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Abstract
Cloud storage systems have been turned into the primary services of Internet users 
nowadays. While the application of such systems is exponentially increasing, dedu-
plication algorithms help face scalability issues. Although source-side deduplication 
optimizes both storage and bandwidth, the main concern that deduplication algo-
rithms suffer from is still data confidentiality. Message-locked encryption (MLE) is 
a well-known key management framework for secure deduplication to provide con-
fidentiality. This framework is the basis of almost all the proposed secure deduplica-
tion solutions. Even though there are lots of literature works trying to provide secure 
deduplication algorithms, to the best of our knowledge, none of them provide an 
effective anonymity service for data owners. In this paper, we propose an N-ano-
nymity algorithm to provide an effective anonymity service, capable of prohibiting 
even the cloud storage provider from knowing which users are storing the same data. 
The algorithm is analytically studied, and the results are validated by exhaustive 
implementations using real data. Furthermore, we propose an ID-based key manage-
ment algorithm as the cornerstone of the secure cloud storage system. The proposed 
algorithm, which could be considered as an asymmetric extension of MLE, is easy 
to implement and compatible with the existed cloud architectures as well as the pro-
posed anonymity-based deduplication system.
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1  Introduction

Cloud storage systems have been attracting the attention of many users, while the 
volume of stored data in such systems has been explosively increasing during the 
last years [1–4]. The ease of use, accessibility, synchronization between different 
devices, and reliability of cloud storage systems make them more popular insofar as 
many users are using them as their main storage [2, 5, 6], i.e., not just as a backup 
storage [7]. Dropbox [8], Google drive [9], and Mozy [10] are some well-known 
instances. However, cloud storage systems suffer from scalability issues because 
many duplicated copies of the same data are stored in the cloud. Deduplication 
techniques are the best-known solutions to face the explosive increment in cloud 
storage data [11–14]. Such techniques prohibit redundant data from duplicate stor-
age. According to [15, 16], deduplication can reduce the required storage for backup 
applications up to 95% . In comparison, up to 68% of the storage required for stand-
ard file storage is saved by deduplication. It is worth noting that Dropbox, Google 
Drive, and Mozy are all using deduplication to optimize their systems [17].

In deduplication techniques, data could be considered as one single file or sev-
eral equal-sized data blocks. Before storing each file or block of data, it is checked 
whether the data are formerly stored or not. In the case of former storage, the data 
are discarded. In the simplest form of deduplication, this check is done after upload-
ing the data. In such a naive technique, which is referred to as server-side dedu-
plication, the bandwidth is wasted in case of former storage. Furthermore, the data 
are stored in its plain format, while it is well known that attacking the stored data 
on the cloud storage is not avoidable [18, 19]. Hence, the cloud storage provider 
(CSP) cannot be assumed to be fully trusted. Accordingly, bandwidth inefficiency 
and the confidentiality of the stored data are considered the two CSP storage issues 
in server-side deduplication.

The solution to the wasted bandwidth of server-side deduplication is to transfer 
the deduplication decision process to the source side. The client can calculate a sig-
nature for its file and asks the CSP about a file with such a signature, whether previ-
ously stored or not. In a positive case, the client does not send the file to the cloud. 
Hence, the bandwidth is also saved. Such a signature is referred to as a file tag and 
could be a fixed-size hash value of the data itself. After uploading its file or ensuring 
that a copy of the data is already stored on the cloud, the client deletes the file from 
its own storage and only stores its tag along with a proof of ownership (PoW). PoW 
is used to retrieve the file [14], while it is almost considered the same as the tag. 
However, according to the deduplication algorithm, PoW could differ from the tag. 
Accordingly, for retrieving the data, the client sends the PoW to the CSP, and the 
CSP, in its turn, checks the matched data and returns the data to the client.

The solution for the second issue, i.e., data confidentiality, is to encrypt data 
before sending it to the cloud. Since in convenient encryption algorithms, each 
file or block of data is encrypted with a different client key, the hash value of 
the encrypted data is not equal to the hash value of the same data encrypted by 
another client. In such a case, the cloud provider cannot detect the duplicated 
data, whereas the deduplication process could not be applied correctly. For the 
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encryption problem to be solved in deduplication algorithms, convergent encryp-
tion [20] is proposed. In this solution, the encryption key is extracted from the 
data itself; thus, the key for the same data becomes unique. The encryption key 
could be the hash value of the plain data. Hence, the copy of the same data gener-
ates the same encrypted data. Accordingly, the deduplication process becomes 
feasible. It is worthy to note that, using such an idea, the encrypted data are still 
not confidential. The reason is owing to the hash value of the plain data, which 
is used some times as the ID of the data. Generally, it is not considered a secret 
value [19], i.e., any adversary node may have access to the hash value of the plain 
data.

Bellare et al. [21] proposed a framework that generalizes convergent encryption 
and comprises all its extensions. The proposed framework is referred to as message-
locked encryption (MLE). Both convergent encryption and MLE are built based 
on a symmetric cryptosystem. In this paper, we propose a new and rigid ID-based 
key management that makes the secure deduplication system much more resistant 
against different attacks. The proposed key management uses elliptic curve cryptog-
raphy (ECC) and could be considered as an asymmetric extension of MLE frame-
work. ID-based key management proposed by Shamir [22] suggests extracting the 
public key of each user from its unique ID. To the best of our knowledge, it is the 
first time that ID-based key management has been used to deploy secure data dedu-
plication in cloud storage systems.

It is also notable that, even for the encrypted data, which is confidential for CSP, 
the cloud storage provider could recognize the users who own the exact copy of the 
data. For example, consider a tax profile of a specific client or an employee’s salary 
form. The CSP can recognize those who have the same salary or tax statements. 
The problem of side-channel information leakage in deduplication systems has also 
been previously mentioned by Zhang et al. [23]. In this paper, we propose an anony-
mous deduplication approach, based on the N-anonymity concept, for the data to be 
confidential so that the CSP could not realize who are storing the same data. N-ano-
nymity guarantees that when a client stores the same copy of an existing file on the 
cloud, there exist at least N − 1 other files that the CSP cannot recognize which one 
is the stored file. To reach this aim, we provide a client-side algorithm to find the tag 
of at least N − 1 previously stored files so that the CSP cannot distinguish which one 
is the client’s file. It is worth noting that the anonymity problem was proposed ear-
lier, along with some solutions. However, to the best of our knowledge, all proposed 
solutions gain anonymity at the cost of losing client authentication. Our proposed 
approach guarantees the N-anonymity, while all the clients are still authenticated. 
The proposed approach is studied analytically, while its complexity is calculated 
based on the number of queries needed to be sent to CSP. Exhaustive implementa-
tion is also done using real datasets to validate the analytical results. Hereupon, this 
paper’s main contribution is to propose a secure data deduplication system providing 
N-anonymity service for CSP, using ID-based key management. The more detailed 
contributions are (i) to propose ID-based key management as the cornerstone of the 
secure deduplication system, (ii) to propose an N-anonymous, secure deduplication 
algorithm, (iii) to theoretically analyze the complexity of the proposed anonymity 
algorithm, (iv) to analyze the security of the proposed secure deduplication system, 



	 M. Gharib, M. Fazli 

1 3

and (v) to implement the proposed algorithm exhaustively in a real world and vali-
date the theoretical results.

The rest of this paper is organized in the following. The related works are 
reviewed in Sect. 2, while the problem is formally defined in Sect. 3. The proposed 
solutions for both the key management and anonymous deduplication are proposed 
in Sects. 4 and 5, respectively. Security analysis of the proposed deduplication sys-
tem, simulation details, and the evaluation process of the N-anonymity algorithm are 
altogether presented in Sect. 6. Finally, the paper is concluded in Sect. 7.

2 � Related works

Sun et al. [24] proposed an efficient deduplication system for cloud storage, referred 
to as DeDu. Although DeDu is an efficient solution for deduplication, it is not appli-
cable to encrypted data. In this section, we review the literature on secure deduplica-
tion systems for CSPs where the deduplication system can handle encrypted data. 
In this case, it needs a rigid key management system capable of efficiently manag-
ing the keys such that the CSP assigns a specific key for each block or file of data. 
The general framework for such a key management system is proposed by Bellare 
et al. [21] and referred to as MLE. MLE is a symmetric-based encryption system, 
and since it is a general framework, different secure deduplication instances pro-
posed earlier to MLE are comprised of MLE. However, such instances suffered from 
the absence of precise definition and theoretical treatment. Bellare et  al. [21] for-
malized the MLE framework, which encompasses most of the former works. Some 
MLE instances include [20, 25–28] where convergent encryption [20] significantly 
attracted the attention of many researchers. This attracts several algorithms to be 
proposed based on the convergent encryption, including but not limited to [29–33]. 
Accordingly, in this section, we first review the MLE framework and some of its 
extensions. Next, we review some older works that utilized just the raw idea of con-
vergent encryption. Finally, we review the literature on considering anonymity in 
deduplication systems and what is their shortcomings that lead to our contribution 
being needed.

Basically, MLE proposes extracting the key of each data block or file from the 
data itself. Douceur et al. [20] proposed a convergent encryption system in which 
the output of a deterministic and cryptographic hash function could be used as the 
data key. Since the hash algorithm is deterministic, the key is unique for the same 
data. Accordingly, the encrypted block of the same data becomes equal for all users 
with the same data, making the deduplication process feasible. On the other hand, 
the hash value of the data used as the encryption key is encrypted with the client’s 
public key and stored along with the encrypted file as metadata for the PoW. The 
same authors proposed Farsite [29] to utilize the raw idea of convergent encryption. 
Storer et  al. [30] proposed a chunk-based secure deduplication system, with high 
similarity to that of [29]. Authors of [30] separated the storage of metadata from 
that of chunks into two independent servers. Zooko et al. [31] proposed and imple-
mented a convergent encryption-based storage system using a capability access con-
trol model. This system, which referred to as Tahoe, quickly became operational and 
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many customers relied on it for storage. Rahumed et al. [32] presented Fade version, 
a secure deduplication system capable of deleting some versions of the files perma-
nently, while other versions remain unaffected. This system is also built based on 
convergent encryption.

Even after proposing MLE [21], many other works are yet proposed based on 
the raw convergent encryption idea. Puzio et  al. [33], as an instance, proposed a 
secure block-level deduplication system called ClouDedup. Authors of [33] added 
a new component to support the key management process of block-level deduplica-
tion. They showed that the overhead caused by the new component does not seri-
ously affect the overall computational and storage complexity. Wen et al. [34] pro-
posed another convergent encryption-based deduplication system for image files. 
The authors proposed to use a verification server beside the storage server to be 
able to verify the deduplication process. As another instance of a convergent-based 
deduplication system, Li et al. [35] formally addressed the problem of reliably and 
efficiently managing a huge number of keys. Furthermore, Li et al. [36] proposed a 
hybrid approach for secure deduplication combined with the authorization process. 
According to their claim, it is the first attempt to address the authorization problem 
in secure deduplication formally.

However, as we mentioned earlier, the convergent encryption-based deduplica-
tion systems were not defined formally based on a general framework. Bellare et al. 
[21] proposed a general framework, referred to as MLE, that encompasses the con-
vergent encryption system and all its extensions. MLE uses symmetric encryption to 
provide secure deduplication. The same authors of MLE [21] mentioned that MLE 
is subject to brute-force attacks, and accordingly, they proposed DupLESS [27] to 
improve MLE by making it resistant against brute-force attacks. The authors pro-
posed to add a key server to the existed storage server. The task of the new server 
is to authenticate the keys without any knowledge about the data itself. Chen et al. 
[28] proposed a secure deduplication system based on the MLE framework, referred 
to as block-level MLE (BL-MLE), capable of providing deduplication service for 
both files and blocks of data. BL-MLE shows more efficiency for large files than its 
former works.

The whole presented works were proposed based on the raw idea of convergent 
encryption or under the general framework of MLE. Hence, all of them use sym-
metric encryption. This paper proposes a new secure deduplication system with 
asymmetric key management. To the best of our knowledge, this is the first asym-
metric-based key management system for secure deduplication in cloud storage. 
It is worth noting that Yan et  al. [17] used an asymmetric key encryption system 
for secure deduplication just for user authentication. In this work, we propose an 
ID-based key management scheme to manage the data encryption using an elliptic 
curve cryptosystem.

Furthermore, this paper proposes a solution to provide N-anonymity for data 
owners. The anonymity problem was also mentioned earlier in [23, 30, 37]. Storer 
et al. [30] proposed two secure deduplication systems in which one authenticates the 
users, while the second, which is an anonymous system, does not do authentication. 
The solution of [30] is to gain anonymity at the cost of losing authentication. In the 
other work, Jung et al. [37] proposed an alternative attribute-based solution in which 
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each data file has its attributes, and the data key is extracted from the concatenation 
of the attributes. Since such a system is built based on the attribute of the data, users 
are kept anonymous. Basically, in [37] the storage process is handled by the data 
attributes, and it is not user-aware system at all. Accordingly, the client is authen-
ticated neither in [30] nor in [37]. Zhang et al. proposed a k-anonymity solution to 
prevent information leakage by side-channel attacks. In a side-channel attack, the 
attacker tries to get access to some confidential information, such as patient infor-
mation, from the uploaded files. In this case, it makes the same file with the patient 
information and changes the disease name. If the server tells the attacker that the 
same file already exists, the attacker knows that the patient has the disease. The idea 
of [23] is not to let the user know the same file is already uploaded except if there 
are at least k other copies of the same file stored on the server. In this case, even 
if the file for a patient with the same information is uploaded, the server tells the 
attacker to upload its own file. This clever solution, however, has the disadvantage 
of storage overhead. Furthermore, if the attacker knows the value of k, it can upload 
k − 1 the same file and check whether it gets the duplication message from the server 
or not. In the N-anonymity solution proposed in this work, the clients are authenti-
cated, while the CSP cannot recognize between N different files which one is owned 
by the specific client.

3 � System model

In this section, the detailed system model is described, and further, the problem of 
secure deduplication in CSP is formally presented. We consider a typical secure 
CSP system with deduplication. Such a standard system has a general architecture 
shown in Fig. 1 which is matched with many existing secure cloud storage sys-
tems such as [17, 33, 36, 37]. This paper proposes an asymmetric ID-based key 

Cloud Storage
Provider

Client 1

Client 2

Client 3

Client n

Trusted Authority

Fig. 1   A general architecture of a typical secure cloud storage with deduplication
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management as the cornerstone of the typical secure CSP with deduplication and 
adds N-anonymity service to this system without any severe change in the overall 
architecture. This architecture has a set of n clients, each with its own data. There 
is also a cloud storage provider, responsible for all storage management problems 
and issues. In addition to the CSP, there is a trusted third authority responsible 
for issuing the keys or certificates. This component is required to handle security 
issues, precisely the key management problems.

Basically, a secure deduplication process requires five algorithm sets for 
parameter generation, key generation, encryption, decryption, and tag generation 
[21]. According to the general framework of MLE, the mentioned algorithm sets 
are represented with a five-tuple (P,K, E,D, T) , respectively. Hereupon, the gen-
eral scenario of data storage is as the following. First of all, each system com-
ponent that is responsible for generating system parameters has to do its corre-
sponding tasks, defined in the algorithm set P . Then, the algorithm set K is used 
cooperatively between clients and the trusted third party to generate the required 
keys. It is worth noting that both data and clients have their own keys in which 
the data key is generated from the data itself, while in almost all algorithms, each 
client has a pair of private–public keys used for authentication reasons. In the 
basic idea of convergent encryption, the hash value of the data is used as the data 
encryption key. As we mentioned earlier, the data hash value may be known by 
others [19], and hence, it is not a suitable choice to be used as the encryption key.

The client then encrypts its data using the data key and algorithm set E . The 
client further applies the algorithm set T  on the encrypted data to generate a data 
tag. Obviously, the tag has to be consistent for the same data. It means that the 
tag of the same data generated by the different users has to be the same as the 
previous one. The data tag is sent to the CSP, and the CSP, in its turn, responds 
to the client whether the data are previously stored or not. In both cases, the cli-
ent encrypts the data’s tag by its public key to generate PoW. PoW is stored along 
with the data in CSP to guarantee the access of the data owner. Whenever the 
client needs to access its data, the client sends the PoW to the CSP, and CSP 
then checks the PoW and returns the data to the client. The retrieved data are 
encrypted; thus, the client uses the data key and algorithm set D to decrypt the 
data and access the plain one. For more information about the MLE framework 
details, we refer the readers to the original MLE work [21].

Since the stored data are encrypted in this system, the CSP cannot access the 
data. It is worth noting that whenever we talk about the untrustworthy of the CSP, 
it does not always mean that we do not trust the CSP itself. However, the data 
are stored somewhere, maybe accessible to adversaries or untrusted agents. On 
the other hand, the CSP is always under different attacks, and such attacks are 
unavoidable [18]. The following assumptions are also considered to define secure 
cloud storage with deduplication.

Assumption 1  The system includes n clients, whereas the value of n is constantly 
changing. Hence, the system has to be dynamically scalable.
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Assumption 2  Each client is recognized with a unique ID. This ID could be an IP 
address, phone number, or any other unique ID.

Assumption 3  We have a CSP that stores encrypted data from a universe U. The 
defined system could be a block-level or file-level CSP. It is worth noting that the 
block-level data storage is considered to have better performance than file-level stor-
age in the context of deduplication [38–40]. However, our proposed system is able 
to handle both block-level and file-level deduplication. Accordingly, to propose the 
system, we use the term data file through the paper, while it could be substituted by 
data block.

Assumption 4  There is a reliable symmetric cryptosystem, represented by 
Encrypt(Data,Key). This system symmetrically encrypts the “Data” with the “Key”, 
whereas the data encrypted remain confidential unless their key is compromised. 
This encryption system is not the subject of this paper and can be any well-known 
symmetric encryption system, such as AES [41] and RC6 [42].

Assumption 5  The CSP is considered a black-box storage service with a vast storage 
capacity. From our point of view, we do not see the internal CSP tasks such as job 
scheduling, resource management between different cloud entities, and backup oper-
ations. Hence, from the vantage point of this work, there is a vast integrated, relia-
ble, and available storage system. Accordingly, just one copy of each data is required 
to be stored in such a black-box storage system, i.e., the backup tasks, including the 
storage of several copies of the file for higher reliability, are not subject to this work.

Assumption 6  H ∶ U → {0, 1}k is a publicly known, deterministic, and crypto-
graphic hash function that converts each file of data into a fixed size, i.e., k bit, hash 
value. This hash function is considered a collision-free and irreversible hash func-
tion. The mentioned hash function is deterministic and thus returns the same hash 
value for the same data.

Assumption 7  We assume that the currently stored encrypted files on the server are 
defined by the set M ⊆ U with |M| = m.

In this paper, we propose a secure deduplication system with ID-based key 
management, an asymmetric encryption-based solution that could be considered 
an asymmetric extension of MLE. On the other hand, in a typical secure dedupli-
cation system, the CSP is able to recognize the clients that store the same data. 
Such a fact is an obvious violation of client privacy. As we mentioned earlier, a 
tax statement or a salary form could be considered data that could be confiden-
tial. In such cases, the CSP can recognize, for instance, that the salary of this 
client is as equal to that one, which is some identity privacy violation. In this 
paper, we propose an N-anonymity solution for secure deduplication capable of 
anonymously doing the cross-user deduplication, while the CSP cannot recognize 
which clients have the same data.
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4 � ID‑based secure deduplication system

This section proposes a new secure deduplication system using an ID-based key 
management algorithm. ID-based key management is an asymmetric algorithm 
proposed for the first time by Shamir [22]. The main idea of ID-based key man-
agement is to extract the public key of each network client from its unique ID 
using a deterministic algorithm. Hence, there will be no need to certify public 
keys. Since, in the context of secure data deduplication, we need to encrypt the 
same data with the same key, this idea seems very interesting. However, Shamir 
just proposed a signature-based algorithm and left the problem of ID-based 
encryption as an open problem for other researchers. Hereupon, Boneh and Frank-
lin [43] proposed the first functional ID-based encryption system using highly 
complicated pairing operations. Such a system requires a central trusted authority 
called a private key generator (PKG), responsible for initializing secure network 
parameters and generating private keys. It is worthy to note that, although PKG 
is considered a central authority, it could be implemented in distributed man-
ner [44]. However, we propose our algorithm using a central PKG for simplicity 
reasons.

In ID-based key management, public keys are extracted easily from unique 
IDs. We use the basic idea of ID-based encryption, in which the complex pair-
ing operations used in [43] are replaced with much more efficient elliptic curve 
point multiplications. Hence, the proposed algorithm is ID-based key manage-
ment built on an elliptic curve encryption system. This algorithm is designed to 
be suitable for secure deduplication in CSP and compatible with the N-anonym-
ity-based algorithms proposed in Sect. 5.

Nevertheless, the ID-based key management algorithm to be used as the corner-
stone of a secure deduplication system has to generate unique private-public key 
pair for each file and client. The public key could be extracted from the user or data 
unique ID. Hence, even though we know from Assumption 2 that all clients have 
their unique IDs, we need further to define IDs for the data such that the defined 
IDs satisfy two main conditions. First, the data ID should be unique for the same 
data, even when another client generates the ID. Second, data IDs have to be non-
overlapping with client IDs, i.e., all IDs have to be unique. Hence, we propose an 
algorithm set to generate a unique ID for both data and clients that satisfies the men-
tioned conditions. This algorithm set is referred to as the ID generation algorithm 
set and is represented by I .On the other hand, as we mentioned earlier, MLE is 
considered the most typical framework for secure deduplication. Henceforward, 
we propose our secure deduplication system as an asymmetric extension of MLE. 
Accordingly, we define the new system with the same five-tuple algorithm sets of 
MLE, i.e., (P,K, E,D, T) . Each of the mentioned algorithm sets, i.e., the five-tuple 
algorithm sets along with the ID generation, is described in detail in the rest of this 
section. Figure 2 represents the schematic view of the algorithm sets, and Table 1 
collects the notations used in this paper along with their brief descriptions.

ID generation algorithm set (I) : We suggest using the hash value of the data 
as the symmetric key to symmetrically encrypt the data using the symmetric 
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cryptosystem mentioned in Assumption 4. Then, the data ID will be the hash 
value of the symmetrically encrypted data. For the IDs to be unique for both data 
and clients, we suggest using the hash value of the client ID instead of the client 
ID itself. Hereupon, to distinguish between the original ID of client i from its 
new ID defined to be unique for both data and clients, we use the notations IDci

 
and ��ci

 , respectively. Since the hash function is collision-free, and both data �� 
and client �� are the output of the hash function, all �� s are unique. The formulas 
of calculating new unique �� for data and clients are represented in Eqs. (1) and 
(2), respectively. The new data �� is unknown to others and is considered a secret 
value. We will use this value to exchange the private key of the data with PKG 
securely. It could also be used as the PoW to guarantee upcoming data accesses. 
The detail of key exchange and data access is proposed in the rest of this section.

Parameter generation algorithm set (P) : As we mentioned earlier, PKG is respon-
sible for parameter generation algorithm, i.e., P . The first parameter is a large prime 
number p, which is used to generate a non-singular elliptic curve over the field �p . 
Such an elliptic curve has the form of Eq. (3) and represented by E(�p) . Parameters 
� and � are two constants, chosen form �p . The elliptic curve base point � is also 
defined based on a large prime number q such that q|#E(�p) . This algorithm also 
needs a collision-free hash function, just like the function used for deduplication 
tasks, with one extra condition connecting it with parameter q. The condition is rep-
resented in Eq. (4), while it states that the hash function’s output has to be a number 
smaller than q. Since parameter q is a large prime number, the hash function output 
could be considered to be with a bit length less than q. Accordingly, any well-known 

(1)��fi
= H(Encrypt(fi,H(fi)))

(2)��ci
= H(IDci

)

Fig. 2   A schematic view of the ID-based secure deduplication system
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collision-free hash function could be used for both key generation and deduplication 
tasks.

Key generation algorithm set ( K ): The key generation algorithm requires two sep-
arate phases. In the first phase, master private–public key pair (xm, ym) is generated. 
PKG uses this key pair to generate all other keys. The second phase is to generate 
private–public key pairs of data files and clients. Client keys are required to guar-
antee secure communication between the clients and the PKG, while data keys are 

(3)E(�p) ∶ f 2(x) = x3 + �x + � (mod p)

(4)H ∶ {0, 1}∗ → ℤq

Table 1   Table of notations
N The degree of anonymity
n The number of nodes
H(.) A collision-free hash function
I The ID generation algorithm
P The parameter generation algorithm
K The key generation algorithm
E The encryption algorithm
D The decryption algorithm
T The tag generation algorithm
IDci

The typical unique ID of client i
��ci

The new unique ID for the client i
��fi

The new unique ID for the data file i
p and q Two large prime numbers.
� and � Two constants chosen from the field �p
� The elliptic curve base point
(xm, ym) The master private–public key pair
(xci , yci ) The private–public key pair of client i
(xfi , yfi ) The private–public key pair of data file i
fi The data file i
Fi ∶ (�1, �2) The encrypted data file i
Tfi The tag of data file i
U The universe of files
M The set of previously stored files on CSP
m The number of files in M
k The bit length of hash value generated by H
C(Fi) The first client stored the encrypted file Fi

Hj The set of CSP candidates for the tag of Fj

Sj The set of tag prefixes as the CSP candidates of Fj

Q The set of possible queries expressed by query type
� A random bit string, to be checked whether it is a 

tag of previously stored file or not
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used for data encryption, i.e., to ensure the confidentiality of stored data. The master 
private key, i.e., xm , is chosen randomly from ℤ∗

p
 by PKG, while the master public 

key is calculated using Eq. (5).

Each client must get its private key from PKG once it joins the cloud system. The 
PKG generates the private key according to Eq. (6). The corresponding public key is 
also extractable form the client �� using Eq. (7). The private and public keys of data 
files are generated using similar formulas presented in Eqs. (8) and (9), respectively. 
After receiving the private–public key pair, each client can easily check its validity 
using Eq. (10).

Encryption and decryption algorithm sets (E and D) : Encryption and decryption 
algorithm sets for the plain data file fi with the key pair (xfi , yfi ) are defined in the fol-
lowing. First, a random number � ∈ ℤ

∗
q
 is chosen. The cipher text is then represented 

by Fi and consists of a pair (�1, �2) in which �1 is a mapping to a point on the elliptic 
curve. Encryption and decryption processes are, respectively, shown by Eqs. (11) 
and (12). Accordingly, it is easy to observe that the decryption process of Eq. (12) 
returns the exact lain data fi . The validation of such an observation is shown in Eq. 
(13). It is worthy to note that the encryption process proposed here is asymmetric 
encryption for the data before storing it on the CSP. It obviously differs from the 
symmetric encryption used for �� generation algorithm which could be any symmet-
ric encryption algorithm.

(5)ym = xm.�

(6)xci = xm.H(��ci
) (mod q)

(7)yci = ym.H(��ci
) (mod q)

(8)xfi = xm.H(��fi
) (mod q)

(9)yfi = ym.H(��fi
) (mod q)

(10)

yci = ym.H(��ci
)

= xm.�.H(��ci
)

= xci .�

(11)Fi = E(fi, yfi ) =

{
�1 = �.�

�2 = fi + �.yfi

(12)D(Fi) = D(�1, �2) = �2 − xfi .�1
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It is further worthy to note that each client to get the private key of its own data file 
sends its request to PKG as shown in Eq. (14). The request consists of the asym-
metrically encrypted data ID, i.e., ��fi

 , with the master public key. PKG, in its turn, 
decrypts the request by the master private key and generates the corresponding pri-
vate key of the data using Eq. (8). The private key of the data is then encrypted with 
the client’s public key using Eq. (11) and sent back to the client. This algorithm will 
have a secure channel between PKG and clients. Hence, data keys are exchanged 
securely between them. Obviously, data public key is also extractable from the data 
ID, i.e., ��fi

 , using Eq. (9).

Tag generation algorithm set (T) : The last algorithm set, i.e., T  , returns the tag of 
data which is used to check whether the data are previously stored or not. The data 
tag is the hash value of the asymmetrically encrypted data as shown in Eq. (15). It 
is evident that such a tag is consistent, i.e., the tag generated for the same data by 
different clients has the same value. As we mentioned earlier, the public key of data 
files fi is extractable from its ID, i.e., ��fi

 ; hence, the data could be encrypted eas-
ily, and the output is the same for all data owners. Recall that the data ID is the hash 
value of the symmetrically encrypted data, using the hash value of the plain data as 
the symmetric key. Hence, data ID and data tag differ from each other.

It is worthy to note that the proposed tag generation mechanism cleverly prevents 
the duplicate fake attack. We formally mention the definition of this attack here, as it 
is defined in [21]. The proof that the proposed system is preventing such an attack is 
then stated in Sect. (6.1).

Definition 1  Duplicate faking attack: Consider an adversary and an honest client 
with the same file. The adversary generates the file’s honest tag and sends it along 
with a fake file into the CSP. When the honest client sends the tag of his file to check 
whether the file is previously stored or not, the CSP replies positively. Hence, the 
file is discarded. When the honest client retrieves his file, the received file is not 
true, while the right file is missed. This attack is referred to as a duplicate faking 
attack.

(13)

�2 − xfi .�1

= fi + �.yfi − xfi .�.�

= fi + �.xfi .� − xfi .�.�

= fi

(14)DataPrvKeyReq = E(��fi
, ym).

(15)Tfi = H(E(fi, yi)).
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5 � N‑anonymity‑based algorithm

Recall that the scenario of data deduplication, using the ID-based key manage-
ment proposed in Sect. (4), is as follows. A publicly known hash function is used 
to hash encrypted files, i.e., generate file tags. To store an encrypted file Fi on the 
CSP, the client must check whether the file with the same tag is previously stored 
or not using its hash value Ti = H(Fi) . For accessing any encrypted file Fi ∈ M 
on the CSP, it is also enough to have Ti = H(Fi) . It is worth noting that, in this 
scheme, the accessed data are encrypted. Hence, getting access to the data tag 
does not violate the data confidentiality.

For each stored encrypted file Fi ∈ M , the first client who stored the file on the 
CSP is known by the CSP, shown by C(Fi) . A client j wants to store an encrypted 
file Fj with the tag Tj = H(Fj) . Our idea for N-anonymous secure data deduplica-
tion is to check whether Fj ∈ M or not by asking some queries among a set of 
predefined query types. The queries are asked from the CSP about the tags of the 
files stored in M. If Fj ∈ M , client j does not want the CSP to know that his file is 
the same as the file stored by C(Fi) . We further assume that the CSP always tries 
to guess H(Fj) . Thus, we have to do our best to increase the number of candi-
dates that can potentially have the right value for H(Fj) . This concept is formally 
defined by N-anonymity.

Definition 2  N-anonymity: Assume that H(Fj) ∈ M and Hj is the set of CSP candi-
dates which potentially could be H(Fj) . We say that N-anonymity is satisfied when 
|Hj| = N.

Assuming that the hash function H(⋅) is entirely uniform, satisfying N-ano-
nymity is equivalent to finding the hash values of N available files on the CSP, 
including Tj = H(Fj) . These values are used to satisfy anonymity. We refer to this 
problem as the N-anonymity injection problem.

Definition 3  N-anonymity injection problem (N-AI): Given a set Q of possible que-
ries, it is expressed by a predefined query type. The problem is to propose a ran-
dom process that can find a set Hj including N hash values, such that Hj ⊆ M and 
H(Fj) ∈ Hj using the queries of Q.

In the following parts, we propose two different query types which could be 
asked from the CSP. The first one is the naive solution with inefficient complex-
ity. We name it as complete-equal query. The second solution is the improved 
version with much lower complexity regarding the number of queried bits. We 
name the second solution as prefix-equal query. Each query type is proposed in a 
separate part, while we study the N-anonymity injection problem for each one. In 
our study, we further consider the optimization version of this problem, whereas 
the goal is to minimize the number of bits used to query the CSP.
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5.1 � Complete‑equal queries

The complete-equal query is the naive solution for finding a set of N tags in which 
the CSP previously stores the corresponding files. The definition of such query 
type is given in the following.

Definition 4  Complete-equal queries: Complete-equal queries are queries in the 
form of Complete_Exist(x) , where x ∈ {0, 1}k is a k-bit string for which when asked 
from a CSP, it should return “True” if there exists an encrypted file Fi with Ti = x or 
“False” otherwise.

For the complete-equal queries, the best a client can do is to generate random 
bit strings and query them from the CSP until it can find N tags correspond-
ing to the stored files on the CSP. Among these random bit strings, the query 
Complete_Exist(Tj) is run in random order. If this query returns false and thus the 
client notices that Fj is not previously stored on the CSP, it quits all the processes 
and sends Fj to the CSP for storage.

Algorithm (1) states that we query the CSP with random pseudo-hash values 
until we get N True responses. We inject the tag of our file with a True response 
between the pseudo-hash values. Accordingly, CSP could not recognize which 
one of existed files in which the corresponding response was True is the client 
file. Increasing the hash value bit length increases the algorithm’s time complex-
ity. Theorem (1) mathematically analyzes this complexity.
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Theorem 1  Algorithm (1) sends O(2k(logm − logN)) complete-equal queries to the 
CSP.

Proof  The time complexity of Algorithm (1) can be simply computed by the sum of 
N random variables X1,X2,… ,X

N
 , for which Xi represents the number of iterations 

in the ith iteration of the while loop, i.e., lines 3–22 of Algorithm (1). It is trivial 
that the while loop is run N times, owing to each run adds one member to Hj until 
we finally find N members of M, i.e., |Hj| = N . Clearly, Xt = O(1) and other Xi s 
count the number of times a randomly chosen � fails to be a member of M ⧵ Hj in 
the while loop of lines 15–21, i.e., to be a tag of a stored file on the CSP. Hence, for 
i ∈ {1, 2,… ,N} ⧵ {t} , we have

Thus, the runtime of Algorithm (1) is

From the equation 
∑n

i=1

1

i
= O(log n) + O(1) , we can deduce that the time taken by 

the algorithm is equal to

	�  ◻

Theorem (1) shows that the run time of Algorithm (1) is exponentially increasing. 
Hence, it cannot be used for large k values, and this algorithm is practically ineffi-
cient. Some results representing its complexity in the real world are shown in Sect. 
(6.2). The results show that even for a small number of users, to achieve N-anonym-
ity, each user needs to perform several billions of queries. Accordingly, one can say 
that achieving N-anonymity by complete-equal queries is not feasible at all. In the 
next part of this section, we propose a new query type that can be used for efficient 
N-anonymity algorithm design.

5.2 � Prefix‑equal queries

In this part, we show that with a clever improvement in the definition of the query 
type, we can achieve N-anonymity with much lower complexity. First, we define the 
new query type, which we name prefix-equal query, and then show that the number 
of such queries required for achieving N-anonymity is with polynomial complexity.

Definition 5  Prefix-equal queries: Prefix-equal queries are in the form of 
Prefix_Exist(x) , where x ∈

⋃k

i=1
{0, 1}i is a bit string with length i. Accordingly, 

(16)E[Xi] = 1∕Pr{� ∈ M ⧵ Hj} =
2k

m − i
.

(17)
N∑

i=1

E[X
i
] =

N∑

i=1

2k

m − i
= 2k

(
m∑

i=1

1

i

)
− 2k

(
m−N+1∑

i=1

1

i

)

(18)
N∑

i=1

E[Xi] = O(logm) − O(logm − N) + O(1).
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when CSP is asked for x, it has to return “True” if there exists an encrypted file Fi 
for which Ti = H(Fi) starts with the prefix x and, “False” otherwise.

In the following observation, we show that for a query Prefix_Exist(x) = True , we 
can find the hash value of a stored encrypted file with a polynomial number of que-
ries in terms of k and |x|, where |x| represents the bit length of string x.

Observation 1  For a query Prefix_Exist(x) = True , we can find the hash value of 
a stored encrypted file with (k − |x|) queries. When Prefix_Exist(x) = True , we can 
conclude that at least one of the queries Prefix_Exist(x||0) or Prefix_Exist(x||1) is 
True, when x||b defines the concatenation of the string x and the character b. Hence, 
we can simply query Prefix_Exist(x||0) , while in positive answer we replace x with 
x||0. Otherwise, Prefix_Exist(x||1) definitely is True, and therefore, x is replaced by 
x||1. Such a process is continued until we reach a k-bit tag of the stored file.

Algorithm (2) is proposed to support N-anonymity with prefix-equal queries. This 
algorithm needs three phases to be able to find N tags corresponding to N stored files 
as the anonymity candidates for the encrypted file Fj . In the first phase, we find all 
(log2 N)-bit strings that have the same prefix of at least one stored file tag. The num-
ber of such strings is at most equal to N. The found strings are inserted into the set 
Sj . Obviously, to find such strings, we have to query Prefix_Exist(�) for each log2 N
-bit string � . For each � with True response, we add the � to Sj.
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The second phase works after the first phase if and only if |Sj| < N . This phase 
is responsible for finding N ⧵ |Sj| other tag prefixes in which the corresponding 
files are already stored on the CSP. Accordingly, this phase is finished whenever 
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|Sj| becomes equal to N. In each iteration of this phase, we choose a random prefix � 
from Sj and consider both of its one-bit expansions, i.e., �||0 and �||1 . It is worthy 
to note that the selection order between these two choices is done randomly. If both 
prefixes exist at the CSP, we inject both of them into Sj and remove the old � . Hence, 
|Sj| is increased by one member. Otherwise, we inject the prefix of the already exist-
ing tag into the Sj and remove the previous � . In Theorem (2), we prove that this 
process takes at most polynomially bounded steps in terms of k and N. Among these 
steps, when we are noticed that some prefix � does not exist on the CSP, we have 
to check whether it is a prefix of our file tag, i.e., Tj , or not. In the positive case, the 
process is terminated, and the file Fj has to be stored on the CSP.

If the second phase is finished with |Sj| = N , we reach the third phase. At this 
phase, |Sj| has N prefixes which exist on the CSP, and at least one of them is a pre-
fix of Tj . In this phase, we expand all the prefixes in Sj according to the process 
described in Observation (1). We do that in a random order, while for each member 
of Sj , we find the tag of one stored file. Meanwhile, in some of the random steps, we 
have to check the prefixes of Tj whether stored on CSP or not.

Theorem 2  Algorithm (2) sends O(N(k − log2 N)) prefix-equal queries to the CSP.

Proof  At the first phase of Algorithm (2), the client sends N queries to the CSP, 
each one with a log2 N-bit string. To analyze the second phase, consider the poten-
tial function shown in Equation (19). In each iteration of phase 2 main while loop, if 
the process does not exit, the value of Φ(Sj) is increased at least by one. Since Φ(Sj) 
is equal to N log2(N) at the beginning of this phase and is always less than Nk, this 
phase lasts at most Nk − N log2 N iterations. In each of its iterations, two queries, at 
most, are sent to the CSP. Thus, the number of queries sent to the CSP is less than 
or equal 2(Nk − N log2 N) ∈ O(N(k − log2 N) . With a similar justification, we can 
conclude that the number of queries at the third phase is O(N(k − log2 N) . Hence, 
the theorem is proved.

	�  ◻

6 � Security analysis and performance evaluation

It is worth mentioning that the proposed algorithm’s implementation could be done 
at no additional hardware cost compared with the traditional secure storage sys-
tems. The trusted third party will be responsible for PKG tasks where the private 
key shares are generated. In this section, the security of the proposed secure dedu-
plication system is analyzed and presented in Part (6.1). The performance of the 
N-anonymity algorithm is further evaluated through simulation, using real dataset. 
The simulation details, along with the evaluation results, are presented in Part (6.2).

(19)Φ(Sj) =
∑

�∈Sj

|�|.
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6.1 � Security analysis

The proposed secure cloud storage system simultaneously provides deduplication 
and N-anonymity. In this part, we analyze the security of the proposed system and 
show that even if the CSP becomes compromised by adversaries, the confidentiality 
of the stored data is still preserved. Basically, it is because of ECC-based encryp-
tion with rigid key management. We further show that the proposed system cleverly 
prevents the duplicate faking attack. In the rest of this part, we formally analyze the 
security of the proposed system.

Lemma 1  Data �� , which is a secret value, is known only by the data owners, and 
no one else can access the data �� . Equivalently, we can say that in the proposed 
secure deduplication system, the PoW is unforgeable.

Proof  Recall that data �� is the output of the hash function, in which the input is the 
symmetrically encrypted plain data. The plain data are encrypted with its hash value 
as a key, i.e., Eq. (1). Since the hash function is collision-free, its output is unique. 
Furthermore, no one owns the input of the hash function except the data owners. 
Recall that the hash function is irreversible; hence, only the data owner can generate 
the data �� . It is notable that, however, the hash value of the plain data is considered 
a plain parameter, the input of the hash function is the plain data encrypted with its 
hash value, and it is calculable only by the data owners. On the other hand, data �� 
are exchanged only between the data owner and PKG. PKG is a trusted authority, 
and the exchange process is done securely by encrypting the data �� by the master 
public key. Since just the PKG itself has access to the master private key, only the 
PKG can get access to the �� . 	�  ◻

Lemma 2  The private key of data is known only by the PKG, which is a trusted 
authority, and the data owner.

Proof  We know that the PKG is responsible for the private key generation process. 
According to Eq. (8), for generating the private key of the data, the PKG requires 
the data �� and the master private key. The master private key is known only by the 
PKG, while according to Lemma (1), the data �� are known only by the data owners, 
and they are sent to PKG through a secure channel. The data’s private key is also 
sent to the data owner in an encrypted format. The client’s public key encrypts the 
data’s private key; hence, only the client can decrypt it using its private key. 	�  ◻

Lemma 3  The stored data are confidential and remain confidential even if the adver-
sary gets access to the encrypted data.

Proof  The data are encrypted asymmetrically with its public key using ECC cryp-
tosystem. Hence, the confidentiality of the data is guaranteed as long as the ellip-
tic curve discrete logarithm problem remains intractable in polynomial time or the 
adversary gets access to the private key of the data along with the encrypted data 
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itself. Using N-anonymity algorithms proposed in Sect. (5), each client or adversary 
could easily get access to the tag of many stored files. Having the tag of each file, 
the client or adversary can retrieve the file from the CSP. However, the adversary 
has to compromise the PKG or the data owner to get access to the data’s private key. 
It is also worth noting that, although each client or adversary can access the stored 
encrypted files, the access process is random such that the adversary cannot distin-
guish the file of which data are accessed. 	�  ◻

By proving that the encrypted data are secure and just the data owners have 
access to the data’s private key, we can conclude that even if the CSP is compro-
mised by adversaries, the data confidentiality remains preserved. Now we show that 
the proposed secure deduplication system prevents duplicate faking attacks.

Lemma 4  The proposed secure deduplication system is resistant to duplicate faking 
attacks.

Proof  The tag of the stored encrypted file is calculated by Eq. (15). Since the tag is 
the hash value of the encrypted file, the CSP itself calculates the tag of each stored 
file. On the other hand, we know from Assumption (6) that the hash function is 
collision-free; thus, there is no additional encrypted file with the same hash value. 
Hence, the adversary can not send a fake file whose hash value is equal to the honest 
file tag. 	�  ◻

6.2 � Simulation detail and performance evaluation

To validate the results proved analytically in Sect. (5), a python-based simulation is 
done on a Microsoft Windows machine with 8 GB of main memory and a core i3, 
3.4 GHz processor. In this simulation, a population of more than 500,000 YouTube 
video is considered [45]. To make the results more dependable, we used a well-
known dataset provided by Simon Fraser University [46]. In this dataset, YouTube 
video links are stored, each with an 11-digit hash value. Since movies and videos 
are considered massive data which occupy a high storage ratio, implementing dedu-
plication techniques on such files seems very effective. That is why, we designed 
such a scenario. In this scenario, each user intends to upload its file and has to start 
the N-anonymity algorithm using the hash value corresponding to the video file. 
According to the server responses, the user identity remains N-anonymous, or the 
file does not exist on the server, and the user needs to upload it.

The goal of this simulation is to show the accuracy of the complexity analysis for 
proposed N-anonymity algorithms of Theorems (1) and (2) for both complete-equal 
queries and prefix-equal queries, respectively. For the N-anonymity algorithm to be 
feasible, at least N files must be stored in the cloud. For this reason, in the initializa-
tion phase of the simulation, N files are randomly chosen and stored in the cloud 
storage. The rest of the simulation scenario is as the following. In each simulation 
scenario, n users, one by one, randomly choose one file from the data set and start 
their queries to CSP. According to CSP responses, the user may know that the file is 
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not uploaded previously and hence uploads the file. Elsewhere, the queries are con-
tinued until the N-anonymity is achieved.

As the result of the simulation, we calculate the number of queries as follows. 
After the initialization process of storing N files for the first user, we calculate this 
number. For the next users, we add the number of queries to the previous number 
and divide the result by the current number of users. Generally, we calculate the 
average number of queries until the nth user.

Here, two different scenarios are simulated to validate the result of Theorem (1), 
which proved for the case of complete queries where the second scenario is related 
to Algorithm (2) to validate the analytical proof of Theorem (2). In the first scenario, 
after selecting its file, each user runs its complete queries of k bit length. In our 
simulation, the value of k, which represents the bit length of the data tag, is set equal 
to 77, i.e., each digit of the hash value is represented with 7 bits. As we mentioned 
earlier, after some queries, each user will find that its file is not stored formerly, and 
hence, the file will be sent to the cloud server. Elsewhere, the user continues queries 
to guarantee the N-anonymity.

Figure  3a represents the number of complete queries for different number of 
users, i.e., n, and different N values, in logarithmic scale. As it is clear from the 
figure, after some data storage processes, which we call warm-up process, users find 
that their files are already stored on the cloud storage. The reason is the limitation in 
the number of files used in the simulation. Accordingly, they keep sending queries 
to gain the N-anonymity. Such a process leads to the exact amount of query numbers 
proved in Theorem (1). It is obvious from Fig. 3a that the warm-up process does 
not need many users to store their files. The obvious fast convergence toward the 
proved query number prohibits this figure from representing the slope of conver-
gence speed. To better represent the behavior of the warm-up process, Fig. 3b rep-
resents the same results for the first 1000 users. Hereupon, the warm-up process is 
clearly ended after about 200 users, and then, the N-anonymity is achieved.

The second scenario is done according to Algorithm (2) to validate the upper 
bound of queries which is analytically proved in Theorem (2). Figure 4a represents 

Fig. 3   Complete-equal query: a Results for the range of users between one until 107 . b Range of users 
between one until 103
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the results for 10 million users. Since the number of prefix queries is much lower 
than that of complete queries, the results are not represented on a logarithmic scale. 
For all N values, the fast convergence is obvious. To show the behavior of the warm-
up process, Fig. 4b represents the same results for just 1000 users. Like the com-
plete prefix queries, the warm-up process required about 200 user. For more accu-
rate numerical comparison, we provide Table 2 to represent the numerical results for 
Algorithms (1) and (2). 

Finally, Fig. (5) represents a comparison between the upper bound value for the 
number of queries proved analytically in Theorem (2) and the simulation results for 
different N values. The obvious matching between the simulation results and the 
analytical bound after the warm-up process validates the analytical proofs.

7 � Conclusion

Although cloud deduplication techniques could help CSPs efficiently manage 
their storage, traditional techniques are completely useless against encrypted 
data. Secure deduplication techniques like convergent encryption and its general 

Fig. 4   Prefix-equal query: a Results for the range of users between one until 107 . b Range of users 
between one until 103

Table 2   Numerical comparison between the average number of required queries for Algorithms (1) and 
(2)

Average number of queries (Q)

Algorithm Complete-equal query Prefix-equal query

n‖N 2 4 8 16 2 4 8 16

100 4548.0 ∗ 1030 7498.4 ∗ 1030 12362.7 ∗ 1030 20382.8 ∗ 1030 149.0 225.1 490.2 880.2
200 8287.0 ∗ 1030 12996.7 ∗ 1030 18433.1 ∗ 1030 22526.5 ∗ 1030 149.7 270.8 520.4 985.5
300 10121.8 ∗ 1030 17898.1 ∗ 1030 22981.6 ∗ 1030 27513.9 ∗ 1030 149.8 279.9 532.9 1020.3
400 11759.9 ∗ 1030 236.81.4 ∗ 103030407.6 ∗ 1030 41045.9 ∗ 1030 149.9 284.7 541.6 1040.7
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framework MLE are proposed to face this shortcoming. While convergent encryp-
tion, MLE, and all their extensions are built based on symmetric encryption, we 
proposed a new asymmetric-based secure deduplication system. The proposed 
system utilizes an ID-based cryptosystem with elliptic curve cryptography to 
resist duplicate faking attacks as well as compromising the CSP. Furthermore, 
while in most secure deduplication systems, the CSP can recognize clients with 
the same data, which is an explicit violation of privacy, we added anonymity to 
the secure deduplication systems. Some secure deduplication systems paid atten-
tion to the anonymity problem; however, they solved this problem at the cost of 
removing authentication. Our solution provided N-anonymity by keeping the 
authentication process on. The proposed solutions are analytically studied, while 
comprehensive simulations validate the results of complexity analysis on real-
world data. The results of the simulations validated the analytical findings and 
proved the functionality of the proposed solution.
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