os
Ny [Tk oy
ot o ot

Ny
OX
Ny
oy

N,
OX

=[J

Ul an,
oy

a7

|

< C < C
NP e

N




The matrix [J] is called the Jacobian matrix and can be found explicitely in
terms of local coordinates s and t, and x; and y; using equation 2. The left
hand side of above egn can also be evaluated using shape functions.

X = ON, X = ON,
ds ; os ot ; ot
y_v N, & _v N
85_; o5 V' 6t_; t Vi
oN; oN;
s os
[91= oN, N,
at ' oot 7!
EnA
X2 Y2
ON; ON, 0N, Xs Vs
[I] g = 0s 0s 0s
28 710N, ON, 0ONg
ot ot ot ]
| Xs  VYg |
Now invert [J] numerically
ON; N,
oX | _rqy1-1) o5
ON; =0l oN;
oy ot
Iy |
[J]—lz 1 12 =[]
|21 I22
Next :
N N
%z (1-t)(2s+t)/ 4 _88t1 =(1-s)(2t+s)/4
S
oN oN
632 = (1-t)(2s-t)/ 4 #: (L+5)(2t—s)/ 4
oN N
6—3:(1+t)(23+t)/4 aa—t3:(1+s)(2t+s)/4
S
N N
Me_iges-via Tiogg@-9a
oN N
sy T =-s?)
S
N N
RSk Mo - t1+9)
S
oN
T = _s(1+t) 6;7 (1-s%)/2
ONg 2 Ng
0s ( ) ot (1-3)
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Also dxdy=det[J] dsdt. Note det[J] =% transform derivatives with respect

to x and y to with respect to sand t.
Now back to strain {¢} =[B]{s} . Matrix [B] which consists of N; , and N;, can
now be determined by using above equations:

I B e o

139Ny + 15Ny, 0 same same . . .
I2gNyg + 15N T3Nyg + 15N Ny N,

stress

{7} =[Dl{¢}

for plane stress

Tyx E 1 v 0 |[|ley

{t} =<7y = v 1 0 [e
Y 1-v?) 1-v || "
Txy 00 |

{7} =[Dl{s} =[DI[BI{5}

8.2.2- Stiffness Matrix
Stiffness matrix is then given by:

[Klz6.26 =t [ [B116:[D]5.a[Blaas chcy
A

dxdy = det[ J]dsdt

and the limits of integration -1 to +1 for both sand t.

Klzg6 =t [ [ (B 16:2[D]aa[Blaas detfI]dscl

here the integration [B]".s[Dls4[Blays det[J], the entire expression is same
complicated function of s and t. Although the limits of integration are
simple when integration is carried out over the parent element in s and t
coordinates, any typical term of the integrand matrix of above integration
becomes very complicated algebraically and hence, we have to resort to
numerical integration. However, for very simple elements, integration can
be carried out exactly.
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8.2.3- Comment on det[J]

A well known condition for one-to-one mapping desired for cured edge
elements is that the sign of det[J] should remain unchanged at all points of
the domain mapped i.e. s, t plane. Violent distortions may cause alteration
of sign of det[J].

8.2.4- Body Forces
Suppose there are body forces py and py per unit volume involved in the
problem being considered for stress analysis.

| py
{p}—{py}

for plane elasticity, work done by {p} is:

w :tIAj [u v]{Ei}dA:tg {u}T{ p}dA

{u} = [N}{5}
W =t[[ {87 INKP}OA={5}"{ Ty}
A

{ f,} are body forces due to distributed body forces

{fb}T :[fbl foo oz - .. fblﬁ]

{3}  =[u v u; .. . v

for gravity load p,=0 and py=-y (y= weight per unit volume, constant). From
above equations:

+1+1
{fb}:tI I [N]7{p} det[J]dsdt (consistent load vector)
-1-1

Again this can be integrated numerically. For gravity loading {p}:{_oy},

further, for constant load,

+1+1

{fo} =t{p" [ [ IN]de[a]dsdt

This integration can be done exactly i.e. by hand. If {p} is afunction of x
and y, then we may also interpolate { p} from the nodal values in terms of
shape functions N; i.e. p, 228: N;p, Where p,, arethe valuesof ps(x,y) at the

i=1

nodes, similarly for py.
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8.2.5- Specific Boundary Stress (stress boundary condition)
Boundary work done by stressesis given by:
W5 =tj -Fi u;ds
St
Px
Wy :té[ {u}T{py}ds={5}T {f,)

o
Due to stress on sy

where py and p, are the stresses in x and y directions (((global system) on
the boundary. Sr is part of boundary on which the stress are prescribed. { u}
is now given by: {u} =[N%{8} where [N isthe same as [N] except its value
on the boundary under consideration. Further, if p, and p, are functions of x
and y on the boundary, again we can use the shape functions N; to
interpolate stress p, and py, but for N; on the boundary. For example,
consider edge 2-6-3 of the element shown.

Stress acting on this boundary is px(x,y) as shown. For edge 2-6-3, s=+1
therefore, only nonzero N; on s=+1 are:

N, :—%(14) Ng=(-t2) N :12(1+t)

px3

are boundary nodes assigned temporarily

o1



{u} =[N°1{5°}

X=N,X,+ N3X3+ Ngxs Coordinate Transforma tion
y=N2y, +N3ys+NgYye

approximat ion for p, as p,

Py :szx1+N3px3+N6px2
Finally ,

dS = +/dx 2 + dy 2
But x and y are given by above equationsi.e. f(t) aong 2-6-3. Therefore, dl,
theinfinitesimal element of length along 2-6-3 is given by:

w-a-|[3) (3]

similarly, if there is also a specific stress p, (X, y) then:

2
dt note:gzﬁ along edge 2-6-3
ot dt

py=N2py1+N3py3+N6py2
Px1
_ pyl
Py _[Nz 0 N3 0 Ng O}F)xs

p
! Px2

py2

{p}=IN1{p"}

° ST sqT S i OX 2 ay 2
we =t @TINTIN G (5 {—j
4

at s=+1

1
+1 2 212
{f}=t [NS]T[NS]{p‘}l(%j +(ﬂ” dt
:[ ot ot

at s=+1

and :

{fs}T =[f53 fs4 f55 f56 fsll fle]

This procedure can be repeated for other edges as well. One have to be
careful asto sort =E etc.

9- Numerical Integration (Gauss Quadrature)
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Integration may be done analytically by using closed form formulas from a
table of integrals. Alternatively, integration may be done numerically.
Gauwss quadrature is a commonly used form of numerical integration.

Instead of using Newton cotes quadrature method where point at which the
function is to be found (i.e. numerical value) are determined a priori
(usually equal intervals) we shall use Gauss Quadrature method. The
coordinates of sampling points are determined for best accuracy.

9.1- Line Integration

=1

|:I f(s)ds:iznl: Hi f(si)

If f(s) is a polynomial, n-point Gauss quadrature yields the exact integral if
f(s) isof degree 2n-1 or less. Assume a polynomial expression to estimate I.
For n sampling points we have 2n unknown (H; and s) for which a
polynomial of degree 2n-1 can be constructed and integrated exactly. This
yields an error of order O(A?"). Thus, for n=3, a polynomial of degree 5 can
be integrated exactly using Gaussian quadrature method.
Thus the form f(s)=atbs is exactly integrated by a one-point rule. The form
f(s)=atbs+cs’ is exactly integrated by a two-point rule, and so on. Use of an
excessive number of points, for example, atwo-point rule for f(s)=atbs still
yields the exact resullt.
In above equation,
n=number of sampling points often called Gauss points.
Hi=Weighting constants
s=Coordinates of sampling points
For any given n (by choice) H; and s can be obtained from the tables.

n=3 Exact for 5" degree polynomial 2n-1=5

f(S2)
() f(Es)

< >
.1 &=-0.774597 £=0.000 E=+.774397  4q
H,=055556 H.=0.88889  H;=0.55556

If F&E). 55516f & ol y4adimat O IRES RSN De0) alddsbbb & (Ddldi@M) als, Gauss
quadrature yields an approximate result. Accuracy improves as more Gauss
points are used. Convergence toward exact result may not be monotonic.

53



9.2-

+1+1

|—” f (s, t)dsdt—J' z H f(s,,t)dt—z Z HiH | f(si.t)

-1-1

Gauss Quadrature Numerical Integration over a Rectangle

Example of n=3, we can use the same tables. Exact for polynomial of

degree 5in each direction, sand t.
Let us use n=3 for integration of above equation to obtain the element

stiffness matrix [Kk]. Thus, we have to determine

[B]"[D][B]det[J] at each sample point (s, t)

In three dimensions, Gauss quadrature
of order n over a hexahedron involves
n® points. Three summations and the
product of three weight factors.

t

O

O

O

O

O

9 points

Abscissae And Weight Coefficients Of The Gaussian Quadrature Formula

9.3-

j_"ﬂs)ds - jgfhffsi;)

s
o

. 057735 C2691 89626

0-77459 66692 41483
0-00000 00300 00000

»
0-86113 63115 94053

0-33998 10435 34356

n
0-90617 98459 38664

0-53846 93101 05683
0-00000 00000 00000

0-93246 95142 03152
0-66120 93864 66265
0-23861 91360 83197

0-94910 79123 42759
0-74153 118355 99394
0-40584 S1S13 77397
0-00000 00000 00000

0-96028 98564 97536

0-18333 36423 95650

096816 02395 07626
0-83603 11073 26636
0-61337 14327 00590
0-32425 34234 03809
0-00000 00000 00000

0-97390 65285 17172
0-86506 33666 83985
0-67940 95682 9902%
0-33339 s3%941 29247
0-14887 43389 31631

-2

n =3

H

200000 00000 00C00 -

-1-0000Q..00000 00000

0-55555 55555 55556
0-88388 38388 88889

0-34785 48451 37454

© 065214 51548 62546

0-23692 68850 56189
99366 .

0-17862 86704

0-56888 38888 88889 -

0-17132 44923 79170
0-36076 15730 48139
0-46791 39345 72691

0-12948 49661 68870
0-27970 53914 89277

© 0-38183 00505 QSt19

n = 10

041795 91836 73469

0-10122 §5362 90376
0-22238 10344 53374
0-31370 66458 77887
0-36268 37833 78362

0-08127 43883 61574
0-18064 81606 94857
0-26061 06964 02935
0-31234 70770 40003
0-33023 93550 01260

0-06667. 13443 03688
0-14945 13491 50581
0-21908 63625 15982
0-25926 67193 09996

0-29352 32217 14733

Comment on Numerical Integration

Numerical integration, instead of exact may introduce additional errors and
first attempt may be directed at reducing the error as much as possible. This
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may not be very economical. Therefore, the following should be
determined:

a) The minimum integration requirement permitting convergence

b) The integration requirements necessary to preserve the rate of

convergence which would results if exact integration were used.

Let p be the order of degree of complete polynomia and m be the order of
differentials occurring in the strain energy expression. Providing the
integration is exact to the order 2(p-m) or shows an error of O(h*®™*, or
less, then no loss of convergence order will occur.
In curvilinear coordinates take a curvilinear dimension h of an element. For
Co problem (m=1), the integration is of the following order:
p=1, Linear displacement O(h)
p=2, Quadratic displacement O(h°)
p=3, Cubic displacement o(h°)
With numerical integration , singular stiffness matrix may result for low
integration orders making lower order integrations impractical. In general,
there should be at least as many integration points as required to yield a
number of independent relations equal or greater than the number of overall
unknowns.
Consider again the plane eight-node isoparametric element discussed
previously. Its stiffness matrix integrand [B]'[D][B]det[J] is an 16 by 16
matrix. Because it is a symmetric matrix, only 136 of 256 coefficienta sre
different from one another. Each of these coefficients has the form f(s,t) and
each must be integrated over the element area. In computer programming, a
p-point integration rule requires p passes through a integration loop. Each
pass requires ebaluation of [B] and det[J] at the coordinates of a Gauss
point, computation of the product [B]'[D][B]det[J], and multiplication by
weight factor. Each pass makes a contribution to [K] which is fully formed
when all p passes have been completed. Clearly, there is considerable
computation required in this process.

For an element of general shape, each coefficient in matrix [B] '[D][B]det[J]
Is the ration of two polynomias in s and t. The polynomia in the
denominator comes from J* when [J] is inverted det[J] becomes the
denominator of every coefficient in J' and hence appears in the
denominator of every coefficient in [B]. Analytical integration of [k] would
require the use of cumbersome formulas. Numerical intehration is simpler
but in general it is not exact, so that [K] is only approximately integrated
regardless of number of integration points. Should we use very few points
for low computational expense or very many points to improve the accuracy
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of integration? The answer is neither, for reasons explained in the
following.

9.4- Choice of Quadrature Rule, Instabilities

A FE model is usually inexact, and usually it errs by being too tiff.
Overdtiffness is usually made worse by using more Gauss points to
integrate element stiffness matrix because additional points capture more
higher-order terms in [K]. these terms resist some deformation modes that
lower-order terms do not, and therefore act to stiffen an element.
Accordingly, greater accuracy in the integration of [k] usually produce less
accuracy in the FE solution, in addition to requiring more computation.

On the other hand, use of too few Gauss points produces an even worse
situation known by various names, Instability, spurious singular mode,
mechanism, kinematic mode, zero energy mode, and hourglass mode.
Instability occurs if one or more deformation modes happen to display zero
strain at al Gauss points. One must regard Gauss points as strain sensors. If
Gauss points sense no strain under a certain deformation mode, the resulting
[K] will have no resistance to that deformation mode.

A simple illustration of instabilities are shown. Four-node plane elements
are integrated by a one-point Gauss rule. In the lower left element with c a
constant, the three instabilities shown have respective forms

b)u=cxy v=0

C)U=0 V=-CXy

d)u=cy(1-x) v=cx(y-1)

We easily check that each of these displacement fields produces strains
Exx=Eyy=Yxy=0 & the Gauss point, x=y=0.

/

O O /D; I:l; O O
\/
O
—

a b C

a) Undeformed plane 2 by 2 four-node square elements,
Gauss points are shown by sguare

Nonrec?an%uqallrngf 8‘6%%%&'3&3’.‘% ﬁemsgr%%sway. Even if the mesh had just

enough supports to prevent rigid body motion it could still display these
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modes, without strain at the Gauss points, and hence without strain energy.
The FE model would have no ressistance to loadings that would activate
these modes. The global [k] would be singular regardless of how the
structure is loaded.

When supports are adequate to make [k] nonsingular, there may yet be near-
instability that is troublesome. In the figure, all dof are fixed at the support
and each element is integrated with one point. Restraint provided by the
support isfelt less and less with increasing distance from it.

A plane eight-node element whose stiffness matrix is integrated with four
Gauss points has the hourglass instability shown.

O

O O O O O O o O o
4.
O O O O O O D/O\

Mesh of four-node square elements with all nodes fixed at the
support.

Gauwss points are shown by square

Hourglass instability displacement mode in a single 8-node element
integrated by Gauss points

There is no way that two adjacent elements can both display this mode
while remaining connected.

9.5- Stress Calculation and Gauss Points

Calculated stress are often most accurate at Gauss points. It happens that the
locations of greatest accuracy are apt to be the same Gauss points that were
used for integration of the stiffness matrix.

In summary, it is common practice to use an order 2 Gauss rule (four
points) to integrate [K] of four- and eight-node plane elements, and common
practice to compute strains and stresses at these same points. Similarly,
three-dimensional elements often use eight Gauss points for stiffness
integration and stress calculation. Stresses at nodes or at other element
locations are obtained by extrapolation or interpolation from Gauss point
values.
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