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Abstract We introduce an extension of the classical neural
field equation where the dynamics of the synaptic kernel sat-
isfies the standard Hebbian type of learning (synaptic plas-
ticity). Here, a continuous network in which changes in the
weight kernel occurs in a specified time window is consid-
ered. A novelty of this model is that it admits synaptic weight
decrease as well as the usual weight increase resulting from
correlated activity. The resulting equation leads to a delay-
type rate model for which the existence and stability of solu-
tions such as the rest state, bumps, and traveling fronts are
investigated. Some relations between the length of the time
window and the bumpwidth is derived. In addition, the effect
of the delay parameter on the stability of solutions is shown.
Also numerical simulations for solutions and their stability
are presented.
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1 Introduction

Recent advances in brain imaging has made a significant
progress in observing the dynamics of neural populations.
This makes the study of activity patterns in large networks a
challenging task (see for example [3,6,7,9,10]). So far one
of the best models of choice at the level of large neural pop-
ulations is the classical neural field equations. Having pro-
posed the classical neural fields, Wilson and Cowan [34,35]
have numerically shown some solutions such as solitary
bumps. This model is simplified to a single layer of neu-
rons by Amari [2] where analytical solutions for bump states
were obtained. Since the simplified model was analytically
tractable, the existence and stability of many solutions were
determined.

The classical neural field with static kernel is obtained by
the general formula

τ∂t u(x, t) = −u(x, t)+
∫

R
w(x, y) f (u(y, t)) dy, (1)

where u(x, t) represents the local activity of a population
of neurons at position x and time t . Also f (u) denotes
the firing rate function, and it is taken to be Heaviside or
a sigmoid function. The coupling function w(x, y) repre-
sents the connection weights between neuron’s population
at x and y and is often assumed to be homogeneous so that
w(x, y) = w(x − y). There have been several types of solu-
tions suggested for the above formulation (1) such as stand-
ing bump solution in which a region of the network is acti-
vated, and wave-like solutions (traveling fronts, spiral and
breathing waves, traveling bumps) which propagate through
the neural network [11,12,14,21,23,28]. Another important
solution for such models is the rest state solution, i.e., equal
activity for all neurons. Moreover, the stability of the rest
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case u(x, t) = 0 in Eq. (1) is important due to the possible
presence of some perturbation.

A more challenging task, however, would be to consider
the behavior of large neural systems in the face of changing
dynamics of neural connectivity.

There is a vast literature on learning dynamics many of
which are related to spiking neurons as well as rate models.
Here, a possible extension of the classical neural field model
is to make room for a Hebbian type of synaptic modifica-
tion [20]. Many variants of the Hebbian learning explain the
nature of neural representation and its relation to the coding
mechanisms observed in biological neural tissue [15,26].

One of general mathematical formulation of the synaptic
efficacy dynamics between neuron i and j which is suggested
by Gerstner and Kistler [17] has the following relation

d
dt

wi j = F
(
wi j ; vi , v j

)
, (2)

where wi j is the synaptic connectivity weight between neu-
rons i and j at time t . The variables vi and v j stand for the
firing rates of the neurons i and j , respectively. The func-
tion F represents the dynamics functionality of the learning
process.

Some variants of Hebbian type of synaptic modification
such as BCM and Oja’s rule and others is extensively dis-
cussed in neuralmodeling literature [1,4,25,29,32]. The sim-
plest choice for the learning function which relies on the
correlation-based Hebbian learning rule has the following
form for a positive function c = c(wi j ),

d
dt

wi j = cviv j . (3)

Thus, if neurons i and j have the same spiking activities,
the synaptic efficacy connecting these neurons, wi j , will be
strengthened. There are restricting rules imposed on the func-
tionality selection of F as listed below (see [13,17]).

1. There should be the locality of the dynamicswhichmeans
that the dynamics of the synaptic strength between neu-
rons i and j is only dependent upon the characteristics
of neurons i and j and independent of all other neurons.

2. The type of synaptic connections is invariant in the learn-
ing process. Namely, the excitatory synaptic connections
do not change into inhibitory connections and vice versa.

3. The stability of such dynamics requires a maximum and
minimum values for the synaptic strength so the function
F should contain a term which determines upper and
lower bounds ofwi j [4,24]. For instance, if the parameter
c in Eq. (3) tends to zero aswi j approaches its maximum
value, a saturation of synaptic weights can be achieved
(see [17]). Then for example c = γ (wmax − wi j ) in Eq.
(3) ensures the boundedness of the synaptic strength.

4. Hebbs original proposal does not contain a rule for a
decrease of synaptic weights. In a systemwhere synapses
can only be strengthened, all efficacies will finally satu-
rate at their uppermaximumvalue.Anoption for decreas-
ing the weights is therefore a necessary requirement for a
realistic learning (plasticity) rule, since by applying only
the Hebbian learning, the synaptic strength only tends to
increase. This can, for example, be achieved by weight
decay, which can be implemented in Eq. (3) by subtract-
ing the term µwi j (see [16]),

d
dt

wi j = −µwi j + cviv j . (4)

In this paper, we shall address a basic question in compu-
tational neuroscience as to how to extend the classical neural
field equation with synaptic dynamics without sacrificing the
basic dynamical constraints such as boundedness and synap-
tic decay.

Although in principle, many of the well-known spike or
rate-based learning rules may be extended to a neural field
formulation, this is not mathematically always easy to do.
So for example in the case of Spike-Timing-Dependent-
Plasticity, it is not clear how to track the order of spikes
even in the case of a rate model (see [30]). However, for a
simple correlation-based type of learning such as the Heb-
bian, the intuition of neurons that fire together wire together,
carries over to the neural field formulation in an obvious way.
A correlated increase in activity will cause the strengthening
of the corresponding connections between the two locations.
At the very basic level, this strengthening of connectivity
may stabilize solutions such as bumps of activity which oth-
erwise would lose stability due to noise or inhomogeneity in
the network. The former is exemplified in the recent work [3]
where it is shown that due to the destabilizing effect of noise,
correlated activity will not last for too long. In the latter case
of inhomogeneity, the possible drift of any bump solution
has nicely been shown by Itskov et al. [22]. Based on their
results, synaptic plasticity helps to stabilize the bumps for an
appropriate time, relevant to the behavioral level of activity.

Before we get into the specifics of the network dynamics,
two important aspects of the Hebbian extension need to be
considered. First, we need to ensure the boundedness of the
synaptic kernel [4,24] and second, to make it more realistic,
we shall let the strength of the connections to decay when
the activation becomes less correlated [13,17].

Now in itsmost general form, onemay consider a synaptic
dynamics where the correlated-based plasticity is a history-
based rule (see for example [33]) rather than being dependent
on the instantaneous value of the neuron’s activity. In other
words, studying population dynamics at the macro level,
where points in close proximity will strengthen their con-
nections based on the past and present join activation, the
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synaptic dynamics may be regarded as a continuous process
throughout the whole continuum. The constraints mentioned
above lead to the following type of an extended continuous
network equation,

τ∂t u(x, t) = −u(x, t)+
∫

R
w(x, y, t) f (u(y, t)) dy,

∂tw(x, y, t) = γ (wm(x, y) − w(x, y, t)) f (u(x, t)) f (u(y, t)),

(5)

where wm(x, y) is a maximum value of each synaptic con-
nection w(x, y, t) and it is assumed to be in a homogeneous
form wm(x − y). Also if we consider the homogeneous case
for the initial value of the synaptic weight,

w(x, y, 0) = (1 − κ)wm(x − y), 0 < κ < 1,

the solution of Eq. (5) will be

w(x, y, t) = wm(x − y)

×
(
1 − κ exp

(
−γ

∫ t

0
f (u(x, s)) f (u(y, s)) ds

))
.

The integral term in the above relation can be interpreted as
correlation between firing rates of the neurons positioned at
x and y in the time interval [0, t].

The above model has a slight disadvantage: no unlearn-
ing rule is contained. One can overcome this by applying a
decay in the weights. But here we propose a more intrin-
sic rule to obtain this. The idea is that it is not necessary to
increase constantly the strength of the connection between
twoneuronswhich are fired together for a long period of time.
Also it seems reasonable to decrease the connection strength
between two neurons which were correlated in the past, but
not correlated in the present time. One of the most simple
models, which captures these ideas, is to use a delay-type
equation,

∂tw(x, y, t) = γ (wm − w)
[
f (u(x, t)) f (u(y, t))

− f (u(x, t − δ)) f (u(y, t − δ))
]
. (6)

This new model involves the history of the activity of net-
work and current activity has some trace in the future of the
network. We also may rewrite this equation in an integral
form,

w(x, y, t) = wm(x − y)

×
(
1 − κ exp

(
−γ

∫ t

t−δ
f (u(x, s)) f (u(y, s)) ds

))
.

Wemay interpret this integral form as considering the corre-
lation over a time window of length δ. As can be seen in the
present model, both the boundedness of synaptic strength as
well as synaptic weakening holds.

Here, the change in the weight kernel at time t depends on
the time window δ before t . This has the novel advantage of
studying δ as a bifurcation parameter and analyzing its effect
on the stability of the solutions. We end up with the follow-
ing continuous network with a delay dynamics for synaptic
weight connections,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ∂t u(x, t) = −u(x, t)+
∫

R
w(x, y, t) f (u(y, t)) dy,

w(x, y, t) = wm(x − y)

×
(
1 − κ exp

(
−γ

∫ t
t−δ f (u(x, s)) f (u(y, s)) ds

))
.

(7)

In this paper, we consider the above model and investigate
the existence and stability of solutions such as rest state,
bumps and traveling fronts. In addition, the effect of time
window length δ as a bifurcation parameter is shown on the
stability of these types of solutions.

2 Constant steady states

In this section, we investigate the constant steady-state solu-
tions and their stability. A constant steady-state solution
is a time-independent and spatially uniform solution, i.e.,
u(x, t) = u interpreted as a rest state of the network, espe-
cially the zero solution u(x, t) = 0.

2.1 Existence

Let u(x, t) = u be a constant steady state of the system (7).
It follows that,

⎧
⎪⎪⎨

⎪⎪⎩

w(x, y) =
(
1 − κe−γ δ f (u)2)wm(x − y),

u =
(
1 − κe−γ δ f (u)2)W f (u),

W =
∫

R
wm(y) dy.

(8)

In the case of Mexican-hat kernel wm(x) = 1
4 (1− |x |)e−|x |,

one calculates W = 0 and we have the unique steady-state
solution ū = 0. Ifwe consider the sigmoidfiring rate function
f (u) = 1/(1+ e−β(u−h)), we always have at least a steady-
state solution (not necessarily unique) and this is shown in
Fig. 1 for the exponential kernel wm(x) = 1

2 e
−|x |.

2.2 Stability

For the investigation of stability, we linearize the system (7)
around the rest solution,

⎧
⎪⎪⎨

⎪⎪⎩

τ∂tv=−v+
∫

R

(
ω(x, y, t) f (u)+w(x, y) f ′(u)v(y, t)

)
dy,

ω(x, y, t) = κγwm(x − y) f (u) f ′(u)e−γ δ f (u)2

×
∫ t
t−δ(v(x, s)+ v(y, s)) ds.
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Let α = κe−γ δ f (u)2 . Therefore,

τ∂tv = −v + αγ f (u)2 f ′(u)
∫ t

t−δ

(
Wv(·, s)

+wm ∗ v(·, s)
)
ds + (1 − α) f ′(u)(wm ∗ v).
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Fig. 1 The stability criterion for the exponential kernel in accordance
with the Eqs. (8) and (10). In the colored area, we have at least one
unstable constant solution. The other parameters are β = 25, h = 0.05
and W = 1

Letting the solution to be of the form v(t, x) = eλtν(x), we
obtain the characteristic equation for the spectral values,

τλν = −ν + αγ f (u)2 f ′(u)
1 − e−δλ

λ
(Wν + wm ∗ ν)

+(1 − α) f ′(u)(wm ∗ ν).

Taking Fourier transform yields,

τλ + 1 − (1 − α) f ′(u)ŵm(ξ)

−αγ f (u)2 f ′(u)(W + ŵm(ξ))
1 − e−δλ

λ
= 0, (9)

for some ξ ∈ R. The following theorem shows the stability
condition for the rest state solution in two cases of Mexican-
hat kernel and an excitatory network. In both cases, synaptic
weight kernel is symmetric andW+ŵm(ξ) ≥ 0 everywhere.
You can find the proof of the following theorem inAppendix.

Theorem 1 In the case of an excitatory network, the steady-
state solution u = u is stable if and only if,

(
1 − κe−γ δ f (u)2

(
1 − 2γ δ f (u)2

))
f ′(u)W < 1. (10)

This condition is automatically true for the extreme possible
values of u. Considering Mexican-hat weight function, the
stability condition for u = 0 is

(
1 − κe−γ δ f (0)2

(
1 − γ δ f (0)2

))
f ′(0) < 4. (11)
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Fig. 2 The instability region of the solution u = 0 for the Mexican-hat kernel. We take h = 0.05 and β = 18, 20, 22, respectively
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Remark 2 As we can see in the proof of this theorem, in the
unstable cases, for every value of ξ , the characteristic Eq. (9)
has exactly one root inReλ ≥ 0 corresponds to the eigenfunc-
tion ν(x) = exp(iξ x). Indeed, with the increase of ŵm(ξ),
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Fig. 3 Spatio-temporal dynamics of the rest-state solution ofMexican-
hat kernel for the values of δ = 10, 40, 70 from top to bottom. The
parameters are κ = 0.3, h = 0.05, β = 20 and γ = 1. The time axes
are in log scale for better appearing

the value of the root λ of Eq. (9) will be increased. Therefore,
the intersection of spectrumand the right half-plane is exactly
the interval [0, λM ] where λM is the eigenvalue corresponds
to the maximum value of ŵm(ξ) and the corresponding value
of ξ is the dominant mode of instability.

The existence and stability conditions of rest-state solu-
tions in the case of exponential kernel are plotted in Fig. 1. It
might be seen that for these set of parameters, if the capacity
κ is large enough, there exist a range of γ δ in which we have
at least one unstable constant solution. For the only constant
solution u = 0 in the case of Mexican-hat kernel, its insta-
bility region which is determined by Eq. (11) is plotted in
Fig. 2. We can see that this condition might be very sensitive
to the sigmoid function parameter β.

The simulation results of the rest-state which has the
Mexican-hat kernel for three values of δ (chosen from stable
and unstable regions) are plotted in Fig. 3. A positive noisy
perturbation of amplitude 0.01 at time t = 0 is applied to a
periodic domain of length L = 50 and we run the simula-
tions until t = 1,000. As it is depicted, the rest state is stable
for the case of δ = 10 and δ = 70, whereas it is unstable for
the case of δ = 40 and in this case, a strip pattern emerges
which corresponds to the dominant mode exp(ix) according
to Remark 2. It is worth-mentioning that this pattern appears
regardless of the initial perturbation.

3 One-bump solutions

A stationary pulse solution known as bump activity is a class
of solutions in the continuous networks. Since in the mecha-
nism of short-term memory, some part of the prefrontal cor-
tex is activated, the stationary pulse solutions are related to
temporary storage of information within the brain [18]. Hav-
ing been disconnected from external stimulus, the cortical
memory neurons are persistent to establish a representation
of the stimulus. In the following, we analytically study the
bump solutions in the network equipped with the Heaviside
firing rate function and the Hebbian learning. The analysis is
somehow difficult for the sigmoid firing rate, so we restrict
our attention to the limiting case, i.e., Heaviside function.

3.1 Existence

Let f (u) = H(u − h) and let u(x, t) = b(x) be a one-bump
solution with radius a, i.e., b(x) > h if and only if |x | < a.
We must have the following equalities,

{
b(x) = wb ∗ f (b),

wb(x, y) = wm(x − y)
(
1 − κe−γ δ f (b(x)) f (b(y))) .
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γδ

2a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γδ

2a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

γδ

2a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γδ

2a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4 Possible values of bump width with respect to the delay parameter for the exponential (left) and Mexican-hat (right) kernel. The parameters
are κ = 0.7 and h = 0.05 (top) and h = 0.02 (bottom)

Therefore,

b(x) =
∫ a

−a
wb(x, y) dy

=
(
1 − κe−γ δ f (b(x))

) ∫ a

−a
wm(x − y) dy.

Hence,

b(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − κ)

∫ a

−a
wm(x − y) dy, |x | > a,

(
1 − κe−γ δ

) ∫ a

−a
wm(x − y) dy, |x | < a.

(12)

Note that according to the above relations, there is no contin-
uous bump solution. However, we can consider the solution
of Eq. (7), in the space of piecewise continuous functions.
So we need the condition

b+(a) ≤ h ≤ b−(a),

where+ and− signs mean the right and left limit of function
b at point a, respectively. Then, we can find a necessary and
sufficient condition for the existence of such bump,

h
1 − κe−γ δ

≤
∫ 2a

0
wm(y) dy ≤ h

1 − κ
. (13)

Figure 4 shows the regions for which a bump of width 2a
exists. We see that as we expected, by increasing the delay,
we have more bumps. It is interesting that for the Mexican-
hat kernel, we have no bump solution for small values of
delay parameter.

3.2 Stability

Here, we formally linearize Eq. (7) around the bump solution
b(x) with radius a. The analysis is not rigorous, but we will
see in simulations that such a result could be true.

τ∂tv = −v +
∫

R
wb(x, y) f ′(b(y))v(y, t) dy

+κγ e−γ δ f (b(x))
∫

R
wm(x − y) f (b(y))

∫ t

t−δ

(
v(x, s) f ′(b(x)) f (b(y))

+v(y, s) f ′(b(y)) f (b(x))
)
ds dy.

Let the solution to be of the form v(x, t) = eλtν(x). So we
obtain the characteristic equation for the spectral values,
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(τλ + 1)ν(x) =
∫

R
wb(x, y) f ′(b(y))ν(y) dy

+κγ
1 − e−δλ

λ
e−γ δ f (b(x))

×
∫

R
wm(x − y) f (b(y))

×
(
ν(x) f ′(b(x)) f (b(y))

+ν(y) f ′(b(y)) f (b(x))
)
dy. (14)

We use the relation
∫

f ′(b(x))u(x)dx =
∑

b±(z)=h

u±(z)
|b′

±(z)|
,

to simplify Eq. (14) which is valid for continuous b without
the± signs. Note that because of the discontinuity of b at the
points where it is equal to the threshold h, only one of the +
and − signs (right and left limit, respectively) are acceptable
at each point.

We can consider three kinds of bump solutions. First, the
case that the both inequalities in (13) are strict. In this case,
the bump is obviously stable, because f ′(b(x)) = 0 for every
x , andwe arrive at the eigenvalue equation (τλ+1)ν(x) = 0.
Second, the case h = (1−κ)

∫ 2a
0 wm(y) dy, where the bumps

satisfy b+(a) = h < b−(a).

(τλ+1)ν(x) = wb+(x, a)
ν+(a)
|b′

+(a)|
+wb−(x,−a)

ν−(−a)
|b′

−(−a)|

+κγ
1 − e−δλ

λ
e−γ δ f (b(x))ν(x) f ′

×(b(x))
∫ a

−a
wm(x − y) dy.

If we rewrite the above relation for the limited cases x → a+

and x → −a−, we achieve the Evans function (see [31]),

(τλ + 1)ν+(a) = (1 − κ)

(
wm(0)

ν+(a)
|b′

+(a)|

+wm(2a)
ν−(−a)
|b′

−(−a)|

)
,

(τλ + 1)ν−(−a) = (1 − κ)

(
wm(2a)

ν+(a)
|b′

+(a)|

+wm(0)
ν−(−a)
|b′

−(−a)|

)
.

Note that |b′
+(a)| = |b′

−(−a)| = (1−κ)|wm(0)−wm(2a)|,
so

τλ = wm(0)± wm(2a)
|wm(0) − wm(2a)|

− 1. (15)

Hence assuming wm(0) > 0, for stability we must have
wm(2a) < 0.

Finally, the third case of the bumps is the case h =
(1−κe−γ δ)

∫ 2a
0 wm(y) dy, which the bumps satisfy b+(a) <

h = b−(a). Similarly, we have the eigenvalue equation,

(τλ+1)ν(x) = wb−(x, a)
ν−(a)
|b′

−(a)|
+wb+(x,−a)

ν+(−a)
|b′

+(−a)|

+κγ
1 − e−δλ

λ
e−γ δ f (b(x))

×
(

ν(x) f ′(b(x))
∫ a

−a
wm(x − y) dy

+ f (b(x))
(
wm(x − a)

ν−(a)
|b′

−(a)|

+wm(x + a)
ν+(−a)
|b′

+(−a)|

))
,

and Evans function obtained by x → a− and x → −a+,

(τλ + 1)ν−(a) =
(
1+ κe−γ δ

(
γ
1 − e−δλ

λ
− 1

))

×
(
wm(0)

ν−(a)
|b′

−(a)|
+wm(2a)

ν+(−a)
|b′

+(−a)|

)
,

(τλ + 1)ν+(−a) =
(
1+ κe−γ δ

(
γ
1 − e−δλ

λ
− 1

))

×
(
wm(2a)

ν−(a)
|b′

−(a)|
+wm(0)

ν+(−a)
|b′

+(−a)|

)
.

Here, |b′
−(a)| = |b′

+(−a)| = (1−κe−γ δ)|wm(0)−wm(2a)|,
so

(1 − κe−γ δ)(τλ + 1) =
(
1+ κe−γ δ

×
(

γ
1 − e−δλ

λ
− 1

))
wm(0)± wm(2a)
|wm(0) − wm(2a)|

. (16)

Conjecture 3 The bump solution in the case h = (1 −
κ)

∫ 2a
0 wm(y) dy is stable if and only if wm(2a) < 0. The

case h = (1 − κe−γ δ)
∫ 2a
0 wm(y) dy is stable if and only if

wm(2a) < 0 and,

wm(0)+ wm(2a)
wm(0) − wm(2a)

<
1 − κe−γ δ

1 − (1 − γ δ)κe−γ δ
. (17)

So a bump in the case of an excitatory network is unstable
near the threshold values of a.

For the second part, we use the following argument. Let

A = 1 − κe−γ δ and B = wm(0)± wm(2a)
|wm(0) − wm(2a)|

, then rewrite

Eq. (16) as the following,

A
B
(τλ + 1) − A − γ (1 − A)

1 − e−δλ

λ
= 0. (18)

Similar to the proof of Theorem 1, we show that in (18), if
Reλ ≥ 0, we must have Imλ = 0. Otherwise, assume that
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Fig. 5 The time evolution of the bumps with radius a = 0.1982 (top left), 1.0148 (top right), 0.0487 (bottom left) and 1.8736 (bottom right). We
can see these values in Fig. 4. The parameters are κ = 0.7, h = 0.02, δ = 2 and γ = 1. The time axes are in log scale for better appearing

λ = r + im and m ̸= 0 and r ≥ 0. Considering imaginary
parts,

0 = A
B

τ (r2 + m2)+ γ (1 − A)

×
(
1 − e−δr cos(mδ)+ re−δr sin(mδ)

m

)

≥ γ (1 − A)
(
1 − e−δr − rδe−δr ) > 0,

which is a contradiction. Note that 0 < A < 1 and 0 < B in
both Mexican-hat kernel or excitatory network cases.

Now consider Eq. (18) on [0,∞), and note that its left-
hand side is an increasing function of λ, so it will have a
positive real root if and only if its value at λ = 0 is negative.
Therefore, the condition of stability is,

A
B

− (A + γ δ(1 − A)) > 0.

Note that we implicitly assume that wm(0) > 0.
The simulations of one-bump solutions for h = 0.02

are utilized in Fig. 5 for the threshold values to verify
the stability results. The top diagrams corresponds to the
case h = (1 − κ)

∫ 2a
0 wm(y) dy, and the bottom dia-

grams corresponds to the other case. According to Con-
jecture 3, the left ones should be unstable and the right
ones should be stable. We run the simulations in a peri-

odic domain of length L = 40 until t = 20. Again
at t = 0, we apply a positive noise of amplitude 0.01
in stable cases and 0.001 in unstable cases. In bottom
left, the bump disappear after some time, but in the top
left, the solution converges to another wider bump which
is stable. In fact it seems that wider bumps are more
stable.

Also we do the simulations in the case of sigmoid firing
rate function, as you can see in Fig. 6. We use an iteration to
find the bump as a fixed point, starting from the solution we
obtained by Heaviside function. For small values of β, this
iteration does not converge to a one-bump solution and we
do not know if such a solution exist. Here for β = 100, the
bump is not stable and two bumps appear near the original
bump. But the bump is stable for larger values of β, like the
Heaviside firing rate.

Also, coming back to Heaviside firing rate function, we
may analyze the effect of parameter δ on the stability of
bumps. Again according to Conjecture 3, the case h =
(1 − κ)

∫ 2a
0 wm(y) dy is unstable for a range of parameter

δ, but it is stable for small enough and large enough values
of δ. We can see the validity of these results in Fig. 7. Again
as in the stability region of constant steady state, the results
is hugely sensitive to sigmoid parameter, if we use a sigmoid
firing rate function instead. For example, these stabilities are
not true anymore even if we take a sigmoid function with
parameter β < 2,000. This is a remarkable fact, as it shows
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Fig. 6 The time evolution of the bumps with radius a = 0.1982, but this time with a sigmoid firing rate function with parameters β = 100 (left)
and β = 105 (right). The other parameters are κ = 0.7, h = 0.02, δ = 2 and γ = 1. The time axes are in log scale for better appearing
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Fig. 7 The time evolution of the bumps with radius a = 0.0437, δ = 6.0 (left), and a = 0.0903, δ = 0.4 (right). The parameters are κ = 0.7,
h = 0.02 and γ = 1. The time axes are in log scale for better appearing

that we can not simply replace a sigmoid of large parameter
with Heaviside function. The meaning of “large” for valid-
ity of this replacement, much depends on the context of the
problem.

4 Traveling fronts

The neural information and activities are propagated by the
mechanism of sequential activation of neighboring neurons.
This process has been reported experimentally by in vitro and
in vivo recordings [19,27]. In order to study the mechanism
of neural propagating activity theoretically, these equations
was applied and existence of the traveling front solutions
have been investigated [5,28]. In this section, we apply the
model (7) to investigate the effect of learning process (plas-
ticity) on the traveling front shapes and speed for a network
in which the synaptic weight connections are nonnegative
(i.e., an excitatory network).

4.1 Existence

If we consider the change of variables z = x − ct and
u(x, t) = U (z), we have,

−cτ∂zU = −U +
∫

R
w(z + ct, y + ct, t) f (U (y)) dy,

w(z + ct, y + ct, t) = wm(z − y)

×
(
1−κ exp

(
−γ

∫ δ

0
f (U (z + cs)) f (U (y + cs)) ds

))
.

Because of translation invariance of (7), we can assume that
this solution satisfies U (0) = h and U (z) > h for z < 0,
andU (z) < h for z > 0. Furthermore, we consider the firing
rate function f (u) = H(u − h). Hence, for c > 0 we have

−cτ∂zU +U =
∫ 0

−∞
wm(z − y)

×
(
1 − κ exp

(
−γ max

{
0,min

{
− z
c
,− y

c
, δ

}}))
dy.

(19)

We show the right-hand side of the above relation by F(z).
Since F is bounded, (19) has the following bounded solution

U (z) =
∫ ∞

0
e−vF(z + cτv) dv. (20)
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For z > 0, we have

F(z) = (1 − κ)

∫ 0

−∞
wm(z − y) dy,

so

U (z) = (1 − κ)

∫ ∞

0

∫ ∞

z+cτv
e−vwm(y) dy dv. (21)

We conclude that,

h = U (0) = (1 − κ)

∫ ∞

0

∫ ∞

cτv
e−vwm(y) dy dv

= (1 − κ)

∫ ∞

0

(
1 − e−y/cτ )wm(y) dy. (22)

In the case of exponential kernel wm(x) = 1
2 e

−|x |, we arrive
at

h = 1 − κ

2(1+ cτ )
.

It is noteworthing that the condition for the existence of trav-
eling front, does not depend on the value of δ. Even its speed
is independent of δ and this parameter only slightly affects
the front shape.

Theorem 4 There exists a unique traveling front for system
(7) provided that h < (1 − κ)

∫ ∞
0 wm(y) dy.

Proof We show that for a value of c, the relation (22) is
valid. Trivially, its right-hand side is decreasing with respect
to c and it converges to zero when c approach to infinity
(according to dominated convergence theorem). Also, when
c approaches to zero, it will converge to (1−κ)

∫ ∞
0 wm(y) dy

(according to monotone convergence theorem). Hence, for
some value of c, the relation (22) is valid. ⊓,

According to the relation (21) and the assumption that
the synaptic weight function is nonnegative everywhere, we
imply thatU (z) is a decreasing function for z > 0. Also from
the fact limz→+∞ F(z) = 0 and the form of solution (20), it
is obvious that limz→+∞ U (z) = 0. But if limz→−∞ F(z) =
F∗ then alsowe have limz→−∞ U (z) = F∗ according to (20).
To calculate F∗, note that,

lim
z→−∞

F(z) = lim
z→−∞

∫ 0

−∞
wm(z − y)

×
(
1 − κ exp

(
−γ max

{
0,min

{
−c−1y, δ

}} ))
dy

= lim
z→−∞

( ∫ −cδ

−∞

(
1 − κe−γ δ

)
wm(z − y) dy

+
∫ 0

−cδ

(
1 − κeγ c−1y

)
wm(z − y) dy

)

=
(
1 − κe−γ δ

) ∫

R
wm(y) dy.

4.2 Stability

Let u(x, t) = V (z, t) = V (x − ct, t). We rewrite the system
in terms of V , and linearizing around traveling front solution
U (z) and letting σ = |U ′(0)|−1,

τVt − cτVz = −V +
∫

R
ω(z + ct, y + ct, t) f (U (y)) dy

+σw(z + ct, ct, t)V (0, t),

ω(z + ct, y + ct, t) = γ κσwm(z − y)c−1 exp

×
(
−γ

∫ δ

0
f (U (z + cs)) f (U (y + cs)) ds

)

×
∫ δ

0

(
f ′(U (z + cs)) f (U (y + cs))V (z + cs, t − s)

+ f (U (z + cs)) f ′(U (y + cs))V (y + cs, t − s)
)
ds.

Hence,

τVt = cτVz − V + σ (1 − κ)wm(z)V (0, t)

+
∫ 0

−∞
ω(z + ct, y + ct, t) dy.

By substituting V (z, t) = eλt V (z), the eigenvalue equation
is obtained,

τλV = cτVz −V +σ (1−κ)wm(z)V (0)+
∫ 0

−∞
g(z, y) dy,

where,

g(z, y) = wm(z − y)γ κσc−1 exp

×
(
−γ

∫ δ

0
f (U (z + cs)) f (U (y + cs)) ds

)

×
∫ δ

0

(
f ′(U (z + cs)) f (U (y + cs))V (z + cs)

+ f (U (z + cs)) f ′(U (y+cs))V (y+cs)
)
e−λs ds.

For z > 0, we have g(z, y) = 0, so

(λ + 1)V = cVz + σ (1 − κ)wm(z)V (0),

so for Reλ + 1 > 0,

exp(−c−1(λ + 1)z)V (z)

= σ (1 − κ)c−1V (0)
∫ ∞

z
exp(−c−1(λ + 1)y)wm(y) dy.
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and by tending z → 0 from above, we can obtain in this case,

1 = σ (1 − κ)c−1
∫ ∞

0
exp(−c−1(λ + 1)y)wm(y) dy.

But this equation is true only at λ = 0 because of the def-
inition of σ which shows that the traveling front is always
stable.

5 Conclusion

In this paper, a new learning dynamics for continuous neural
network is derived and its effect on various types of bump
solutions is discussed. The new rule is based on correlated
activity much as the familiar Hebbian type of learning and
satisfies the major biological constraint of synaptic bound-
edness. An interesting feature of our proposed rule is that
changes in synaptic strength depends on changes of corre-
lated activity in a specified timewindow.Importantly, present
activity as compared to past correlated activity in a prescribed
time window will have a differing effect on synaptic weight
as determined by Eq. (6): An increase in correlated activ-
ity strengthens the synaptic weight where as a decrease in
activity will have the opposite effect. A major observation of
the present study is to show that restriction to a specific time
window will transform the existing continuous network to a
delay type of rate model for which some partial analytical
results are obtained. An interesting question would then be
as to how variations in the given parameter specifying the
limited time window changes the network properties related
to the existence and stability of the bump solutions. Indeed,
modulating the time window of working memory in neural
population may very much depend on the changing dynam-
ics of such a parameter. In general, how a complex system,
such as the brain, may control the parameters related to the
wide range of dynamics underlying diverse memory tasks is
very much unknown. It is known for example that memory
for the shape of objects may endure longer than memory of
the object’s color, perhaps due to the less significant infor-
mation conveyed by color compared to the shape of an object
[8]. This could well be modulated by a mechanismwhere the
gain of correlated activity is controlled by the duration of the
time window δ, depending on the context and state of the
system at a given time. This raises the interesting question
of how the parameter δ plays a role as bifurcating parameter
in controlling the changing dynamics of bump and traveling
wave solutions obtained in the present work.

Here we briefly state the main results of this manuscript.
First of all, we must mention that in our results, the parame-
ters δ, the delay parameter, and γ , the speed of learning, does
not play independent roles and they appear only as they prod-

uct, γ δ. Henceforth, we may ignore the speed of learning by
modulating the time window length.

The existence as well as the stability of the prevailing
solutions of the network, which are rest-state, one-bump and
traveling front solutions, and their dependency on the delay
parameter are investigated. In the resting state, which a com-
plex system such as a brain favorably requires to be in the
absence of external stimulus, it has been shown that the sys-
tem becomes stable (i.e., preserves its uniform activity) if it
possesses small and large values of time delay δ; however, it
loses stability for an intermediate range. For the one-bump
solutionswhich are known as possible stablememories of the
system, the network can have a wider range of bump widths
with respect to those found in the classic neural fields. Addi-
tionally, for small bump widths, bumps can be maintained
if the synaptic weights of the network have the ability to
take the recent neural activities into account. So by changing
the time window, a network can keep its memories which
may be lost for the networks that are not benefited from such
efficacy dynamics. For the case of traveling front the time
window length δ has no effect on the existence and stability
of this type of solution and corresponding speed, but it only
slightly affects the front shape.

Another worth-mentioning fact is the sensitivity of some
results to the sigmoid parameter β, especially in the stability
of rest states and bumps, as one can see in Fig. 2 and other
simulations.

There are at least three main directions toward which the
present work may be continued. First of all, investigating the
well-posedness of the problem especially with respect to the
nonlinearity of the gain function employed in the original
system is an interesting and perhaps a difficult mathematical
subject to pursue. In yet another direction, one may consider
other types of Hebbian learning including delay and some
variants of anti-Hebbian type of learning, ours’ being the
simplest choice of learning in the context of a simple neural
field equation. Finally, extending the results in the case of
a two-dimensional neural field is perhaps most relevant to
what is now an active research area in models of working
memory and activity propagation in the brain.
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Appendix: Proof of Theorem 1

Proof We claim that in (9), if Reλ ≥ 0, wemust have Imλ =
0. If it is not the case, assume that λ = r + im and m ̸= 0
and r ≥ 0. Let θ = αγ τ−1 f (u)2 f ′(u)(W + ŵm(ξ)) and
considering imaginary parts of (9),
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m − θ
re−δr sin(δm) − m

(
1 − e−δr cos(δm)

)

r2 + m2 = 0.

Since m ̸= 0,

r2 + m2 = θ

(
re−δr sin(δm)

m
+ e−δr cos(δm) − 1

)
.

Therefore we obtain

r2 < θ
(
(δr + 1)e−δr − 1

)
≤ 0,

which is a contradiction (Note that θ ≥ 0).
The left-hand side of (9) is an increasing function of λ ∈

[0,∞]. Therefore, its value at λ = 0 must be positive for
stability, i.e.,

1−(1−α) f ′(u)ŵm(ξ)−αγ δ f (u)2 f ′(u)(W + ŵm(ξ)) > 0,

for every ξ ∈ R.

which concludes the results in the desired cases. (Note that
ŵm(ξ) ≤ W when the synaptic weight kernel is positive
everywhere and also in the other case, Mexican-hat kernel
wm(x) = 1

4 (1− |x |)e−|x |, we haveW = 0 and ŵm(ξ) ≤ 1
4 ).

Also in the first case, u is a root of
(
1−κe−γ δ f (u)2)W f (u)−u

and the stability condition reads that the derivative of this
function with respect to u should be negative at u and this
is the case for the extreme possible values of u (which are
of course positive) since the value of this function is posi-
tive at zero and negative at infinity. In fact in general, the
possible constant steady states are alternatively stable and
unstable. ⊓,
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