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1 Controlling Best Response Dynamics
2 for Network Games
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4 Abstract—Controlling networked dynamical systems is a challenging endeavor, specifically keeping in mind the fact that in many

5 scenarios the actors engaged in the dynamism behave selfishly, only taking into account their own individual utility. This setting has

6 been widely studied in the field of game theory. One way we can control system dynamics is through the use of control parameters that

7 are at our disposal, but finding optimal values for these parameters is complex and time consuming. In this paper we use the relation

8 between network structural properties and control parameters to create a mathematical model that speeds up the calculation of the

9 aforementioned values. For this, we use learning methods to find optimal values that can control the system dynamics based on the

10 correlation between structurally similar networks.

11 Index Terms—Networks, best response dynamics, game theory, control problems, machine learning, heuristics

Ç

12 1 INTRODUCTION

13 CONTROLLING dynamical systems, that is being able to
14 guide such systems towards states with desirable out-
15 comes, is a challenging and complex endeavor. The impor-
16 tance of these systems and the noticeable roles they play in
17 various scientific fields make this issue one which has seen
18 ever growing contributions from the scientific community.
19 Specially, the growth of networked dynamical systems and
20 their inherent complex internal interactions has attracted
21 the interest of many researchers [1], [2], [3], [4]. In net-
22 worked dynamical systems, a connected underlying struc-
23 ture of interconnecting links is present and thus an
24 interdependence between the behaviors of individual actors
25 who are involved in the system can be seen [5]. In such sys-
26 tems, the behavior for each actor depends not only on his
27 own actions, but also on the actions chosen by other actors.
28 In this paper, we consider the problem of controlling net-
29 worked dynamical systems that have individual, intelligent
30 and selfish actors. This is the case in many sociological and
31 economical contexts. In such systems, each actor usually
32 undertakes actions keeping in mind his own benefit. Con-
33 trolling the state of the system under such an assumption
34 without forcing or guiding the individual actors in some
35 way is not an easy task. Game theory is a mathematical way
36 to study interactions between selfish agents in such contexts
37 [6], [7]. It has many applications in such diverse disciplines
38 as economics, political sciences, physics and biology [8].

39In game theory, we model interactions between individ-
40ual agents as a game where each agent is a so-called player.
41Each player has a utility function which he tries to maxi-
42mize by deciding on an action to take. The basic assumption
43in classical game theory is that each player acts rationally
44whilst at the same time assuming that other players also
45behave similarly [9]. One of the subbranches of game the-
46ory, commonly referred to as network games, is devoted to
47the study of different aspects of networked systems such as
48topology formation, routing and congestion control [10],
49[11], [12], [13]. These network games, in which players are a
50network’s nodes, are the main focus of this paper.
51The classical setting of game theory is static; that is all deci-
52sions are made in one step. Conversely, dynamic paradigms
53of game theory such as evolutionary game theory and
54repeated games focus more on the dynamics of changes in
55player actions, i.e., how games evolve. These paradigms have
56proven to be invaluable in helping to explain many complex
57and challenging aspects of different disciplines [14], [15], [16].
58Best response dynamics is one of the simplest and most
59straightforward game dynamics inwhich each round a player
60is chosen, updating his action to the onewhich is most benefi-
61cial for him. Using such game dynamics, players are sequen-
62tially best responding to the current game setting [17], [18],
63[19]. This process continues until it converges to an equilib-
64rium where no player wants to deviate from the current set-
65ting, called an output of the dynamics.
66In this paper, for a given game on a networked dynamic
67system, we want to guide the player’s actions so as to reach
68a state which is most desirable. Since the individual steps of
69the game and its outcome are formed by the decisions made
70by the selfish nodes, controlling this best response dynamics
71is a very complicated task. The only way to impact the game
72is to change some of its global configurations (e.g., setting
73prices or determining each player’s turn). We assume that
74these configurations can be changed using predetermined
75global parameters. Obviously these parameters should not
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76 be impacted by the decisions and actions of individual play-
77 ers. We call these global parameters, control parameters.
78 To measure the desirability of a state, we use an objective
79 function. Therefore our target control problem can be
80 described as an optimization problem, where we search for
81 control parameter values maximizing the objective function.
82 The usual methods for solving such classes of problems
83 involve searching for the control parameters’ values and
84 simulating their best response dynamics. The control param-
85 eter values that lead to the most desirable equilibrium
86 amongst the reached equilibria, in terms of our objective
87 function, are then chosen. These methods have an excruciat-
88 ingly long runtime as many different values must be exam-
89 ined and subsequently simulated to reach the optimal
90 convergence. This limits their usefulness in many real-world
91 application scenarios.
92 In this paper we show how a network’s structural prop-
93 erties can be used to noticeably decrease the computation
94 time of the above optimization problem. To this end, we
95 propose a method to derive a mathematical model which
96 computes the control parameters directly from the struc-
97 tural properties of network nodes. Using this model, instead
98 of running a time consuming optimization algorithm, we
99 can compute the network’s structural properties and use

100 the mathematical model to find a set of parameter values
101 which can lead to the most desirable outcome in terms of
102 the defined objective function. To prove the effectiveness of
103 this method, we try it on different test networks using vari-
104 ous learning algorithms and show that in all cases, the desir-
105 ability of the outcome is acceptable.

106 1.1 Setting

107 Before going any further, we must at first formalize our
108 model’s setting. A normal form game is defined as a tuple
109 ðP;A;UÞwhere:

110 � P ¼ fp1; p2; . . . ; png is the set of n players,
111 � A ¼ A1 � � � � �An, where Ai is a finite set of actions
112 available to pi. Each vector a ¼ ða1; . . . ; anÞ 2 A is
113 called an action profile,
114 � U ¼ ðu1; u2; . . . ; unÞ, where ui : A ! R is the utility
115 function for pi.
116 Obviously, each player can only change his own action,
117 so for simplicity when dealing with player pi, the action pro-
118 file a is written as ðai; a�iÞ where a�i ¼ ða1; . . . ; ai�1;
119 aiþ1; . . . ; anÞ, consisting of all the components of a except ai.

120 Thus the utility function of pi can be defined as uiðai; a�iÞ.
121 The utility function of each player i, uið�Þ, is calculated
122 using a gain function gið�Þ and a loss function lið�Þ as follows:

8a2Auiðai; a�iÞ ¼ giðai; a�iÞ � liðai; a�iÞ:
124124

125 The gain and loss functions have natural economic interpre-
126 tations and can be computed efficiently. The gain function
127 measures the amount of benefit received by a player due to
128 the nature of the game. The loss function measures the costs
129 incurred by each player for choosing his desired action and
130 is parameterized with cost parameters.
131 Each player tries to choose an action which maximizes
132 his utility function, i.e., a best response to the actions chosen
133 by other players. We define BRiða�iÞ to be the set of actions

134x 2 Ai for which uiðx; a�iÞ is maximized. An action profile a
135is called a Nash Equilibrium when

8i2½n� : ai 2 BRiða�iÞ:
137137

138In best response dynamics, at each step a player pi is chosen
139(according to an activation rule such as uniform random-
140ness), and the player’s action profile ðai; a�iÞ is updated to
141ða0i; a�iÞ, where a0i is one of the actions which grants the
142most beneficial deviation for pi in terms of the utility func-
143tion ui, i.e., a

0
i 2 BRiða�iÞ. This process continues until the

144game converges to a Nash-equilibrium.
145In this paper we are interested in network games in
146which the actions of players form a network between them.
147In such games, the players are the network’s nodes and
148each action profile defines a different network (with a differ-
149ent state). So clearly the utility function maps each possible
150network to a real value. The players’ set of actions consist of
151those which change this network and its state. The best
152response of player i changes the network to one with the
153most desirable structure and state for him, i.e., the network
154which maximizes the value of ui.
155A best response dynamic for a network game G on a net-
156work N is defined as a process DG;N ¼ fNtgt¼0;1;...;1 where
157N0 ¼ N and each Nt for (t > 0) is the network evolving
158from Nðt�1Þ as follows. One player pi 2 P is chosen based on
159an activation rule and changes the structure and state of the
160network according to his best response action.
161It remains to define the activation rule. Here, we assume
162that a subset of nodes are chosen to be active during the
163game and these players take turns in an arbitrary order.
164Therefore the activation rule of DG;N is defined by two ele-
165ments TD and pD. TD � P is the set of active players (nodes).
166We assume that only nodes in TD can be activated during
167the dynamic. pD is a permutation of TD’s members (an onto
168and one-to-one function from f0; . . . ; jTDj � 1g to TD) which
169defines the order of nodes. We say that a sequential best
170response dynamic DG;N has converged when for a T > 0,
171NT is a Nash-equilibrium. From the definition, we have
172NT ¼ NTþ1.
173In this paper, we are trying to assert influence on a best
174response dynamic DG;N . In DG;N each node takes selfish
175actions. So, the only possible strategy for us is to adjust the
176global control parameters of DG;N whose values cannot be
177affected by the network nodes. Using such a strategywe try to
178make DG;N converge to a more desirable Nash-equilibria
179whose desirability is measured by an objective function
180f : N ! R (N is the set of all possible networks), thereforewe
181want to maximize fðNT Þ where NT is the converged Nash-
182equilibrium of DG;N . Here we assume the cost parameters
183(which are embedded in every node’s loss function and are
184show here by �i) and activation rule parameters, i.e., parame-
185ters for determining the active set (TD) and for determining
186the activation order (pD), are under our control.

1871.2 Our Contribution & Related Works

188The context of this paper can be categorized as a control the-
189ory problem [20], [21]. The usual objective of control theory is
190to control a dynamical system (discrete or continuous) in
191order for its output to follow a desired reference. This theory
192teaches us how to build a controller for a system. This
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193 controller continuously monitors the output of the system
194 and computes its differencewith a desired reference (which is
195 called the error). Using the value of the error, the controller
196 computes the related values of the system parameters and
197 adjusts them in order to close the gap between the output and
198 the desired reference. This field has long been of interest to
199 many researchers and has a rich literature [22], [23].
200 One of themost relevant classes of control theory problems
201 to the overall setting outlined in this paper is called optimized
202 control theory [24], [25], [26]. This theory reduces a control
203 problem to an optimization one with a cost function that is a
204 function of the system state and control variables. An optimal
205 solution to this problem leads to a control policy. Use of opti-
206 mization algorithms, such as genetic algorithms, is a routine
207 method for computing the parameters of the control policy
208 [27], [28], [29]. Such methods must check a great number of
209 different parameter values. In our problem context, running
210 such checks requires very time-consuming simulations,
211 because to compute the resulting objective function for each
212 set of parameter values, the simulation needs to converge to a
213 Nash-equilibrium. Thus, such existing methods are impracti-
214 cal in even simple simulation scenarios over small networks
215 and are not applicable inmany realworld situations, specially
216 whenwe need instant controller responses.
217 As an alternative one can investigate the intuitive relations
218 between the solution context and the properties of the net-
219 work to conduct the computations needed for faster obtain-
220 ment of the optimal solution. Such an intuition has been used
221 in many works in different fields such as complex networks,
222 graph theory and operations research [30], [31], [32], [33]. One
223 of the relevant aspects of dynamical systems on complex net-
224 workswhich has been studiedwith this approach is their con-
225 trollability. The controllability of a dynamical system is
226 defined as the number of required control signals to drive the
227 system towards some desirable state. Studies have found cor-
228 relations between controllability and the structural properties
229 of complex networks [1], [2], [34]. Thus one can use these find-
230 ings to find optimized control signals in shorter times or
231 enhance the controllability of dynamical systems by somenet-
232 work structural perturbations [3].
233 In the context of this paper, because multiple agents are
234 selfishly interacting, the complexity is high and finding the
235 relation between optimal values and network properties is
236 difficult. We show how learning algorithms can be used to
237 find such hidden relationships between optimal control
238 parameter values and network properties and derive a
239 mathematical model to map them. This idea can also be
240 used for other network optimization algorithms where no
241 intuitive relation between the solution context and network
242 parameters exists.
243 Another related field to our work is the field ofMechanism
244 Design in classical game theory and economics [35], [36], [37].
245 This field deals with games of private information in which
246 each player has a secret information (called its type). A player
247 (that is called the principal) designs the game mechanism
248 based on some objective functions (e.g., social welfare or
249 truthfulness). The players report their type (truthfully or not)
250 and the mechanism is executed, benefiting each player based
251 on his reports and the designedmechanism.
252 We present our framework in Section 2. As discussed
253 earlier, the aim of this framework is to learn a mathematical

254model which maps network nodes’ structural properties
255such as degree and clustering coefficient to the nodes’ con-
256trol parameters. We call this mathematical model the
257NSP2CP model. We test different learning algorithms and
258show that all of them are effective in finding hidden rela-
259tionships between the control parameters and network
260properties. Then we show the efficiency of these models by
261simulating different best response dynamics (see Section 3)
262over different networks with the parameters generated by
263the model.

2642 FRAMEWORK

265In this section, we propose a framework to derive the
266NSP2CP mathematical model which computes control
267parameters from the structural properties of an input net-
268work. The outline of this framework is shown in Fig. 1. The
269main intuition behind the NSP2CP framework is that if we
270can derive a mathematical model which relates the struc-
271tural properties of a given network (called the training net-
272work) to the optimized control parameter values, based on
273inductive reasoning, we can broaden its application to other
274networks with similar properties. Therefore we can induc-
275tively extend this relation to other networks and use it to
276find their best control parameter values. This is based on
277previous research showing that many complex networks
278share similar structural properties [38], [39]. Since in our
279problem multiple agents are selfishly interacting, we are
280faced with high complexity and therefore finding the rela-
281tion between the optimal values and network properties is a
282complicated task. Hence, instead of directly probing this
283complicated relation, we use learning algorithms to extract
284it, calling this the NSP2CP mathematical model.
285We first model each control parameter by normally dis-
286tributed random variables. We assume that each cost
287parameter �i is sampled from a normal distribution with
288average m�

i and standard deviation s�
i . TD (the set of active

289nodes in the best response dynamics) is modeled by a n-bit
290binary string d ¼ d1d2 . . . dn for which each

di ¼
1 if vi 2 TD

0 if vi =2 TD:

�
292292

293To compute di, we pick a random sample d0 from a normal dis-
294tribution N d with average md

i and standard deviation sd
i and

295put di ¼ 1 if and only if d0 > 0:5. Finally, pD ¼ p1p2 . . .pn (the
296order of players’ activation) is a permutation which maps
297each network node to a unique order from f1; 2; . . .ng. We
298model this permutation with a matrix u whose entries ui;j are
299defined as

ui;j ¼
1 if p�1

D ðviÞ < p�1
D ðvjÞ

0 if p�1
D ðviÞ > p�1

D ðvjÞ:

(
301301

302We compute ui;j with the same method used for di, by sam-
303pling from a normal distribution N u with average mu

i;j and
304standard deviation su

i;j.
305Our goal is to obtain a mathematical model (like a closed
306formula or the neural network shown in Fig. 1), mapping
307network structural properties to control parameters. For
308example the formula shown in this figure calculates su

i;j as a
309function of the betweenness of nodes i and j, based on the
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310 results of our framework which will be discussed below.
311 The framework starts with a training network Ntr. In the
312 first step, the structural properties of Ntr are computed. In
313 this paper, we consider five different properties: between-
314 ness, closeness, clustering coefficient, page rank and degree.
315 Thus, for each node vi of Ntr, we have a 5-component vector
316 Pi ¼<pi;1; pi;2; . . . ; pi;5> , where each pi;j determines one of
317 the computed structural properties of node vi inNtr.
318 In the next step, an optimization algorithm is run to
319 search for the optimized control parameters of the best
320 response dynamics over Ntr. Assuming that Ntr has n
321 nodes, n

2

� �þ 2n control parameters must be computed in
322 this step, which includes �i and di for 1 � i � n, and ui;j for
323 1 � i < j � n. Thus, to solve this problem, we must search
324 in a high-dimensional space where checking each point
325 requires a lenghty simulation. Hence, with a large size train-
326 ing network this optimization is infeasible. Therefore Ntr

327 should be a small network with diverse node properties. To
328 search for the optimal control parameter values, we use a
329 hybrid algorithm combining genetic and hill-climbing algo-
330 rithms [40] which will be introduced in Section 2.1.
331 Next, we use supervised learning algorithms to extract
332 the NSP2CP mathematical model. To do this, for each of the
333 parameters which correspond to a single node i.e., m�, s�,
334 md and sd, we construct a set of training data with n mem-
335 bers, each of which is a pair consisting of one of the Pis as
336 input and the optimal value for the target parameter for the
337 ith node as the supervisory signal. For example, the training
338 dataset for m� is formed as follows:

f<P1; optðm�
1Þ > ; < P2; optðm�

2Þ> ; . . . ; <Pn; optðm�
nÞ> g;

340340

341where optðm�
i Þ is the optimal value for m�

i in the training net-
342work computed by the optimization algorithm. To learn, mu

i;j

343and su
i;j which are related to two nodes, we use both Pi and

344Pj as the input object, for example the training dataset for
345mu

i;j has the form

f<Pi; Pj; optðmu
i;jÞ> g1�i < j�n:

347347

348The training dataset is fed to the learning algorithms to
349derive the NSP2CP mathematical model. In this paper, we
350test two different learning methods for this purpose: linear
351regression (LR) and multilayer perceptron (MLP) [41],
352described briefly in Section 2.2. The output of these methods
353is a mathematical formula or a neural network which map
354nodes’ structural properties to control parameter values.
355From now on, we can use this model for other (test) net-
356works (Fig. 2). We only need to compute the structural
357properties of each node and feed them to the models to
358compute the control parameters. In Section 3, we show the
359efficiency of these parameters.

3602.1 Optimization Algorithm

361For the optimization algorithm, we use a hybrid method
362combining hill-climbing and genetic algorithms. These
363meta-heuristic methods were invented to limit the search
364space and reduce the runtime in exchange for losing the
365assurance of obtaining the exact optimized value. Although
366they have a much smaller runtime in comparison to brute-
367force mechanisms, computing the objective function value
368for each combination of parameter values in the search
369space needs a complete simulation of the best response
370dynamics until it converges to an equilibrium, which can

Fig. 1. Learning the NSP2CP mathematical model from the training network’s structural properties.
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371 take a long time, even on our chosen small scale training
372 network. For the Hill-climbing algorithm, we start from a
373 feasible solution, a point in our search space, and then itera-
374 tively move to one of its neighbors which locally maximizes
375 the objective function. We continue this process until we
376 reach a point called a local maximum, where none of the
377 available neighbors can grant a higher value to the objective
378 function then the one being provided by the current point.
379 One of these local maximum points is the global maximum.
380 It is a good technique to run the whole process with random
381 starting points (random restarts) to increase the probability
382 of reaching the global maximum.
383 We use a hill-climbing algorithm with 10 random restart
384 to find optimized values for �i variables. Thus our target
385 point is a n-dimensional vector with the form � ¼
386 <�1; �2; . . . ; �n> . We run this hill-climbing algorithm 30
387 times, each time setting TD equals to the set of all nodes and
388 pD to a random permutation. We consider 2n neighbors for
389 each point �, where neighbors are obtained by increasing or
390 decreasing the values of components of � by a ¼ 0:5. After
391 running all instances of the hill-climbing algorithm, we will
392 have 30 n-dimensional vectors for �. By calculating the
393 mean and standard deviation of the components of these
394 vectors, we will have the values for m�

i and s�
i for each

395 1 � i � n.
396 In genetic algorithms, a population of candidate solu-
397 tions (points) is evolved toward better solutions. This evolu-
398 tion is an iterative process where in each iteration, 3
399 operators are applied: mutation, crossover and selection.
400 Applying mutation and crossover operators generates new
401 solutions and adds them to the current population. The
402 mutation operator creates a copy from one of the solutions
403 and does some minor modifications on it. The crossover
404 operator picks two solutions and generates a new child
405 solution by combining their properties. The selection opera-
406 tor reduces the population by selecting some of the current
407 population for the next iteration and ignoring the others.
408 This is done in a way that solutions with a higher objective
409 function value are more likely to be selected and transferred
410 to the next iteration.

411We use a genetic algorithm to search for optimized values
412for pD parameters. For pD, we generate 100 random permuta-
413tion as the initial population, each encompassing a potential
414activation order for the nodes. In each iteration, we pick 50 of
415the current population randomly and mutate them to gener-
416ate 50 new solutions. We also select 50 random pairs from the
417population and generate 50 new solutions by their crossover.
418After these steps, we will have a population of 200 (100 from
419the previous iteration, 50mutated solutions and 50 child solu-
420tions). Finally, we select 100 of the solutions for the next itera-
421tion so that solutions with a higher objective function value
422are more likely to be selected. After the convergence of the
423population, where the maximum objective function value of
424the population doesn’t change in two consecutive iterations,
425we transform all the populations to their matrix form (½ui;j�)
426and calculate their mean and standard deviation to achieve
427mu

i;j and su
i;j. Consider that in all these steps, TD is equal to the

428set of all nodes and �i is set to the optimized value of m�
i for

429each 1 � i � n computed in the previous phase.
430For the mutation operator, we pick two random nodes
431and change their order in the input permutation. That is, if
432the input permutation is p ¼ p1; . . . ;pi; . . . ;pj; . . . ;pn and
433the random nodes picked are pi and pj, the mutated permu-
434tation will be p0 ¼ p1; . . . ;pj; . . . ;pi; . . . ;pn. The crossover
435operator gets two permutations p1 and p2 as input. To gen-
436erate the child permutation p0, it selects a random subset R
437of nodes with n

2 members. The nodes in R will appear in the
438first jRj positions of p0 with the order defined by p1. The
439remaining n� jRj nodes will appear in the last positions of
440p0 by the order defined by p2.
441To find the optimized values of TD’s related parameters,
442we use a genetic algorithm with the same approach we
443used for pD. The search space consists of all n-bit binary
444strings. The only difference is the mutation and crossover
445operators. The mutation operator gets a binary string as
446input, chooses a random bit and changes it to its negation.
447The crossover operator gets two bit strings T 1 and T 2 and
448selects a random subset R of f1; 2; . . . ; ng with n

2 members.
449Then it computes the output bit string T by choosing the
450values of locations in R from T1 and others from T2.

Fig. 2. Computing a test network’s control parameters from the NSP2CP mathematical model.
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451 2.2 Learning Methods

452 As was mentioned earlier, in this paper we use two learning
453 methods, RL and MLP. In this section, we briefly explain
454 these learning methods. Learning algorithms are tools to
455 build an abstract model from an example input (which is
456 called the training data) in order to make predictions and
457 decisions. These models give us a general view of data,
458 which cannot be captured by looking at them separately.
459 The main approach of these algorithms is to first select a
460 mathematical model which intuitively has the ability to
461 explain the system behavior and then fit the observed data
462 into it. The fitting is done by defining an error function
463 which shows the deviation between the model and the data
464 and then by calibrating the model parameters to minimize
465 the error function.
466 Throughout this section we assume that we have n train-
467 ing data, each represented by a dþ 1-dimensional vector.
468 Each of these training data is in the form <xi; yi > , where
469 xi is a d-dimensional vector called the label and yi is its cor-
470 responding target value. The desired learned model M
471 should map each xi to yi. For example in our problem, xis
472 are the vectors containing network structural property val-
473 ues and yis are control parameters.
474 The linear regression method fits the training data into a
475 linear model

MðxÞ ¼ w0 þ w1x
ð1Þ þ w2x

ð2Þ þ � � � þ wdx
ðdÞ;

477477

478 where xðjÞ is the jth component of x. The LR algorithm
479 mainly tries to find wis that minimize the following error
480 function by optimization techniques such as gradient
481 descent

Xn
i¼1

ðMðxiÞ � yiÞ2 þ z

2

Xd
i¼0

w2
i :

483483

484 The first part of the above formula is the squared error func-
485 tion. The second part is called the regularization part and z

486 is called the regularization parameter which is used to avoid
487 over fitting the problem [41]. This model can be extended by
488 changing variables through applying different kinds of
489 functions, called basis functions, on the training data. For
490 example applying fðzÞ ¼ 1

z on yis and keeping xis without
491 variable change, will lead to the following model:

MðxÞ ¼ 1

w0 þ w1xð1Þ þ w2xð2Þ þ � � � þ wdxðdÞ :493493

494

495 A multilayer perceptron is a feedforward artificial neural
496 network which consists of a set of interconnected computa-
497 tional blocks which are called neurons. Each neuron does a
498 simple computation. Assuming that one of the neurons nðiÞ

499 has kþ 1 inputs I0 ¼ 1; I1; I2; . . . ; Ik, it computes a weighted
500 linear combination of these inputs and then applies an acti-
501 vation function (which is usually a logistic sigmoid function
502 sðzÞ ¼ 1

1þexpð�zÞ) on them, activating the output when the
503 input has the enough amount of amplitude. Thus Oi, which
504 defines the output of nðiÞ, is computed as follows:

OðiÞ ¼ s
Xk
j¼1

w
ðiÞ
j Ij

 !
;

506506

507where w
ðiÞ
j is the weights defined for nðiÞ. Although the

508modeling power of each neuron is very low, by networking
509them we will obtain a very powerful model, specially when
510a hidden layer is considered in its structure. To learn an
511MLP model, we should find optimum neuron weights w

ðiÞ
j

512in order to minimize the squared error function. The back-
513propagation method is an efficient technique devised for
514this purpose [41].

5153 EVALUATION

516In this section, our goal is to evaluate the performance of the
517NSP2CP framework. For this purpose, first we choose some
518network games and formally define in our settings. Then
519the evaluation methodology is described and finally the
520results are presented and analyzed.

5213.1 Target Network Games

522In this section,wedescribe three commonnetwork games and
523define them formally in our settings. These network games
524are used as a basis for our experiments in further sections.

5253.1.1 Community Formation Games

526Understanding the formation and evolution of overlapping
527communities in networks is one of the active lines of
528research in network sciences which has applications in soci-
529ology, criminology, social marketing and many other fields
530[42], [43], [44]. In order to study issues such as these in
531multi-agent and dynamical settings, community formation
532games have been proposed [10], [42].
533In this paper, we consider the community formation
534game proposed by Chen et al. [10] which uses Newman’s
535modularity function [45] as the nodes’ gain function. Here,
536nodes like to increase the number of their inter-community
537relations and decrease the number of their intra-community
538relations. We assume that, on the other hand, we don’t want
539the network to converge to a collection of separated commu-
540nities, preferring the network structure that allows high
541speed dissemination of information between communities.
542We now formalize all these aspects in our setting.
543The best response dynamic for this community formation
544game on a network N is stated as follows. Each node vi
545chooses a set of communities ci � C and enrolls in them.
546His aim is to maximize his local modularity, which shows
547the degree to which vi has inter-community interactions in
548comparison to intra-community interactions. In the work
549done by Chen et al. [10] the following gain function for
550node vi, when his action is ci, is proposed

giðNÞ ¼ 1

m

X
vj2VN

�
Aðvi; vjÞdðvi; vjÞ

� degNðviÞdegNðvjÞ
2m

jci \ cjj
�
;

552552

553where

554� m is the number ofN’s edges,

555� Aðvi; vjÞ ¼ 1 there is an edge between vi&vj
0 o.w.

�

556� dðvi; vjÞ ¼ 1 if ci \ cj 6¼ ;
0 o.w.

�
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557 The loss function of each node vi is simply defined as
558 liðNÞ ¼ �ijcij where �i is the cost of enrolling vi in each
559 community.
560 As mentioned before, we assume that we want to
561 increase the speed of information dissemination between
562 communities, which can be measured by computing the
563 closeness of these different communities to each other. To
564 do so, we first build a weighted complete graph
565 GC ¼ ðVC;ECÞ from the Nash-equilibrium network N , cre-
566 ated from an action profile using the following procedure:

567 (1) Define VC ¼ S
vi2VN ci

568 (2) For each p; q 2 VC , the weight of the edge between p
569 and q in GC is set to 1

ep;qþ2vp;q
where ep;q is the number

570 of edges in N that exist between nodes enrolled in p
571 and q and vp;q is the number of N’s nodes which are
572 enrolled in both p and q.
573 fðNÞ is computed from GC by the following formulation:

fðNÞ ¼ 1

jVC j

" X
p;q2VC

distGC
ðp; qÞ

#�1

;

575575

576 where distGC
ðp; qÞ is the weighted shortest path between p

577 and q in GC .

578 3.1.2 Network Creation Games

579 Complex networks have known structural properties such
580 as low average distance, high clustering coefficient and
581 power-law degree distribution. Many researchers have con-
582 centrated on building network models which capture these
583 properties [46]. Network creation (formation) games have
584 been devised as a multi-agent model for this aim [47], [48],
585 [49]. In this paper, we consider the network creation game
586 proposed by Brautbar and Kearns [11] in which nodes try to
587 maximize their clustering coefficient. The clustering coeffi-
588 cient of a node is the proportion of edges that exist between
589 the node and neighboring vertices to the number of links
590 that could possibly exist between them.
591 Each node vi can decide on the existence of his neighbor-
592 ing edges. The gain function of node vi is defined as

giðNÞ ¼ DNðviÞ
degN ðviÞ

2

� � :
594594

595

596 The loss function is simply the cost of purchasing edges,
597 i.e.,

liðNÞ ¼ �i � degNðviÞ;
599599

600 where �i is the cost of purchasing each edge for vi.
601 For this game, our objective function is defined so as to
602 capture the fact that we want the nodes of the Nash-

603equilibrium network as close as possible. Thus for a Nash-
604equilibrium N of this game we define fðNÞ as N ’s closeness

fðNÞ ¼ 1

n

X
vi;vj2VN

1

distNðvi; vjÞ;
606606

607where distNðvi; vjÞ is the length of the shortest path between
608vi and vj in the network N .

6093.1.3 Signed Network Formation Games

610Signed networks are networks in which edges are labeled as
611either negative or positive. The semantic of these labels is
612related to the context in which the network is defined.
613Signed network formation games have been defined similar
614to network creation games as a way to study the evolution
615of signed networks. The signed network formation game
616that we focus on here is based on the theory of structural
617balance in networks [50]. Structural balance theory
618describes attitudes of individuals to reduce cognitive disso-
619nance among each other. When nodes set up dyadic rela-
620tions that contain both positive and negative interactions,
621four different types of triad relations can be created (Fig. 3).
622In conformity to this theory, we can classify these triangles
623into 2 classes: balanced and unbalanced. Triads (a) and (c)
624are balanced and relatively stable, but triads (b) and (d) are
625unbalanced and susceptible to break apart.
626Each node vi can decide on the existence and subse-
627quently sign of his neighboring edges. The node’s utility is
628defined as a linear combination of the number of balanced
629triangles and unbalanced triangles he is involved in

giðNÞ ¼ Dþ
NðviÞ;

631631

632and

liðNÞ ¼ �i � D�
NðviÞ;

634634

635where

636� DþðvÞ is the number of balanced triangles of N vi is
637involved in.
638� D�ðvÞ is the number of unbalanced triangles of N vi
639is involved in.
640� �i is a parameter which defines a cost for nodes
641when they contribute to an unbalanced triad.
642Nodes tend to have more balanced relations, so they try
643to manage their relationships in order to maximize the num-
644ber of balanced triads they are involved in, but stable signed
645networks can have some unpleasant properties. It has been
646shown that when networks have no unbalanced triad, its
647nodes can be partitioned into two subsets wherein edges in
648the same subset are all positively labeled and the edges
649between different subsets are negatively labeled [51]. This
650creates a bipolar structural with two rival groups of united
651nodes which are enemies of each other, which in many

Fig. 3. Possible undirected triad in a signed network. Full and dashed lines represent positive and negative relations respectively.
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652 contexts is not a desired property. One of the best analysis
653 of World War I is based on the formation of a such bipolar
654 structure in international relationships between the six
655 main warring countries [5]. Thus here we want the Nash-
656 equilibrium network N as unstable as possible, so we define

657 fðNÞ ¼ D�
N

D�
N
þDþ

N

, where D�
N and Dþ

N are the number of unbal-

658 anced and balanced triangles in N respectively.

659 3.2 Training & Test Networks

660 In our framework, nodes’ structural properties (degree,
661 clustering coefficient, betweenness, closeness and pagerank
662 are chosen) are used for learning control parameters. For
663 this purpose, we first should choose a training network and
664 we should focus on these properties. As we previously saw
665 in Section 2, our training network must be small and contain
666 diverse node properties. With this in mind, we chose
667 Zachary’s karate club-network [52] with 34 nodes and 78
668 edges as the training network. The properties of this net-
669 work are depicted in Table 1.
670 For testing our framework we should choose different
671 test networks. Since we want to run the optimization algo-
672 rithm on these networks to compare our framework with it
673 (the best possible output) and this algorithm is very time

674consuming, test networks should be small. It is important to
675notice that running this algorithm even on these small net-
676works takes many hours. So three small networks which are
677important in social network research are chosen as our test
678networks (See Table 2).

6793.3 Simulations & Results

680In Section 3.1, we choose three different network games to
681evaluate the NSP2CP framework. So for each of these games,
682the framework’s mathematical models must be learned. To
683do this, as it is depicted in Fig. 1, we should first run the opti-
684mization algorithm (see Section 2.1) on the training network.
685The output of this long-time running algorithm is the best set
686of control variable values we can achieve for the training
687network’s nodes. In Fig. 4, we have shown an example for
688the behaviour of the genetic algorithm used for finding the
689best values for md

i control parameters. This figure shows how
690the objective function values for the population in the com-
691munity formation game are effectively increasing during
692this phase until they converge to their optimums.
693In the next step of our framework (See Fig. 1), the struc-
694tural properties of the training network’s nodes are com-
695puted and alongside with the output of the optimization
696algorithm, are fed into a learning algorithm (see Section
6972.2). This learning algorithm should calculate a model for
698the fast computation of control variables. For implementing
699these learning algorithms Matlab’s standard toolboxes are
700used. For example for learning the MLP model, the Neural
701Network toolbox is used which gets the number of neurons
702in the hidden layer (we used 10) and then builds and trains
703the desired MLP model. The resulting trained network for
704calculating activation parameter variables is depicted in
705Fig. 5. This network is trained for 31 epochs where the vali-
706dation error reachs its least value. The convergence diagram
707during this phase is depicted in Fig. 6.
708Finally, for each network game and each test network, we
709consider the following test scenarios and compare their

TABLE 1
Properties of the Training Network

Property Average Standard Deviation

Degree 4.6 3.940
Clustering Coefficient 0.11 0.578
Betweenness 46.47 99.270
Closeness 0.129 2:18� 10�3

PageRank 0.029 0.022

TABLE 2
Test Networks

Test Network #Nodes #Edges Reference

Dolphin 62 318 Lusseau et al. [53]
Jazz 198 5,484 Heckathorn et al. [54]
Netscience1 379 1,827 Newman [55]

Fig. 4. Our genetic algorithm implemented for optimizing the md
i control

parameters for the community formation game.

Fig. 5. The MLP model trained for the md
i and sd

i variables.

Fig. 6. The convergence diagram for the MLP shown in Fig. 5.
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710 results. Each scenario is run using a different method. Among
711 these methods, the LR and MLP models are derived from the
712 NSP2CP framework. As described in Section 2, in these sce-
713 narios the trained mathematical models are used to compute
714 the control signals. These mathematical models (a closed for-
715 mula or a neural network) can compute the control signals
716 from the structural properties of each test network instantly.

717 � LR Model: the value of control parameters are com-
718 puted from the LR model. The LR model is a set of
719 closed formulas which map the structural properties
720 of nodes to the average and standard deviation of
721 control parameters. These formulas are obtained by
722 the linear regression algorithm.
723 � MLP Model: the value of control parameters are
724 computed from the MLP model. This model is a set
725 of learned neural networks which take the value of
726 nodes’ structural properties and compute average
727 and standard deviation of control parameters. These
728 neural networks are learned by the multilayer per-
729 ceptron algorithm.
730 � Optimization Algorithm: the value of control parame-
731 ters are computed by running our optimization algo-
732 rithm on the test network. Running an optimization
733 algorithm for each instance of the problem (for each
734 test network) is a typical but time consuming way to
735 compute the control parameters. It is trivial that the
736 control parameters computed by this method are
737 always better than the previous twomethods, because
738 the LR and MLP models are learned from the output
739 of this model. Since for the best response dynamics
740 there are many such parameters, using this method
741 for controlling them is very slow and therefore infeasi-
742 ble. Our goal for running this scenario is to compare
743 the optimality of this method with NSP2CP driven
744 algorithms.
745 � Random Assignment: the value of control parame-
746 ters are chosen randomly. One can hypothesize that
747 the optimality and effectiveness of the LR and MLP
748 models can be by chance, i.e., any random assign-
749 ment to the control parameters can result in such
750 optimality. This scenario is used for comparison and
751 to reject this hypothesis.

752 We run 100 simulations (on a machine with 8 GB of RAM
753 and a Core i3 processor running at 3.3 GHz) for each of the

754above scenarios (methods) for each network game on each
755test network. For each simulation, we derive the value of
756the control signals by sampling from the normal distribu-
757tions whose mean and standard deviations are determined
758based on the chosen scenario.
759While the optimization algorithm scenario needs a very
760long time to converge and find optimal control parameters, in
761the LR and MLP scenarios the control parameters are calcu-
762lated instantly. The charts in the paper show that although
763these models are very fast, their outcomes are comparable to
764the time intensive optimization algorithms. We use box plots
765to compare the values of the objective function in different
766scenarios. The results are shown in Figs. 7, 8, 9, 10, 11, 12, 13,
76714, and 15. Each figure is related to one of the games intro-
768duced in Section 3.1 and one of the test networks (See Table 2).
769As can be seen from the box plots, the results of our proposed
770model compare favorably to the results that can be achieved
771using the optimization algorithm, which takes many hours to
772complete. So whilst our results behave much more optimally
773than the random assignment scenario and also in many cases
774are close to the optimized algorithm, we have nearly instanta-
775neous output of the control parameter values.
776By the above simulation scenarios, we show that using a
777learning algorithm to calculate control signals from the net-
778work structural properties has a tremendous effect on the
779time and optimality of the control signals. We still have to
780face a new question: which learning algorithm? Our experi-
781ment shows that it only depends on the game. As it can be

Fig. 7. Testing NSP2CP for the community formation game on Dolphin
network.

Fig. 8. Testing NSP2CP for the community formation game on Jazz
network.

Fig. 9. Testing NSP2CP for the community formation game on Nets-
cience network.
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782 seen from the Figs. 7, 8, 9, 10, 11, 12, 13, 14, and 15 for all
783 three test networks, the linear regression algorithm has
784 better performance for the community formation and the
785 network creation games. On the other side, the multilayer
786 perceptron model is better for the signed network formation
787 game for all three test networks. This may be because of the
788 opposite directions of the utility and the objective function
789 in this game, i.e., if a node increases her utility function, she
790 may decrease the objective function.

791 4 CONCLUSION

792 Controlling complex dynamical systems involving many
793 agents is a complex and challenging problem arising in

794many fields, specially when the involved agents are rational
795and selfish. A classical but time consuming method for cal-
796culating control signals in such systems is to use optimiza-
797tion algorithms to find best values for these parameters. The
798problem is that in many scenarios when the number of con-
799trol signals increase the running time will also increase
800exponentially, specially when meta-heuristics are used.
801In this paper, we focus on one of the simplest game theo-
802retical dynamical systems called best response dynamics
803whose agents are connected through a network. Since such
804systems are very complex, controlling them involves a high
805dimensional search space needing an optimization algo-
806rithm with a large run time. Another problem when dealing

Fig. 10. Testing NSP2CP for the network creation game on Dolphin
network.

Fig. 11. Testing NSP2CP for the network creation game on Jazz
network.

Fig. 12. Testing NSP2CP for the network creation game on Netscience
network.

Fig. 13. Testing NSP2CP for the signed network formation game on
Dolphin network.

Fig. 14. Testing NSP2CP for the signed network formation game on Jazz
network.

Fig. 15. Testing NSP2CP for the signed network formation game on
Netscience network.
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807 with such systems is that even with a given set of parameter
808 values, calculating the objective function requires a lengthy
809 simulation, where probing each point is very time-consum-
810 ing. Taking these two problems into account, classical meth-
811 ods are impractical and inefficient in many instances.
812 In this paper the NSP2CP framework was introduced
813 which uses the relation between structural properties of a
814 given network and control parameters to derive values for
815 the control parameters. As was shown, our method yields a
816 good enough result in a fraction of the time of classic meth-
817 ods. In this framework, we use typical learning algorithms
818 whose main goal is to find patterns in data and abstract it
819 by mathematical formulations.
820 Our approach can be used in other researches which try
821 to study different properties of complex networks, specially
822 when it is desirable to find correlations between them. With
823 learning algorithms, one can not only find complex correla-
824 tions but also extract an exact formulation which can also be
825 used for other important goals such as optimizations and
826 analytical studies.
827 As far as we know, this paper is the first which considers
828 controlling game theoretical dynamics over networks.
829 Many follow-up works can be proposed for this paper
830 which are interesting and also have applications in different
831 fields:

832 � We have focused on best response dynamics which
833 simply assumes that players have no memory and
834 do not become experienced when the game goes on.
835 Considering more natural dynamics [56], [57] which
836 considers players with learning powers are more
837 challenging and also more interesting.
838 � It has been shown that there exists a subcategory of
839 games in which computing the best response is NP-
840 Hard [12], [58], thus even a computer with high com-
841 puting power can not feasibly find the solution. Play-
842 ers in new game theoretical models are satisfied with
843 approximate best responses which are not optimal
844 but are guaranteed to be near the optimal value [59],
845 [60]. Controlling the dynamics defined over these
846 models can be an interesting follow-up.
847 � In our model we used a limited setting including a
848 small training network and a small number of struc-
849 tural properties. We can predict that better results
850 can be achieved by using this framework with
851 extended settings.
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