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Abstract—This paper aims to investigate how a central authority (e.g. a government) can increase social welfare in a network of
markets and firms. In these networks, modeled using a bipartite graph, firms compete with each other à la Cournot. Each firm can
supply homogeneous goods in markets which it has access to. The central authority may take different policies for its aim. In this paper,
we assume that the government has a budget by which it can supply some goods and inject them into various markets. We discuss
how the central authority can best allocate its budget for the distribution of goods to maximize social welfare. We show that the solution
is highly dependent on the structure of the network. Then, using the network’s structural features, we present a heuristic algorithm for
our target problem. Finally, we compare the performance of our algorithm with other heuristics with experimentation on real datasets.

Index Terms—Networked Markets, Cournot Competition, Social Welfare, Governance, Optimization.

F

1 INTRODUCTION

Cournot Competition in the single-market setting has been
vastly studied in the literature. For instance, refer to [1],
[2], [3], [4]. In this oligopolistic model, each firm decides the
quantity of the homogenous good they are willing to supply
into the market. Then, according to the inverse demand
function, the market-clearing price is determined based on
the aggregate supply in the market. However, with the
emergence of diverse and complicated economic scenarios,
single-market models are inadequate for studying reality.
In many settings, firms can compete in different markets,
whether or not the good is identical in those markets.
Typically, this situation is modeled using a bipartite graph
in which one side of nodes represents firms and the other
side depicts various markets. Each market is characterized
by an inverse demand function. Multi-market competition is
found abundantly in industries such as natural gas, water,
electricity, airlines, cement, healthcare, etc; see [5], [6], [7],
[8].

One question that arises naturally in the presence of
strategic agents is the means by which it is possible to
raise welfare measures like the ones used in [9], [10]. One
such measure is social welfare, which captures the aggregate
well-being in the environment, as discussed in [11], [12]. In
this case, it is typically the government that seeks higher
social welfare. While there have been many studies on in-
teractions among firms and equilibria in networked markets
(See e.g. [13], [14], [15]), to the best of our knowledge, there
is little work on how to govern and control social welfare in
networked markets. The prevalence of networked markets
in real-life experiences motivates us to study social welfare
in this model. Our paper takes one step forward towards
this objective.

We consider a limited intervention budget for the gov-
ernment in the pursuit of higher social welfare. Therefore,
we assume that the government is able to have a small
amount of supply into every market. This small intervention

setting enables us to use some techniques for the estimation
of social welfare in terms of government’s supplies. The
simple structure of the approximation leads to a strategy for
the government. However, it is good to note that the actions
taken by the government, are specified by the structure of
the network.

This problem arises from a real-world scenario in ev-
ery country (especially in third-world countries) controlling
their inflation by directly setting prices. Such intervention
is absolutely incorrect and conflicts with the free-market
economy. The framework offered in this paper gives a
natural way for governing the markets and controlling
the prices (maximizing social welfare) without violating
the free-market economy, which concurrently makes firms
happy.

In this paper, first, we mathematically model the tar-
get problem by using, which is typically an optimization
problem. Then we propose a heuristic for solving this opti-
mization problem and then compare the performance of our
heuristic with other heuristics one may propose for solving
this problem. The experiments are evaluated on a real-world
dataset gathered by the research team and are one of the
contributions of this paper.

1.1 Related Works

Our work is in essence related to several categories of
papers. First, there have been many attempts in studying the
strategic behavior of firms and equilibria in the competition;
for example, refer to [16], [14], [17], [18]. One such study,
which has been our first step-stone, is done by Bimpikis el
al. [14], where they present a ”characterization of the pro-
duction quantities at the unique equilibrium of the resulting
game for any given network”, in terms of supply paths in
the network. Furthermore, they introduce the price-impact
matrix which enables them to explore the effect of changes
in network structure on firms’ profits and consumer welfare.
These changes include entering of a firm in a new market
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and also merging of two firms. Their results challenge the
standard beliefs in Cournot oligopoly that more competition
necessarily leads to higher welfare. Relatedly, [15] turn
their focus on finding algorithms that compute pure Nash
equilibria in Cournot competitions in networks. Moreover,
[13] study the impact of monopolies on social welfare in a
certain model of Bertrand network competition.

Another group of studies relevant to ours are the ones
that analyze interactions in the networks and their impact
on aggregate measures, e.g. [19], [20], [21], [22]. Most re-
latedly, [20] have proposed a framework that paves the
way to examine equilibria in such interdependent agents
setup and discover the influence of small microeconomic
shocks on the economy’s aggregate performance. Acting
as our main inspiring study, they use Taylor expansion to
acquire insights on the impact of shocks. Their examinations
yield different results about the economy’s ex ante aggregate
performance in the case of linear and non-linear worlds. To
understand how the structure of the network shapes the
economy’s performance, they demonstrate that the Bonacich
centrality measure can capture this effect when the nature
of the interactions is linear. Such analysis is prevalent in
economics. For example, the general notion of production
networks demands consideration of dependencies and net-
work effects [23].

Lastly, following the connections found by [14] and [24]
between Bonacich centrality and network effects in network
Cournot competition, studies about controlling centrality
measures in networks can be considered related to ours.
Generally, with an established relationship between central-
ity measures and social welfare in our setting, one might use
these methods to change the structure of the competition
such that social welfare increases. As such, [25], [26], [27]
model the centrality control problem as an optimization
problem and presents an algorithm to solve it.

2 PROBLEM FORMULATION

Consider a network game G which consists of n firms F =
{f1, · · · , fn} and m markets M = {m1, · · · ,mm} in which
the firms compete. Each firm has access to a set of markets,
meaning that it can supply the good only in those certain
markets. For firm fi, let Mi be the set of those markets.

Similarly, let Fj denote the set of firms that have access
to market mj . The amount of good that firm fi supplies in
mj is denoted by qij . Moreover, firm fi would incur the
production cost Ci(q) (q is the vector of all qijs). Following
the framework used by [14], we consider the inverse de-
mand functions of the markets as affine. More specifically,
the price of the good in market mj , which we denote by
Pj(q), is governed by the relation

Pj(q) = αj − βj
∑
fi∈Fj

qij . (1)

Additionally, we assume

Ci(q) = ci · (
∑

mj∈Mi

qij)
2. (2)

For the sake of simplicity of our formulas, we suppose
that for all mi ∈ M , αi = α and βi = β and for all fj ∈ F ,
cj = c, where α, β, c > 0. We model this economy with a

bipartite graph G = (V,E). An example of this graph can
be seen in Figure 1.

It is essential to note that the structure of the cost func-
tions Cis is what determines whether the analysis of dif-
ferent markets can be done separately. If the cost functions
Cis are additive in terms of qijs, then there is no need for
studying these interdependencies. However, with general
cost functions, decision in different markets are coupled.
Our considered quadratic form brings out the role of the
underlying network structure. It is worth mentioning that
while our approach is generally applicable on many other
parametric assumptions, this form makes the calculations
easier to follow.

Fig. 1: A Graph for a Networked Market

Briefly speaking, we can consider firm fi’s profit as a
combination of the aforementioned components:

πi(q) =
∑

mk∈Mi

qik · Pk(q)− Ci(q) (3)

Given a set of network graph G, each fi in competition with
other firms solves the following optimization problems for
computing its best response.

maximize
qi

πi
(
qi, q−i

)
subject to qik ≥ 0 for mk ∈Mi

qik = 0 for mk /∈Mi

(4)

where qi and q−i denotes the vector of production quantities
of fi and its competitors, respectively.

In [14], Ehsani et al. have focused on the equilibrium
analysis of this model and their main result about existence
and characterization of the unique Nash equilibrium of this
game is adopted as the foundation of this research.

Theorem 1. [Adopted from [14]] The unique Nash equilibrium
of the game is given by

q∗ = [I + γW ]−1γᾱ, (5)

where γ = 1
2(c+β) , ᾱ is a |E| × 1 vector such that for every

edge (i, k) ∈ E we have ᾱik = αk and W is an |E|×|E| matrix
whose entries are

wi1k1,i2k2 =


2c if i1 = i2, k1 6= k2
β if i1 6= i2, k1 = k2
0 otherwise

(6)

The matrix [I + γW ]−1 is called the Leontief inverse.
We assume that the matrix [I + γW ] is invertible. For a
given economy, this assumption is shown to be true by [28],
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[29]. In this paper, we propose and formalize the problem
of governance of the aforementioned networked markets
(networked Cournot competition) with the objective of max-
imizing the social welfare. Social welfare (SW ) in Cournot
competitions is defined as the sum of consumer surplus
(CS) and firms’ profits. The consumer surplus in the Nash
equilibrium is computed by the following formula (see [30],
[14]):

CS =
∑

mk∈M

(αk − Pk(q∗))
2

2βk
. (7)

Therefore the social welfare’s formula is:

SW =
∑
fi∈F πi(q

∗) + CS
=
∑
fi∈F [

∑
mk∈Mi

q∗ik · Pk(q∗)− Ci(q∗)]
+
∑
mk∈M

1
2βk

(αk − Pk(q∗))
2
.

(8)

Now, assume that an additional firm node is added
to the network, such that it is owned by the government
and has access to all the markets. This node’s target is
to maximize the weighted social welfare. It is provided
with a budget B and can use this budget to provide some
shocks to each market. In this paper, each shock to market
mk is defined as provisioning some quantity of the good
(εk ≤ qt) to this market alongside the competing firms.
qt is a threshold that is forced by external entities such as
law or social pressure, and is the maximum amount that
the government can intervene in a market. Firms compete
until they reach an equilibrium. The equilibrium can be
computed by the following theorem.

Theorem 2. The unique Nash equilibrium of the game G in the
presence of shocks {εi}mi=1 is given by

q∗ = [I + γW ]−1γ(ᾱ− βε), (9)

whereW and α are defined as in Theorem 1 and βε is a |E|×1
vector such that for every edge (i, k) ∈ E we have β̄εik = βk · εk
Proof. In the presence of shocks we can rewrite the firms’
utility functions:

πi(q, ε) =
∑
mk∈Mi

qik · Pk(q)− Ci(q)
=
∑
mk∈Mi

qik[αk − βk(
∑
fj∈Fk

qjk + εk)]

−ci · (
∑
mk∈Mi

qik)2

=
∑
mk∈Mi

qik[(αk − βkεk) + βk
∑
fj∈Fk

qjk]

−ci · (
∑
mk∈Mi

qik)2

.

(10)
Assume that we have a new game G′ where everything

is the same as the previous setting (G) except that the values
of αks have changed to αk − βkεk. By Theorem 1, we will
have the following formula for the Nash equilibrium point:

q∗ = [I + γW ]−1γ(ᾱ− βε) (11)

Equilibria in G in the presence of shocks are equal to
equilibria of G′ because πis computed by the above formula
is exactly what must be for G′. So by following the method
used in [14] for proving Theorem 1, our desired target will
be achieved.

Note that for each mk ∈ M , we must have εk < α
β ,

because if not, the price function Pk will be negative which
is not acceptable. Now, we can write the formulation of

social welfare. The SW function in the presence of shocks
can be recalculated as follows:

SW =
∑
fi∈F πi(q

∗, ε) + CS

=
∑
fi∈F

[∑
mk∈Mi

q∗ik · Pk(q∗, ε)− Ci(q∗)
]

+
∑
mk∈M

1
2βk
·
(
αk − Pk(q∗, ε)

)2
=
∑
fi∈F

[∑
mk∈Mi

q∗ik
(
α− β

∑
fj∈Fk

q∗jk − βεk
)

−c
(∑

mk∈Mi
q∗ik
)2]

+
∑
mk∈M

1
2β ·

[(
β
∑
fj∈Fk

q∗jk + βεk
)2]

=
∑
mk∈M

(∑
fi∈Fk

q∗ikα
)

−β/2 ·
∑
mk∈M

(∑
fi∈Fk

q∗ik

)2
−c
∑
fi∈F

(∑
mk∈Mi

q∗ik

)2
+
∑
mk∈M (β/2) · ε2k

(12)
Therefore, we have the following vectorized formula,

SW = q∗Tα− (β/2 + c)q∗T q∗ − (1/2)q∗TWq∗ + (β/2)εT ε,
(13)

where ε is a m× 1 vector whose kth component is equal to
εk and other variables are defined as before (see Theorem 1
and Theorem 2). By the above formulation the problem of
governing social welfare with market shocks can be mod-
eled by the optimization problem described in Definition 1.

Definition 1. The problem of governing (maximizing) social
welfare with shocks in a networked market G (MaxSW (G)) is
defined as the following optimization problem:

Maximize q∗Tα− (β/2 + c)q∗T q∗ − (1/2)q∗TWq∗ + (β/2)εT ε
subject to q∗ = [I + γW ]−1γ(ᾱ− βε)

c · (
∑

mk∈M
εk)2 ≤ B

0 ≤ εk ≤ qt ∀mk ∈M
(14)

The above formula is not concave or convex, because
both convex and concave expressions are appeared in it.
This makes the convex optimization frameworks ineffective.
In the next section, we devise a heuristic algorithm for
this optimization problem. This is done by proposing a
linear estimation for the social welfare and an optimization
algorithm for maximizing it. Then, in Section 4, the good
performance of this heuristic algorithm is demonstrated by
experimentation on real and synthetic data.

3 SOLUTION ESTIMATION

In this section, we provide some insights into the social
welfare function and by linearizing it with Taylor expansion,
we propose an algorithm called the Linear heuristic for the
MaxSW (G) problem. More precisely, we propose a metric
that can be computed using the network structure and
we analytically show that picking the markets with larger
amounts of this metric can (approximately) maximize the
social welfare. In the next section, by running experiments
on real and synthetic datasets, we will show the superiority
of this approach over others.

The main idea is to use the first order multivariate
Taylor expansion [31] to create a linear approximation for
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the social welfare function. This approximation leads to a
linear combination of εis:

SW (ε) = SW (0) + ζ1ε1 + ζ2ε2 + ...+ ζmεm. (15)

Keeping in mind that the government has a limited
budget for its interventions, we can consider the shocks
small (∀mk∈M εk ≤ qt), so that this approximation may
be valid. The coefficient of each εi (ζi) can be considered
as the aforementioned metric. Since SW is a differentiable
function, we can write SW as follows:

SW (ε) ≈ SW (0) + ε · ∇SW (0)

= SW (0) +
m∑
r=1

εr
∂SW

∂εr
|ε=0

(16)

Thus, the amount of social welfare added by the shocks
is a linear combination of εrs whose coefficients are ζr =
∂SW
∂εr
|ε=0. Therefore, to maximize social welfare, markets

should be targeted for supplies in order of their ζrs. The
details of this algorithm can be seen in Algorithm 1. Now,
we discuss how to calculate the coefficients.

Using Theorem 2 and expanding the formula derived for
q∗, we have:

q∗ik =
α− 2c

∑
m`∈Mi,m` 6=mk

q∗i` − β
∑
fj∈Fk

q∗jk

2(β + c)

=
α

2(β + c)
−

∑
(j,`)∈E(G)

(γW )ik,j`q
∗
j`

(17)

If we define function f(z) = γα− γz,

q∗ij = f(
∑
k, l

wij,k`q
∗
k` + γβεj) (18)

denotes the amount firm fi supplies in market mj in equi-
librium under the presence of shock εj . Moreover, from
Equation 13 with h(x) = αx − (β2 + c)x2 and u(qij , qk`) =
wij,k`qijqk`,

SW =
∑
i, j

h(q∗ij)−
1

2

∑
i, j, k ,`

u(q∗ij , q
∗
k`) +

∑
mk∈M

(β/2) · ε2k

(19)
is social welfare under the circumstances discussed so far.

We start our analysis by calculating
∂q∗ij
∂εr

. Exploiting the
idea used by [20],

∂q∗ij
∂εr

= f ′

 ∑
i, j, k ,`

wij,k`q
∗
k` + γβεj

 ·
 ∑
i, j, k ,`

wij,k`
∂q∗k`
∂εr

+ γβ1{r = j}

 (20)

Evaluating this equation using the matrix form at point ε =
(ε1, · · · , ε|E|) = 0, which is the absence of the government,
yields

∂q∗

∂εr
|ε=0 = −γβ(I + γW )−1er, (21)

where er is a |E| × 1 vector, with ones for edges connecting
to market mr and zeros elsewhere. Thus, we have:

∂q∗ij
∂εr
|ε=0 = −γβ

∑
k

λij,kr , (22)

where λij,kr is the corresponding element to edges ij and
kr of matrix (I + γW )−1.

Setting our sights on social welfare, we have:

∂ SW
∂εr

=
∑
i,j

h′
(
q∗ij
) ∂q∗ij
∂εr
−1

2

∑
i,j,k,`

[
∂u

∂q∗ij

∂q∗ij
∂εr

+
∂u

∂qk`

∂q∗k`
∂εr

]
+βεr.

(23)
Considering h′(x) = α − (β + 2c)x and ∂u(qij ,qk`)

∂qij
=

wij,k`qk`, we get:

∂ SW
∂εr

=
∑
i,j

(α− (β + 2c)q∗ij)
∂q∗ij
∂εr

−1

2

∑
i,j,k,`

[
wij,k`q

∗
k`

∂q∗ij
∂εr

+ wij,k`q
∗
ij

∂q∗k`
∂εr

]
+βεr

(24)

Thus, we evaluate equation (24) at ε = 0:

∂ SW
∂εr
|ε=0 =

∑
i,j

(α− (β + 2c)q∗ij |ε=0)
∂q∗ij
∂εr
|ε=0

−1

2

∑
i,j,k,`

[
wij,k`q

∗
k`|ε=0

∂q∗ij
∂εr
|ε=0

+wij,k`q
∗
ij |ε=0

∂q∗k`
∂εr
|ε=0

]
)

(25)

q∗ij |ε=0 has been studied in [14]. Based on their results,
we can deduce the following in our setting:

q∗ij |ε=0 = γα
∑
k`

λij,k` . (26)

Using equation (22) and (26), we get:

∂ SW
∂εr
|ε=0 = −γβ

∑
ij

(α− γα(β + 2c)
∑
k`

λij,k`)
∑
k

λij,kr−∑
i,j

(γα
∑
k`

λij,k`(
∑
k`

wij,k`
∑
t

γβλk`,tr))

(27)
Since we have derived a formula for computing ζr =

∂SW
∂εr
|ε=0s, we can state the final algorithm. This algorithm

is shown in Algorithm 1. In the first four lines of this
algorithm ζrs are computed from the network structure and
the Leontief matrix. After that, a set T is initialized to the
set of all markets and a variable S is initialized to 0. In
the next while loop, T is to be the set of markets that have
not been supplied with shocks so far and S is defined as the
total goods supplied by the government. Therefore, the loop
execution will continue until either all markets are supplied
with shocks or the cost of shock supplies exceeds the budget
intended for this purpose (B).

In each iteration of the while loop, the market with
maximum ζr is chosen from T and extracted from this set.
Then the maximum possible shock is computed as εr and is
added to S. Note that for computing εr, three upper bounds
must be considered:

1) qt is the upper bound defined in Definition 1.
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2) β
α is the upper bound defined by the price function.
If εr >

β
α , the price will be negative at that market,

which is not acceptable.
3)

√
B
cr
−S is the amount of goods that can be provided

by the remaining budget.

4 EMPIRICAL STUDY

We evaluate the performance of our proposed method on
a synthetic and a real-world dataset of different pharma-
ceutical companies as our firms and different drugs as our
markets. This dataset is collected by contacting 135 produc-
tion companies which produce 603 drugs altogether, and
after negotiation, we succeed in getting their data. Then we
transform, clean, and integrate all of their data to generate
our desired dataset. For example, Aspirin and its users de-
fine a market in which players are companies that produce
this drug. Additionally, we use identical parameters α, β, c
for all the firms and markets, as we are considering the
symmetric case. Using Ordinary Linear Regression, these
parameters are set in a way to be close to real-life values. The
synthetic graph also has 603 markets and 135 firms, which
has been chosen uniformly at random from all bipartite
graphs with the same numbers of markets, firms, and firm-
market pairs. The characteristics of this dataset are shown
in Table 1. A subgraph of this network is shown in Figure 2.
The data associated with this subgraph is shown in Table 2.

Fig. 2: A Subgraph of the Drug Company Dataset

4.1 Competitor Benchmark
The essence of competitors we consider is that the gov-
ernment takes on a measure to rank the markets. Next, it
supplies goods to markets in that order, as much as possible
and as long as permissible. Naively, it is possible to choose
the markets at random. No measure, to the best of our
knowledge, has been presented for picking the markets yet.
Nevertheless, centrality measures are natural candidates for
us to use as benchmarks. As for the centrality measures we
consider, we use the followings:

• Degree. The simplest centrality measure is the de-
gree of a node, which in our model, is the number of
firms competing in a market:

d(mi) = |Fi|. (28)

• Betweenness. Generally speaking, betweenness cen-
trality is a quantity for determining the impact of a
node over the flow of information in a graph [32].
The betweenness of a node is an indicator for the
fraction of shortest paths (with regard to the number
of edges) in a graph that pass through this vertex. In
our setting:

b(mi) =
∑

fj ,fk∈F

σjk(mi)

σjk
, (29)

where σjk is the total number of shortest paths from
firm fj to firm fk and σjk(mi) is the total number of
those paths that include market mi.

• Closeness. Closeness centrality is an aggregate mea-
sure of a node’s proximity to other nodes. More
precisely, closeness of node v is defined as the inverse
of sum of distances of node v from other nodes.
Considering our model:

cl(mi) =
∑
fj∈F

1

dist(mi, fj)
, (30)

where dist(mi, fj) is the distance between market
mi and firm fj in the graph.

Regardless of the measure one picks, it is possible to
adopt the ascending or the descending order. Thus, we con-
sider both choices, however, the ascending order empirically
shows better performance with these benchmark centrality
measures. In conclusion, we present our studied strategies
in Table 3.

After having our graph, we use Theorem 2 to calculate
the equilibrium of the game with our parameters α, β, and
c. Subsequently, we pick a policy A for governance of social
welfare from Table 3. Then, the government begins supply-
ing the amount qt of the commodity into the markets in
the corresponding order, until the supplies violate the con-
straints in Definition 1. Thus, the government would supply

up to
⌊√

B
C

⌋
, where B is the budget that innates to the

MaxSW (G) problem. Altering B gives us a trajectory for
social welfare. Let SWA(B) be the social welfare obtained
by applying strategy A on MaxSW (G) with parameter B.
In the next subsection, we compare trajectories SWA(B) for
policies in Table 3.

4.2 General performance
Our empirical results are indicated in Figures 3a, 3b, 4a,
4b, 5a and 5b. For each policy A of Table 3, we plot the
difference between the amount of social welfare which
can be obtained by our Linear algorithm and the social
welfare which can be obtained by the heuristic A, i.e.
SWLinear(B) − SWA(B). Moreover, in Figure 6, the social
welfare obtained by implementing our algorithm with dif-
ferent budgets is depicted.

We observe that our proposed measure is strictly better
than other mentioned quantities. For the random case, we
use the average results over 50 different realizations to ex-
tract the expected performance. It is good to note that pick-
ing the markets according to ascending order of a centrality
measure seems to be better than the reverse order. This is
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Input: A network market G alongside with parameters α, β and γ
Output: The amount of shocks ε1, ε2, ..., εm which makes the maximum social welfare

Set λij,kr equal to the corresponding elements to edges ij and kr of matrix (I + γW )−1

for r ← 1 to m do
ζr ← −γβ

∑
ij(α− γα(β + 2c)

∑
k` λij,k`)

∑
k λij,kr −

∑
i,j(γα

∑
k` λij,k`(

∑
k` wij,k`

∑
t γβλk`,tr))

end
T ←M ; S ← 0
while T 6= ∅ and c · S2 < B do

Set r to the index of the market mr ∈ T with maximum ζr
T ← T \mr

εr ← min{qt, αβ ,
√

B
c − S}

S ← S + εr
end
return εrs

Algorithm 1: The Linear Heuristic for solving MaxSW (G)

TABLE 1: Summary of Dataset’s Characteristics

Drug Companies Dataset
Characteristic Value
#Markets 603
#Firms 135
#Firm-Market pairs (edges) 2049

TABLE 2: A Sample of the Dataset Related to Figure 2

Drug Company Sale ($) Sale (#)
Azithromycin KI 39,730 153,400
Folic Acid JA 1,131,726 4,369,600
Erythromycin HA 167,132 645,300
Erythromycin KI 22,885,058 88,359,300
Alloporinol HA 2,089,793 8,068,700
Alloporinol KI 223,542 863,100
Alloporinol JA 1,300,128 5,019,800
Acetaminophen HA 45,079,908 174,053,700
Acetaminophen KI 22,672,264 87,537,700
Acetaminophen JA 12,809,311 49,456,800
Acetaminophen AR 15,824,330 61,097,800
Loratadine HA 3,447,200 6,894,400
Loratadine AR 1,843,900 3,687,800

intuitive, since markets with lower centralities are generally
more monopolized and government’s interventions have
more impact on them. This observation is in accordance
with the general idea in economics that more competition
leads to higher social welfare. In addition, the difference in
social welfare obtained by the Linear heuristics and other
methods tend to rise, until a certain point at which drops.
Since the end point of the plots suggests the government to

TABLE 3: Summary of algorithms in the competitor bench-
mark

Heuristic Description

Linear Descending order of ζi
AscDeg Ascending order of d(mi)
DescDeg Descending order of d(mi)
AscBet Ascending order of b(mi)
DescBet Descending order of b(mi)
AscCL Ascending order of cl(mi)
DescCL Descending order of cl(mi)
Random Random order of mi

supply in almost all markets by each method, the last points
have y coordinates close to zero. All the plots are strictly
above the horizontal line y = 0, except beginning points
which indicates the superiority of our proposed approach
over other mentioned strategies.

The superiority of the presented algorithm compared to
the competing algorithms is primarily due to the fact that
the algorithm is really based on the optimization of the
objective function, and its output is a metric that cannot be
intuitively described based on structural features. In fact,
the evaluation carried out in this article shows that the
structural features of the network are not very suitable for
choosing the best markets for intervention, and it is better to
focus directly on the optimization of the objective function
and designing better algorithms in this direction. Anyway,
among the competing heuristics, the DescDegree algorithm
has performed better. In fact, it can be concluded that if we
are going to act only based on the structure, markets closer
to other markets (in terms of distance on the graph) are more
suitable for intervention.

In Figure 6, we considered different budgets for the
government and and implemented the Linear huristic. Then,
we plotted the social welfare obtained. We observe that the
social welfare increases in the beginning, which is a result of
increased consumers’ surplus. However, the social welfare
peakes at a certain level and decreases from that point
onwards. This observation is due to the fact that the supply
by the government decreases the producers’ surplus while
it increases the consumers’ surplus. In the second half of the
trajectory, the decrease in producers’ surplus dominates the
increase in the consumers’ surplus, which results in lower
levels of social welfare.
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