۱ – جواب معادله لاپلاس، $u=\circ$ ، درون دایره به شعاع یک همراه با شرط مرزی زیر را به دست آورید. ($h>\circ$). درون دایره به شعاع یک مقدار ثابت است.)

$$u_r(\mathbf{1}, \theta) + hu(\mathbf{1}, \theta) = f(\theta) = \begin{cases} sin\theta & \circ \leq \theta \leq \pi \\ \circ & \pi \leq \theta \leq \mathbf{Y}\pi \end{cases}$$

۲ - جواب مسأله ناهمگن زير را به روش اصل دوهامل به دست آوريد.

$$u_{tt} + \mathbf{Y}u_t + u = u_{xx} + xt$$
 $\circ < x < \pi, \circ < t$ $u(\circ, t) = \circ,$ $u_x(\pi, t) = t$ $u(x, \circ) = x,$ $u_t(x, \circ) = \circ$

۳ – جواب معادله زیر را با استفاده از تابع گرین به دست آورید.

$$y'' + \Upsilon y' + \Upsilon y = x$$
 $\circ < x < \Upsilon$ $y(\circ) = \circ, \qquad y(\Upsilon) = \Upsilon.$

حل کنید. $\mathcal{F}^n(f) = \mathsf{Y} \int_0^1 f(x) \sin(n + \frac{1}{\mathsf{Y}}) \pi x \, dx$ حل کنید. $-\mathfrak{F}$

$$u_{tt} + \Upsilon u_t + u_{txx} + u_{xxxx} = xt^{\Upsilon}$$
 $\circ < x < \Upsilon, \circ < t$ $u(x, \circ) = x^{\Upsilon}$ $u_t(x, \circ) = x + \Upsilon,$ $u(\circ, t) = t^{\Upsilon}$ $u_x(\Upsilon, t) = t,$ $u_{xx}(\Upsilon, t) = t$

۵- جواب مسأله زير را به دست آوريد.

$$u_t = u_{xx} + u_{xxt} + te^{-\Upsilon x}$$
 $\circ < x, t$ $u(x, \circ) = e^{-x}$ $u_x(\circ, t) = t$
$$\lim_{x \to \infty} u(x, \circ) = \circ$$