
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04751-6

1 3

Secure cloud storage with anonymous deduplication using
ID‑based key management

Mohammed Gharib1 · MohammadAmin Fazli2 

Accepted: 30 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Cloud storage systems have been turned into the primary services of Internet users
nowadays. While the application of such systems is exponentially increasing, dedu-
plication algorithms help face scalability issues. Although source-side deduplication
optimizes both storage and bandwidth, the main concern that deduplication algo-
rithms suffer from is still data confidentiality. Message-locked encryption (MLE) is
a well-known key management framework for secure deduplication to provide con-
fidentiality. This framework is the basis of almost all the proposed secure deduplica-
tion solutions. Even though there are lots of literature works trying to provide secure
deduplication algorithms, to the best of our knowledge, none of them provide an
effective anonymity service for data owners. In this paper, we propose an N-ano-
nymity algorithm to provide an effective anonymity service, capable of prohibiting
even the cloud storage provider from knowing which users are storing the same data.
The algorithm is analytically studied, and the results are validated by exhaustive
implementations using real data. Furthermore, we propose an ID-based key manage-
ment algorithm as the cornerstone of the secure cloud storage system. The proposed
algorithm, which could be considered as an asymmetric extension of MLE, is easy
to implement and compatible with the existed cloud architectures as well as the pro-
posed anonymity-based deduplication system.

Keywords  Cloud storage · Deduplication · Anonymity

Mohammed Gharib and MohammadAmin Fazli have contributed equally.

 *	 MohammadAmin Fazli
	 fazli@sharif.edu

	 Mohammed Gharib
	 gharib@ipm.ir

1	 Institute for Research in Fundamental Sciences, Tehran, Iran
2	 Sharif University of Technology, Tehran, Iran

http://orcid.org/0000-0002-8177-0239
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04751-6&domain=pdf

	 M. Gharib, M. Fazli

1 3

1  Introduction

Cloud storage systems have been attracting the attention of many users, while the
volume of stored data in such systems has been explosively increasing during the
last years [1–4]. The ease of use, accessibility, synchronization between different
devices, and reliability of cloud storage systems make them more popular insofar as
many users are using them as their main storage [2, 5, 6], i.e., not just as a backup
storage [7]. Dropbox [8], Google drive [9], and Mozy [10] are some well-known
instances. However, cloud storage systems suffer from scalability issues because
many duplicated copies of the same data are stored in the cloud. Deduplication
techniques are the best-known solutions to face the explosive increment in cloud
storage data [11–14]. Such techniques prohibit redundant data from duplicate stor-
age. According to [15, 16], deduplication can reduce the required storage for backup
applications up to 95% . In comparison, up to 68% of the storage required for stand-
ard file storage is saved by deduplication. It is worth noting that Dropbox, Google
Drive, and Mozy are all using deduplication to optimize their systems [17].

In deduplication techniques, data could be considered as one single file or sev-
eral equal-sized data blocks. Before storing each file or block of data, it is checked
whether the data are formerly stored or not. In the case of former storage, the data
are discarded. In the simplest form of deduplication, this check is done after upload-
ing the data. In such a naive technique, which is referred to as server-side dedu-
plication, the bandwidth is wasted in case of former storage. Furthermore, the data
are stored in its plain format, while it is well known that attacking the stored data
on the cloud storage is not avoidable [18, 19]. Hence, the cloud storage provider
(CSP) cannot be assumed to be fully trusted. Accordingly, bandwidth inefficiency
and the confidentiality of the stored data are considered the two CSP storage issues
in server-side deduplication.

The solution to the wasted bandwidth of server-side deduplication is to transfer
the deduplication decision process to the source side. The client can calculate a sig-
nature for its file and asks the CSP about a file with such a signature, whether previ-
ously stored or not. In a positive case, the client does not send the file to the cloud.
Hence, the bandwidth is also saved. Such a signature is referred to as a file tag and
could be a fixed-size hash value of the data itself. After uploading its file or ensuring
that a copy of the data is already stored on the cloud, the client deletes the file from
its own storage and only stores its tag along with a proof of ownership (PoW). PoW
is used to retrieve the file [14], while it is almost considered the same as the tag.
However, according to the deduplication algorithm, PoW could differ from the tag.
Accordingly, for retrieving the data, the client sends the PoW to the CSP, and the
CSP, in its turn, checks the matched data and returns the data to the client.

The solution for the second issue, i.e., data confidentiality, is to encrypt data
before sending it to the cloud. Since in convenient encryption algorithms, each
file or block of data is encrypted with a different client key, the hash value of
the encrypted data is not equal to the hash value of the same data encrypted by
another client. In such a case, the cloud provider cannot detect the duplicated
data, whereas the deduplication process could not be applied correctly. For the

1 3

Secure cloud storage with anonymous deduplication using…

encryption problem to be solved in deduplication algorithms, convergent encryp-
tion [20] is proposed. In this solution, the encryption key is extracted from the
data itself; thus, the key for the same data becomes unique. The encryption key
could be the hash value of the plain data. Hence, the copy of the same data gener-
ates the same encrypted data. Accordingly, the deduplication process becomes
feasible. It is worthy to note that, using such an idea, the encrypted data are still
not confidential. The reason is owing to the hash value of the plain data, which
is used some times as the ID of the data. Generally, it is not considered a secret
value [19], i.e., any adversary node may have access to the hash value of the plain
data.

Bellare et al. [21] proposed a framework that generalizes convergent encryption
and comprises all its extensions. The proposed framework is referred to as message-
locked encryption (MLE). Both convergent encryption and MLE are built based
on a symmetric cryptosystem. In this paper, we propose a new and rigid ID-based
key management that makes the secure deduplication system much more resistant
against different attacks. The proposed key management uses elliptic curve cryptog-
raphy (ECC) and could be considered as an asymmetric extension of MLE frame-
work. ID-based key management proposed by Shamir [22] suggests extracting the
public key of each user from its unique ID. To the best of our knowledge, it is the
first time that ID-based key management has been used to deploy secure data dedu-
plication in cloud storage systems.

It is also notable that, even for the encrypted data, which is confidential for CSP,
the cloud storage provider could recognize the users who own the exact copy of the
data. For example, consider a tax profile of a specific client or an employee’s salary
form. The CSP can recognize those who have the same salary or tax statements.
The problem of side-channel information leakage in deduplication systems has also
been previously mentioned by Zhang et al. [23]. In this paper, we propose an anony-
mous deduplication approach, based on the N-anonymity concept, for the data to be
confidential so that the CSP could not realize who are storing the same data. N-ano-
nymity guarantees that when a client stores the same copy of an existing file on the
cloud, there exist at least N − 1 other files that the CSP cannot recognize which one
is the stored file. To reach this aim, we provide a client-side algorithm to find the tag
of at least N − 1 previously stored files so that the CSP cannot distinguish which one
is the client’s file. It is worth noting that the anonymity problem was proposed ear-
lier, along with some solutions. However, to the best of our knowledge, all proposed
solutions gain anonymity at the cost of losing client authentication. Our proposed
approach guarantees the N-anonymity, while all the clients are still authenticated.
The proposed approach is studied analytically, while its complexity is calculated
based on the number of queries needed to be sent to CSP. Exhaustive implementa-
tion is also done using real datasets to validate the analytical results. Hereupon, this
paper’s main contribution is to propose a secure data deduplication system providing
N-anonymity service for CSP, using ID-based key management. The more detailed
contributions are (i) to propose ID-based key management as the cornerstone of the
secure deduplication system, (ii) to propose an N-anonymous, secure deduplication
algorithm, (iii) to theoretically analyze the complexity of the proposed anonymity
algorithm, (iv) to analyze the security of the proposed secure deduplication system,

	 M. Gharib, M. Fazli

1 3

and (v) to implement the proposed algorithm exhaustively in a real world and vali-
date the theoretical results.

The rest of this paper is organized in the following. The related works are
reviewed in Sect. 2, while the problem is formally defined in Sect. 3. The proposed
solutions for both the key management and anonymous deduplication are proposed
in Sects. 4 and 5, respectively. Security analysis of the proposed deduplication sys-
tem, simulation details, and the evaluation process of the N-anonymity algorithm are
altogether presented in Sect. 6. Finally, the paper is concluded in Sect. 7.

2 � Related works

Sun et al. [24] proposed an efficient deduplication system for cloud storage, referred
to as DeDu. Although DeDu is an efficient solution for deduplication, it is not appli-
cable to encrypted data. In this section, we review the literature on secure deduplica-
tion systems for CSPs where the deduplication system can handle encrypted data.
In this case, it needs a rigid key management system capable of efficiently manag-
ing the keys such that the CSP assigns a specific key for each block or file of data.
The general framework for such a key management system is proposed by Bellare
et al. [21] and referred to as MLE. MLE is a symmetric-based encryption system,
and since it is a general framework, different secure deduplication instances pro-
posed earlier to MLE are comprised of MLE. However, such instances suffered from
the absence of precise definition and theoretical treatment. Bellare et al. [21] for-
malized the MLE framework, which encompasses most of the former works. Some
MLE instances include [20, 25–28] where convergent encryption [20] significantly
attracted the attention of many researchers. This attracts several algorithms to be
proposed based on the convergent encryption, including but not limited to [29–33].
Accordingly, in this section, we first review the MLE framework and some of its
extensions. Next, we review some older works that utilized just the raw idea of con-
vergent encryption. Finally, we review the literature on considering anonymity in
deduplication systems and what is their shortcomings that lead to our contribution
being needed.

Basically, MLE proposes extracting the key of each data block or file from the
data itself. Douceur et al. [20] proposed a convergent encryption system in which
the output of a deterministic and cryptographic hash function could be used as the
data key. Since the hash algorithm is deterministic, the key is unique for the same
data. Accordingly, the encrypted block of the same data becomes equal for all users
with the same data, making the deduplication process feasible. On the other hand,
the hash value of the data used as the encryption key is encrypted with the client’s
public key and stored along with the encrypted file as metadata for the PoW. The
same authors proposed Farsite [29] to utilize the raw idea of convergent encryption.
Storer et al. [30] proposed a chunk-based secure deduplication system, with high
similarity to that of [29]. Authors of [30] separated the storage of metadata from
that of chunks into two independent servers. Zooko et al. [31] proposed and imple-
mented a convergent encryption-based storage system using a capability access con-
trol model. This system, which referred to as Tahoe, quickly became operational and

1 3

Secure cloud storage with anonymous deduplication using…

many customers relied on it for storage. Rahumed et al. [32] presented Fade version,
a secure deduplication system capable of deleting some versions of the files perma-
nently, while other versions remain unaffected. This system is also built based on
convergent encryption.

Even after proposing MLE [21], many other works are yet proposed based on
the raw convergent encryption idea. Puzio et al. [33], as an instance, proposed a
secure block-level deduplication system called ClouDedup. Authors of [33] added
a new component to support the key management process of block-level deduplica-
tion. They showed that the overhead caused by the new component does not seri-
ously affect the overall computational and storage complexity. Wen et al. [34] pro-
posed another convergent encryption-based deduplication system for image files.
The authors proposed to use a verification server beside the storage server to be
able to verify the deduplication process. As another instance of a convergent-based
deduplication system, Li et al. [35] formally addressed the problem of reliably and
efficiently managing a huge number of keys. Furthermore, Li et al. [36] proposed a
hybrid approach for secure deduplication combined with the authorization process.
According to their claim, it is the first attempt to address the authorization problem
in secure deduplication formally.

However, as we mentioned earlier, the convergent encryption-based deduplica-
tion systems were not defined formally based on a general framework. Bellare et al.
[21] proposed a general framework, referred to as MLE, that encompasses the con-
vergent encryption system and all its extensions. MLE uses symmetric encryption to
provide secure deduplication. The same authors of MLE [21] mentioned that MLE
is subject to brute-force attacks, and accordingly, they proposed DupLESS [27] to
improve MLE by making it resistant against brute-force attacks. The authors pro-
posed to add a key server to the existed storage server. The task of the new server
is to authenticate the keys without any knowledge about the data itself. Chen et al.
[28] proposed a secure deduplication system based on the MLE framework, referred
to as block-level MLE (BL-MLE), capable of providing deduplication service for
both files and blocks of data. BL-MLE shows more efficiency for large files than its
former works.

The whole presented works were proposed based on the raw idea of convergent
encryption or under the general framework of MLE. Hence, all of them use sym-
metric encryption. This paper proposes a new secure deduplication system with
asymmetric key management. To the best of our knowledge, this is the first asym-
metric-based key management system for secure deduplication in cloud storage.
It is worth noting that Yan et al. [17] used an asymmetric key encryption system
for secure deduplication just for user authentication. In this work, we propose an
ID-based key management scheme to manage the data encryption using an elliptic
curve cryptosystem.

Furthermore, this paper proposes a solution to provide N-anonymity for data
owners. The anonymity problem was also mentioned earlier in [23, 30, 37]. Storer
et al. [30] proposed two secure deduplication systems in which one authenticates the
users, while the second, which is an anonymous system, does not do authentication.
The solution of [30] is to gain anonymity at the cost of losing authentication. In the
other work, Jung et al. [37] proposed an alternative attribute-based solution in which

	 M. Gharib, M. Fazli

1 3

each data file has its attributes, and the data key is extracted from the concatenation
of the attributes. Since such a system is built based on the attribute of the data, users
are kept anonymous. Basically, in [37] the storage process is handled by the data
attributes, and it is not user-aware system at all. Accordingly, the client is authen-
ticated neither in [30] nor in [37]. Zhang et al. proposed a k-anonymity solution to
prevent information leakage by side-channel attacks. In a side-channel attack, the
attacker tries to get access to some confidential information, such as patient infor-
mation, from the uploaded files. In this case, it makes the same file with the patient
information and changes the disease name. If the server tells the attacker that the
same file already exists, the attacker knows that the patient has the disease. The idea
of [23] is not to let the user know the same file is already uploaded except if there
are at least k other copies of the same file stored on the server. In this case, even
if the file for a patient with the same information is uploaded, the server tells the
attacker to upload its own file. This clever solution, however, has the disadvantage
of storage overhead. Furthermore, if the attacker knows the value of k, it can upload
k − 1 the same file and check whether it gets the duplication message from the server
or not. In the N-anonymity solution proposed in this work, the clients are authenti-
cated, while the CSP cannot recognize between N different files which one is owned
by the specific client.

3 � System model

In this section, the detailed system model is described, and further, the problem of
secure deduplication in CSP is formally presented. We consider a typical secure
CSP system with deduplication. Such a standard system has a general architecture
shown in Fig. 1 which is matched with many existing secure cloud storage sys-
tems such as [17, 33, 36, 37]. This paper proposes an asymmetric ID-based key

Cloud Storage
Provider

Client 1

Client 2

Client 3

Client n

Trusted Authority

Fig. 1   A general architecture of a typical secure cloud storage with deduplication

1 3

Secure cloud storage with anonymous deduplication using…

management as the cornerstone of the typical secure CSP with deduplication and
adds N-anonymity service to this system without any severe change in the overall
architecture. This architecture has a set of n clients, each with its own data. There
is also a cloud storage provider, responsible for all storage management problems
and issues. In addition to the CSP, there is a trusted third authority responsible
for issuing the keys or certificates. This component is required to handle security
issues, precisely the key management problems.

Basically, a secure deduplication process requires five algorithm sets for
parameter generation, key generation, encryption, decryption, and tag generation
[21]. According to the general framework of MLE, the mentioned algorithm sets
are represented with a five-tuple (P,K, E,D, T) , respectively. Hereupon, the gen-
eral scenario of data storage is as the following. First of all, each system com-
ponent that is responsible for generating system parameters has to do its corre-
sponding tasks, defined in the algorithm set P . Then, the algorithm set K is used
cooperatively between clients and the trusted third party to generate the required
keys. It is worth noting that both data and clients have their own keys in which
the data key is generated from the data itself, while in almost all algorithms, each
client has a pair of private–public keys used for authentication reasons. In the
basic idea of convergent encryption, the hash value of the data is used as the data
encryption key. As we mentioned earlier, the data hash value may be known by
others [19], and hence, it is not a suitable choice to be used as the encryption key.

The client then encrypts its data using the data key and algorithm set E . The
client further applies the algorithm set T on the encrypted data to generate a data
tag. Obviously, the tag has to be consistent for the same data. It means that the
tag of the same data generated by the different users has to be the same as the
previous one. The data tag is sent to the CSP, and the CSP, in its turn, responds
to the client whether the data are previously stored or not. In both cases, the cli-
ent encrypts the data’s tag by its public key to generate PoW. PoW is stored along
with the data in CSP to guarantee the access of the data owner. Whenever the
client needs to access its data, the client sends the PoW to the CSP, and CSP
then checks the PoW and returns the data to the client. The retrieved data are
encrypted; thus, the client uses the data key and algorithm set D to decrypt the
data and access the plain one. For more information about the MLE framework
details, we refer the readers to the original MLE work [21].

Since the stored data are encrypted in this system, the CSP cannot access the
data. It is worth noting that whenever we talk about the untrustworthy of the CSP,
it does not always mean that we do not trust the CSP itself. However, the data
are stored somewhere, maybe accessible to adversaries or untrusted agents. On
the other hand, the CSP is always under different attacks, and such attacks are
unavoidable [18]. The following assumptions are also considered to define secure
cloud storage with deduplication.

Assumption 1  The system includes n clients, whereas the value of n is constantly
changing. Hence, the system has to be dynamically scalable.

	 M. Gharib, M. Fazli

1 3

Assumption 2  Each client is recognized with a unique ID. This ID could be an IP
address, phone number, or any other unique ID.

Assumption 3  We have a CSP that stores encrypted data from a universe U. The
defined system could be a block-level or file-level CSP. It is worth noting that the
block-level data storage is considered to have better performance than file-level stor-
age in the context of deduplication [38–40]. However, our proposed system is able
to handle both block-level and file-level deduplication. Accordingly, to propose the
system, we use the term data file through the paper, while it could be substituted by
data block.

Assumption 4  There is a reliable symmetric cryptosystem, represented by
Encrypt(Data,Key). This system symmetrically encrypts the “Data” with the “Key”,
whereas the data encrypted remain confidential unless their key is compromised.
This encryption system is not the subject of this paper and can be any well-known
symmetric encryption system, such as AES [41] and RC6 [42].

Assumption 5  The CSP is considered a black-box storage service with a vast storage
capacity. From our point of view, we do not see the internal CSP tasks such as job
scheduling, resource management between different cloud entities, and backup oper-
ations. Hence, from the vantage point of this work, there is a vast integrated, relia-
ble, and available storage system. Accordingly, just one copy of each data is required
to be stored in such a black-box storage system, i.e., the backup tasks, including the
storage of several copies of the file for higher reliability, are not subject to this work.

Assumption 6  H ∶ U → {0, 1}k is a publicly known, deterministic, and crypto-
graphic hash function that converts each file of data into a fixed size, i.e., k bit, hash
value. This hash function is considered a collision-free and irreversible hash func-
tion. The mentioned hash function is deterministic and thus returns the same hash
value for the same data.

Assumption 7  We assume that the currently stored encrypted files on the server are
defined by the set M ⊆ U with |M| = m.

In this paper, we propose a secure deduplication system with ID-based key
management, an asymmetric encryption-based solution that could be considered
an asymmetric extension of MLE. On the other hand, in a typical secure dedupli-
cation system, the CSP is able to recognize the clients that store the same data.
Such a fact is an obvious violation of client privacy. As we mentioned earlier, a
tax statement or a salary form could be considered data that could be confiden-
tial. In such cases, the CSP can recognize, for instance, that the salary of this
client is as equal to that one, which is some identity privacy violation. In this
paper, we propose an N-anonymity solution for secure deduplication capable of
anonymously doing the cross-user deduplication, while the CSP cannot recognize
which clients have the same data.

1 3

Secure cloud storage with anonymous deduplication using…

4 � ID‑based secure deduplication system

This section proposes a new secure deduplication system using an ID-based key
management algorithm. ID-based key management is an asymmetric algorithm
proposed for the first time by Shamir [22]. The main idea of ID-based key man-
agement is to extract the public key of each network client from its unique ID
using a deterministic algorithm. Hence, there will be no need to certify public
keys. Since, in the context of secure data deduplication, we need to encrypt the
same data with the same key, this idea seems very interesting. However, Shamir
just proposed a signature-based algorithm and left the problem of ID-based
encryption as an open problem for other researchers. Hereupon, Boneh and Frank-
lin [43] proposed the first functional ID-based encryption system using highly
complicated pairing operations. Such a system requires a central trusted authority
called a private key generator (PKG), responsible for initializing secure network
parameters and generating private keys. It is worthy to note that, although PKG
is considered a central authority, it could be implemented in distributed man-
ner [44]. However, we propose our algorithm using a central PKG for simplicity
reasons.

In ID-based key management, public keys are extracted easily from unique
IDs. We use the basic idea of ID-based encryption, in which the complex pair-
ing operations used in [43] are replaced with much more efficient elliptic curve
point multiplications. Hence, the proposed algorithm is ID-based key manage-
ment built on an elliptic curve encryption system. This algorithm is designed to
be suitable for secure deduplication in CSP and compatible with the N-anonym-
ity-based algorithms proposed in Sect. 5.

Nevertheless, the ID-based key management algorithm to be used as the corner-
stone of a secure deduplication system has to generate unique private-public key
pair for each file and client. The public key could be extracted from the user or data
unique ID. Hence, even though we know from Assumption 2 that all clients have
their unique IDs, we need further to define IDs for the data such that the defined
IDs satisfy two main conditions. First, the data ID should be unique for the same
data, even when another client generates the ID. Second, data IDs have to be non-
overlapping with client IDs, i.e., all IDs have to be unique. Hence, we propose an
algorithm set to generate a unique ID for both data and clients that satisfies the men-
tioned conditions. This algorithm set is referred to as the ID generation algorithm
set and is represented by I .On the other hand, as we mentioned earlier, MLE is
considered the most typical framework for secure deduplication. Henceforward,
we propose our secure deduplication system as an asymmetric extension of MLE.
Accordingly, we define the new system with the same five-tuple algorithm sets of
MLE, i.e., (P,K, E,D, T) . Each of the mentioned algorithm sets, i.e., the five-tuple
algorithm sets along with the ID generation, is described in detail in the rest of this
section. Figure 2 represents the schematic view of the algorithm sets, and Table 1
collects the notations used in this paper along with their brief descriptions.

ID generation algorithm set (I) : We suggest using the hash value of the data
as the symmetric key to symmetrically encrypt the data using the symmetric

	 M. Gharib, M. Fazli

1 3

cryptosystem mentioned in Assumption 4. Then, the data ID will be the hash
value of the symmetrically encrypted data. For the IDs to be unique for both data
and clients, we suggest using the hash value of the client ID instead of the client
ID itself. Hereupon, to distinguish between the original ID of client i from its
new ID defined to be unique for both data and clients, we use the notations IDci

and ��ci

 , respectively. Since the hash function is collision-free, and both data ��
and client �� are the output of the hash function, all �� s are unique. The formulas
of calculating new unique �� for data and clients are represented in Eqs. (1) and
(2), respectively. The new data �� is unknown to others and is considered a secret
value. We will use this value to exchange the private key of the data with PKG
securely. It could also be used as the PoW to guarantee upcoming data accesses.
The detail of key exchange and data access is proposed in the rest of this section.

Parameter generation algorithm set (P) : As we mentioned earlier, PKG is respon-
sible for parameter generation algorithm, i.e., P . The first parameter is a large prime
number p, which is used to generate a non-singular elliptic curve over the field �p .
Such an elliptic curve has the form of Eq. (3) and represented by E(�p) . Parameters
� and � are two constants, chosen form �p . The elliptic curve base point � is also
defined based on a large prime number q such that q|#E(�p) . This algorithm also
needs a collision-free hash function, just like the function used for deduplication
tasks, with one extra condition connecting it with parameter q. The condition is rep-
resented in Eq. (4), while it states that the hash function’s output has to be a number
smaller than q. Since parameter q is a large prime number, the hash function output
could be considered to be with a bit length less than q. Accordingly, any well-known

(1)��fi
= H(Encrypt(fi,H(fi)))

(2)��ci
= H(IDci

)

Fig. 2   A schematic view of the ID-based secure deduplication system

1 3

Secure cloud storage with anonymous deduplication using…

collision-free hash function could be used for both key generation and deduplication
tasks.

Key generation algorithm set ( K ): The key generation algorithm requires two sep-
arate phases. In the first phase, master private–public key pair (xm, ym) is generated.
PKG uses this key pair to generate all other keys. The second phase is to generate
private–public key pairs of data files and clients. Client keys are required to guar-
antee secure communication between the clients and the PKG, while data keys are

(3)E(�p) ∶ f 2(x) = x3 + �x + � (mod p)

(4)H ∶ {0, 1}∗ → ℤq

Table 1   Table of notations
N The degree of anonymity
n The number of nodes
H(.) A collision-free hash function
I The ID generation algorithm
P The parameter generation algorithm
K The key generation algorithm
E The encryption algorithm
D The decryption algorithm
T The tag generation algorithm
IDci

The typical unique ID of client i
��ci

The new unique ID for the client i
��fi

The new unique ID for the data file i
p and q Two large prime numbers.
� and � Two constants chosen from the field �p
� The elliptic curve base point
(xm, ym) The master private–public key pair
(xci , yci) The private–public key pair of client i
(xfi , yfi) The private–public key pair of data file i
fi The data file i
Fi ∶ (�1, �2) The encrypted data file i
Tfi The tag of data file i
U The universe of files
M The set of previously stored files on CSP
m The number of files in M
k The bit length of hash value generated by H
C(Fi) The first client stored the encrypted file Fi

Hj The set of CSP candidates for the tag of Fj

Sj The set of tag prefixes as the CSP candidates of Fj

Q The set of possible queries expressed by query type
� A random bit string, to be checked whether it is a

tag of previously stored file or not

	 M. Gharib, M. Fazli

1 3

used for data encryption, i.e., to ensure the confidentiality of stored data. The master
private key, i.e., xm , is chosen randomly from ℤ∗

p
 by PKG, while the master public

key is calculated using Eq. (5).

Each client must get its private key from PKG once it joins the cloud system. The
PKG generates the private key according to Eq. (6). The corresponding public key is
also extractable form the client �� using Eq. (7). The private and public keys of data
files are generated using similar formulas presented in Eqs. (8) and (9), respectively.
After receiving the private–public key pair, each client can easily check its validity
using Eq. (10).

Encryption and decryption algorithm sets (E and D) : Encryption and decryption
algorithm sets for the plain data file fi with the key pair (xfi , yfi) are defined in the fol-
lowing. First, a random number � ∈ ℤ

∗
q
 is chosen. The cipher text is then represented

by Fi and consists of a pair (�1, �2) in which �1 is a mapping to a point on the elliptic
curve. Encryption and decryption processes are, respectively, shown by Eqs. (11)
and (12). Accordingly, it is easy to observe that the decryption process of Eq. (12)
returns the exact lain data fi . The validation of such an observation is shown in Eq.
(13). It is worthy to note that the encryption process proposed here is asymmetric
encryption for the data before storing it on the CSP. It obviously differs from the
symmetric encryption used for �� generation algorithm which could be any symmet-
ric encryption algorithm.

(5)ym = xm.�

(6)xci = xm.H(��ci
) (mod q)

(7)yci = ym.H(��ci
) (mod q)

(8)xfi = xm.H(��fi
) (mod q)

(9)yfi = ym.H(��fi
) (mod q)

(10)

yci = ym.H(��ci
)

= xm.�.H(��ci
)

= xci .�

(11)Fi = E(fi, yfi) =

{
�1 = �.�

�2 = fi + �.yfi

(12)D(Fi) = D(�1, �2) = �2 − xfi .�1

1 3

Secure cloud storage with anonymous deduplication using…

It is further worthy to note that each client to get the private key of its own data file
sends its request to PKG as shown in Eq. (14). The request consists of the asym-
metrically encrypted data ID, i.e., ��fi

 , with the master public key. PKG, in its turn,
decrypts the request by the master private key and generates the corresponding pri-
vate key of the data using Eq. (8). The private key of the data is then encrypted with
the client’s public key using Eq. (11) and sent back to the client. This algorithm will
have a secure channel between PKG and clients. Hence, data keys are exchanged
securely between them. Obviously, data public key is also extractable from the data
ID, i.e., ��fi

 , using Eq. (9).

Tag generation algorithm set (T) : The last algorithm set, i.e., T  , returns the tag of
data which is used to check whether the data are previously stored or not. The data
tag is the hash value of the asymmetrically encrypted data as shown in Eq. (15). It
is evident that such a tag is consistent, i.e., the tag generated for the same data by
different clients has the same value. As we mentioned earlier, the public key of data
files fi is extractable from its ID, i.e., ��fi

 ; hence, the data could be encrypted eas-
ily, and the output is the same for all data owners. Recall that the data ID is the hash
value of the symmetrically encrypted data, using the hash value of the plain data as
the symmetric key. Hence, data ID and data tag differ from each other.

It is worthy to note that the proposed tag generation mechanism cleverly prevents
the duplicate fake attack. We formally mention the definition of this attack here, as it
is defined in [21]. The proof that the proposed system is preventing such an attack is
then stated in Sect. (6.1).

Definition 1  Duplicate faking attack: Consider an adversary and an honest client
with the same file. The adversary generates the file’s honest tag and sends it along
with a fake file into the CSP. When the honest client sends the tag of his file to check
whether the file is previously stored or not, the CSP replies positively. Hence, the
file is discarded. When the honest client retrieves his file, the received file is not
true, while the right file is missed. This attack is referred to as a duplicate faking
attack.

(13)

�2 − xfi .�1

= fi + �.yfi − xfi .�.�

= fi + �.xfi .� − xfi .�.�

= fi

(14)DataPrvKeyReq = E(��fi
, ym).

(15)Tfi = H(E(fi, yi)).

	 M. Gharib, M. Fazli

1 3

5 � N‑anonymity‑based algorithm

Recall that the scenario of data deduplication, using the ID-based key manage-
ment proposed in Sect. (4), is as follows. A publicly known hash function is used
to hash encrypted files, i.e., generate file tags. To store an encrypted file Fi on the
CSP, the client must check whether the file with the same tag is previously stored
or not using its hash value Ti = H(Fi) . For accessing any encrypted file Fi ∈ M
on the CSP, it is also enough to have Ti = H(Fi) . It is worth noting that, in this
scheme, the accessed data are encrypted. Hence, getting access to the data tag
does not violate the data confidentiality.

For each stored encrypted file Fi ∈ M , the first client who stored the file on the
CSP is known by the CSP, shown by C(Fi) . A client j wants to store an encrypted
file Fj with the tag Tj = H(Fj) . Our idea for N-anonymous secure data deduplica-
tion is to check whether Fj ∈ M or not by asking some queries among a set of
predefined query types. The queries are asked from the CSP about the tags of the
files stored in M. If Fj ∈ M , client j does not want the CSP to know that his file is
the same as the file stored by C(Fi) . We further assume that the CSP always tries
to guess H(Fj) . Thus, we have to do our best to increase the number of candi-
dates that can potentially have the right value for H(Fj) . This concept is formally
defined by N-anonymity.

Definition 2  N-anonymity: Assume that H(Fj) ∈ M and Hj is the set of CSP candi-
dates which potentially could be H(Fj) . We say that N-anonymity is satisfied when
|Hj| = N.

Assuming that the hash function H(⋅) is entirely uniform, satisfying N-ano-
nymity is equivalent to finding the hash values of N available files on the CSP,
including Tj = H(Fj) . These values are used to satisfy anonymity. We refer to this
problem as the N-anonymity injection problem.

Definition 3  N-anonymity injection problem (N-AI): Given a set Q of possible que-
ries, it is expressed by a predefined query type. The problem is to propose a ran-
dom process that can find a set Hj including N hash values, such that Hj ⊆ M and
H(Fj) ∈ Hj using the queries of Q.

In the following parts, we propose two different query types which could be
asked from the CSP. The first one is the naive solution with inefficient complex-
ity. We name it as complete-equal query. The second solution is the improved
version with much lower complexity regarding the number of queried bits. We
name the second solution as prefix-equal query. Each query type is proposed in a
separate part, while we study the N-anonymity injection problem for each one. In
our study, we further consider the optimization version of this problem, whereas
the goal is to minimize the number of bits used to query the CSP.

1 3

Secure cloud storage with anonymous deduplication using…

5.1 � Complete‑equal queries

The complete-equal query is the naive solution for finding a set of N tags in which
the CSP previously stores the corresponding files. The definition of such query
type is given in the following.

Definition 4  Complete-equal queries: Complete-equal queries are queries in the
form of Complete_Exist(x) , where x ∈ {0, 1}k is a k-bit string for which when asked
from a CSP, it should return “True” if there exists an encrypted file Fi with Ti = x or
“False” otherwise.

For the complete-equal queries, the best a client can do is to generate random
bit strings and query them from the CSP until it can find N tags correspond-
ing to the stored files on the CSP. Among these random bit strings, the query
Complete_Exist(Tj) is run in random order. If this query returns false and thus the
client notices that Fj is not previously stored on the CSP, it quits all the processes
and sends Fj to the CSP for storage.

Algorithm (1) states that we query the CSP with random pseudo-hash values
until we get N True responses. We inject the tag of our file with a True response
between the pseudo-hash values. Accordingly, CSP could not recognize which
one of existed files in which the corresponding response was True is the client
file. Increasing the hash value bit length increases the algorithm’s time complex-
ity. Theorem (1) mathematically analyzes this complexity.

	 M. Gharib, M. Fazli

1 3

Theorem 1  Algorithm (1) sends O(2k(logm − logN)) complete-equal queries to the
CSP.

Proof  The time complexity of Algorithm (1) can be simply computed by the sum of
N random variables X1,X2,… ,X

N
 , for which Xi represents the number of iterations

in the ith iteration of the while loop, i.e., lines 3–22 of Algorithm (1). It is trivial
that the while loop is run N times, owing to each run adds one member to Hj until
we finally find N members of M, i.e., |Hj| = N . Clearly, Xt = O(1) and other Xi s
count the number of times a randomly chosen � fails to be a member of M ⧵ Hj in
the while loop of lines 15–21, i.e., to be a tag of a stored file on the CSP. Hence, for
i ∈ {1, 2,… ,N} ⧵ {t} , we have

Thus, the runtime of Algorithm (1) is

From the equation
∑n

i=1

1

i
= O(log n) + O(1) , we can deduce that the time taken by

the algorithm is equal to

	� ◻

Theorem (1) shows that the run time of Algorithm (1) is exponentially increasing.
Hence, it cannot be used for large k values, and this algorithm is practically ineffi-
cient. Some results representing its complexity in the real world are shown in Sect.
(6.2). The results show that even for a small number of users, to achieve N-anonym-
ity, each user needs to perform several billions of queries. Accordingly, one can say
that achieving N-anonymity by complete-equal queries is not feasible at all. In the
next part of this section, we propose a new query type that can be used for efficient
N-anonymity algorithm design.

5.2 � Prefix‑equal queries

In this part, we show that with a clever improvement in the definition of the query
type, we can achieve N-anonymity with much lower complexity. First, we define the
new query type, which we name prefix-equal query, and then show that the number
of such queries required for achieving N-anonymity is with polynomial complexity.

Definition 5  Prefix-equal queries: Prefix-equal queries are in the form of
Prefix_Exist(x) , where x ∈

⋃k

i=1
{0, 1}i is a bit string with length i. Accordingly,

(16)E[Xi] = 1∕Pr{� ∈ M ⧵ Hj} =
2k

m − i
.

(17)
N∑

i=1

E[X
i
] =

N∑

i=1

2k

m − i
= 2k

(
m∑

i=1

1

i

)
− 2k

(
m−N+1∑

i=1

1

i

)

(18)
N∑

i=1

E[Xi] = O(logm) − O(logm − N) + O(1).

1 3

Secure cloud storage with anonymous deduplication using…

when CSP is asked for x, it has to return “True” if there exists an encrypted file Fi
for which Ti = H(Fi) starts with the prefix x and, “False” otherwise.

In the following observation, we show that for a query Prefix_Exist(x) = True , we
can find the hash value of a stored encrypted file with a polynomial number of que-
ries in terms of k and |x|, where |x| represents the bit length of string x.

Observation 1  For a query Prefix_Exist(x) = True , we can find the hash value of
a stored encrypted file with (k − |x|) queries. When Prefix_Exist(x) = True , we can
conclude that at least one of the queries Prefix_Exist(x||0) or Prefix_Exist(x||1) is
True, when x||b defines the concatenation of the string x and the character b. Hence,
we can simply query Prefix_Exist(x||0) , while in positive answer we replace x with
x||0. Otherwise, Prefix_Exist(x||1) definitely is True, and therefore, x is replaced by
x||1. Such a process is continued until we reach a k-bit tag of the stored file.

Algorithm (2) is proposed to support N-anonymity with prefix-equal queries. This
algorithm needs three phases to be able to find N tags corresponding to N stored files
as the anonymity candidates for the encrypted file Fj . In the first phase, we find all
(log2 N)-bit strings that have the same prefix of at least one stored file tag. The num-
ber of such strings is at most equal to N. The found strings are inserted into the set
Sj . Obviously, to find such strings, we have to query Prefix_Exist(�) for each log2 N
-bit string � . For each � with True response, we add the � to Sj.

	 M. Gharib, M. Fazli

1 3

The second phase works after the first phase if and only if |Sj| < N . This phase
is responsible for finding N ⧵ |Sj| other tag prefixes in which the corresponding
files are already stored on the CSP. Accordingly, this phase is finished whenever

1 3

Secure cloud storage with anonymous deduplication using…

|Sj| becomes equal to N. In each iteration of this phase, we choose a random prefix �
from Sj and consider both of its one-bit expansions, i.e., �||0 and �||1 . It is worthy
to note that the selection order between these two choices is done randomly. If both
prefixes exist at the CSP, we inject both of them into Sj and remove the old � . Hence,
|Sj| is increased by one member. Otherwise, we inject the prefix of the already exist-
ing tag into the Sj and remove the previous � . In Theorem (2), we prove that this
process takes at most polynomially bounded steps in terms of k and N. Among these
steps, when we are noticed that some prefix � does not exist on the CSP, we have
to check whether it is a prefix of our file tag, i.e., Tj , or not. In the positive case, the
process is terminated, and the file Fj has to be stored on the CSP.

If the second phase is finished with |Sj| = N , we reach the third phase. At this
phase, |Sj| has N prefixes which exist on the CSP, and at least one of them is a pre-
fix of Tj . In this phase, we expand all the prefixes in Sj according to the process
described in Observation (1). We do that in a random order, while for each member
of Sj , we find the tag of one stored file. Meanwhile, in some of the random steps, we
have to check the prefixes of Tj whether stored on CSP or not.

Theorem 2  Algorithm (2) sends O(N(k − log2 N)) prefix-equal queries to the CSP.

Proof  At the first phase of Algorithm (2), the client sends N queries to the CSP,
each one with a log2 N-bit string. To analyze the second phase, consider the poten-
tial function shown in Equation (19). In each iteration of phase 2 main while loop, if
the process does not exit, the value of Φ(Sj) is increased at least by one. Since Φ(Sj)
is equal to N log2(N) at the beginning of this phase and is always less than Nk, this
phase lasts at most Nk − N log2 N iterations. In each of its iterations, two queries, at
most, are sent to the CSP. Thus, the number of queries sent to the CSP is less than
or equal 2(Nk − N log2 N) ∈ O(N(k − log2 N) . With a similar justification, we can
conclude that the number of queries at the third phase is O(N(k − log2 N) . Hence,
the theorem is proved.

	� ◻

6 � Security analysis and performance evaluation

It is worth mentioning that the proposed algorithm’s implementation could be done
at no additional hardware cost compared with the traditional secure storage sys-
tems. The trusted third party will be responsible for PKG tasks where the private
key shares are generated. In this section, the security of the proposed secure dedu-
plication system is analyzed and presented in Part (6.1). The performance of the
N-anonymity algorithm is further evaluated through simulation, using real dataset.
The simulation details, along with the evaluation results, are presented in Part (6.2).

(19)Φ(Sj) =
∑

�∈Sj

|�|.

	 M. Gharib, M. Fazli

1 3

6.1 � Security analysis

The proposed secure cloud storage system simultaneously provides deduplication
and N-anonymity. In this part, we analyze the security of the proposed system and
show that even if the CSP becomes compromised by adversaries, the confidentiality
of the stored data is still preserved. Basically, it is because of ECC-based encryp-
tion with rigid key management. We further show that the proposed system cleverly
prevents the duplicate faking attack. In the rest of this part, we formally analyze the
security of the proposed system.

Lemma 1  Data �� , which is a secret value, is known only by the data owners, and
no one else can access the data �� . Equivalently, we can say that in the proposed
secure deduplication system, the PoW is unforgeable.

Proof  Recall that data �� is the output of the hash function, in which the input is the
symmetrically encrypted plain data. The plain data are encrypted with its hash value
as a key, i.e., Eq. (1). Since the hash function is collision-free, its output is unique.
Furthermore, no one owns the input of the hash function except the data owners.
Recall that the hash function is irreversible; hence, only the data owner can generate
the data �� . It is notable that, however, the hash value of the plain data is considered
a plain parameter, the input of the hash function is the plain data encrypted with its
hash value, and it is calculable only by the data owners. On the other hand, data ��
are exchanged only between the data owner and PKG. PKG is a trusted authority,
and the exchange process is done securely by encrypting the data �� by the master
public key. Since just the PKG itself has access to the master private key, only the
PKG can get access to the �� . 	� ◻

Lemma 2  The private key of data is known only by the PKG, which is a trusted
authority, and the data owner.

Proof  We know that the PKG is responsible for the private key generation process.
According to Eq. (8), for generating the private key of the data, the PKG requires
the data �� and the master private key. The master private key is known only by the
PKG, while according to Lemma (1), the data �� are known only by the data owners,
and they are sent to PKG through a secure channel. The data’s private key is also
sent to the data owner in an encrypted format. The client’s public key encrypts the
data’s private key; hence, only the client can decrypt it using its private key. 	� ◻

Lemma 3  The stored data are confidential and remain confidential even if the adver-
sary gets access to the encrypted data.

Proof  The data are encrypted asymmetrically with its public key using ECC cryp-
tosystem. Hence, the confidentiality of the data is guaranteed as long as the ellip-
tic curve discrete logarithm problem remains intractable in polynomial time or the
adversary gets access to the private key of the data along with the encrypted data

1 3

Secure cloud storage with anonymous deduplication using…

itself. Using N-anonymity algorithms proposed in Sect. (5), each client or adversary
could easily get access to the tag of many stored files. Having the tag of each file,
the client or adversary can retrieve the file from the CSP. However, the adversary
has to compromise the PKG or the data owner to get access to the data’s private key.
It is also worth noting that, although each client or adversary can access the stored
encrypted files, the access process is random such that the adversary cannot distin-
guish the file of which data are accessed. 	� ◻

By proving that the encrypted data are secure and just the data owners have
access to the data’s private key, we can conclude that even if the CSP is compro-
mised by adversaries, the data confidentiality remains preserved. Now we show that
the proposed secure deduplication system prevents duplicate faking attacks.

Lemma 4  The proposed secure deduplication system is resistant to duplicate faking
attacks.

Proof  The tag of the stored encrypted file is calculated by Eq. (15). Since the tag is
the hash value of the encrypted file, the CSP itself calculates the tag of each stored
file. On the other hand, we know from Assumption (6) that the hash function is
collision-free; thus, there is no additional encrypted file with the same hash value.
Hence, the adversary can not send a fake file whose hash value is equal to the honest
file tag. 	� ◻

6.2 � Simulation detail and performance evaluation

To validate the results proved analytically in Sect. (5), a python-based simulation is
done on a Microsoft Windows machine with 8 GB of main memory and a core i3,
3.4 GHz processor. In this simulation, a population of more than 500,000 YouTube
video is considered [45]. To make the results more dependable, we used a well-
known dataset provided by Simon Fraser University [46]. In this dataset, YouTube
video links are stored, each with an 11-digit hash value. Since movies and videos
are considered massive data which occupy a high storage ratio, implementing dedu-
plication techniques on such files seems very effective. That is why, we designed
such a scenario. In this scenario, each user intends to upload its file and has to start
the N-anonymity algorithm using the hash value corresponding to the video file.
According to the server responses, the user identity remains N-anonymous, or the
file does not exist on the server, and the user needs to upload it.

The goal of this simulation is to show the accuracy of the complexity analysis for
proposed N-anonymity algorithms of Theorems (1) and (2) for both complete-equal
queries and prefix-equal queries, respectively. For the N-anonymity algorithm to be
feasible, at least N files must be stored in the cloud. For this reason, in the initializa-
tion phase of the simulation, N files are randomly chosen and stored in the cloud
storage. The rest of the simulation scenario is as the following. In each simulation
scenario, n users, one by one, randomly choose one file from the data set and start
their queries to CSP. According to CSP responses, the user may know that the file is

	 M. Gharib, M. Fazli

1 3

not uploaded previously and hence uploads the file. Elsewhere, the queries are con-
tinued until the N-anonymity is achieved.

As the result of the simulation, we calculate the number of queries as follows.
After the initialization process of storing N files for the first user, we calculate this
number. For the next users, we add the number of queries to the previous number
and divide the result by the current number of users. Generally, we calculate the
average number of queries until the nth user.

Here, two different scenarios are simulated to validate the result of Theorem (1),
which proved for the case of complete queries where the second scenario is related
to Algorithm (2) to validate the analytical proof of Theorem (2). In the first scenario,
after selecting its file, each user runs its complete queries of k bit length. In our
simulation, the value of k, which represents the bit length of the data tag, is set equal
to 77, i.e., each digit of the hash value is represented with 7 bits. As we mentioned
earlier, after some queries, each user will find that its file is not stored formerly, and
hence, the file will be sent to the cloud server. Elsewhere, the user continues queries
to guarantee the N-anonymity.

Figure 3a represents the number of complete queries for different number of
users, i.e., n, and different N values, in logarithmic scale. As it is clear from the
figure, after some data storage processes, which we call warm-up process, users find
that their files are already stored on the cloud storage. The reason is the limitation in
the number of files used in the simulation. Accordingly, they keep sending queries
to gain the N-anonymity. Such a process leads to the exact amount of query numbers
proved in Theorem (1). It is obvious from Fig. 3a that the warm-up process does
not need many users to store their files. The obvious fast convergence toward the
proved query number prohibits this figure from representing the slope of conver-
gence speed. To better represent the behavior of the warm-up process, Fig. 3b rep-
resents the same results for the first 1000 users. Hereupon, the warm-up process is
clearly ended after about 200 users, and then, the N-anonymity is achieved.

The second scenario is done according to Algorithm (2) to validate the upper
bound of queries which is analytically proved in Theorem (2). Figure 4a represents

Fig. 3   Complete-equal query: a Results for the range of users between one until 107 . b Range of users
between one until 103

1 3

Secure cloud storage with anonymous deduplication using…

the results for 10 million users. Since the number of prefix queries is much lower
than that of complete queries, the results are not represented on a logarithmic scale.
For all N values, the fast convergence is obvious. To show the behavior of the warm-
up process, Fig. 4b represents the same results for just 1000 users. Like the com-
plete prefix queries, the warm-up process required about 200 user. For more accu-
rate numerical comparison, we provide Table 2 to represent the numerical results for
Algorithms (1) and (2).

Finally, Fig. (5) represents a comparison between the upper bound value for the
number of queries proved analytically in Theorem (2) and the simulation results for
different N values. The obvious matching between the simulation results and the
analytical bound after the warm-up process validates the analytical proofs.

7 � Conclusion

Although cloud deduplication techniques could help CSPs efficiently manage
their storage, traditional techniques are completely useless against encrypted
data. Secure deduplication techniques like convergent encryption and its general

Fig. 4   Prefix-equal query: a Results for the range of users between one until 107 . b Range of users
between one until 103

Table 2   Numerical comparison between the average number of required queries for Algorithms (1) and
(2)

Average number of queries (Q)

Algorithm Complete-equal query Prefix-equal query

n‖N 2 4 8 16 2 4 8 16

100 4548.0 ∗ 1030 7498.4 ∗ 1030 12362.7 ∗ 1030 20382.8 ∗ 1030 149.0 225.1 490.2 880.2
200 8287.0 ∗ 1030 12996.7 ∗ 1030 18433.1 ∗ 1030 22526.5 ∗ 1030 149.7 270.8 520.4 985.5
300 10121.8 ∗ 1030 17898.1 ∗ 1030 22981.6 ∗ 1030 27513.9 ∗ 1030 149.8 279.9 532.9 1020.3
400 11759.9 ∗ 1030 236.81.4 ∗ 103030407.6 ∗ 1030 41045.9 ∗ 1030 149.9 284.7 541.6 1040.7

	 M. Gharib, M. Fazli

1 3

framework MLE are proposed to face this shortcoming. While convergent encryp-
tion, MLE, and all their extensions are built based on symmetric encryption, we
proposed a new asymmetric-based secure deduplication system. The proposed
system utilizes an ID-based cryptosystem with elliptic curve cryptography to
resist duplicate faking attacks as well as compromising the CSP. Furthermore,
while in most secure deduplication systems, the CSP can recognize clients with
the same data, which is an explicit violation of privacy, we added anonymity to
the secure deduplication systems. Some secure deduplication systems paid atten-
tion to the anonymity problem; however, they solved this problem at the cost of
removing authentication. Our solution provided N-anonymity by keeping the
authentication process on. The proposed solutions are analytically studied, while
comprehensive simulations validate the results of complexity analysis on real-
world data. The results of the simulations validated the analytical findings and
proved the functionality of the proposed solution.

Author Contributions  All authors have participated in conception and design, or analysis and interpreta-
tion of this paper.

Funding  Not applicable.

Data availibility  Not applicable.

Declarations 

Conflict of interest  The authors declare that they have no competing interests.

Fig. 5   A comparison between the upper bound proved analytically and simulation results

1 3

Secure cloud storage with anonymous deduplication using…

References

	 1.	 Jia G, Han G, Rodrigues J, Lloret J, Li W (2015) Coordinate memory deduplication and parti-
tion for improving performance in cloud computing. IEEE Trans Cloud Comput 7(2):357–368.
https://​doi.​org/​10.​1109/​TCC.​2015.​25117​38

	 2.	 Fu Y, Xiao N, Jiang H, Hu G, Chen W (2017) Application-aware big data deduplication in cloud
environment. IEEE Trans Cloud Comput 7(4):921–934. https://​doi.​org/​10.​1109/​TCC.​2017.​
27100​43

	 3.	 Sengupta B, Dixit A, Ruj S (2020) Secure cloud storage with data dynamics using secure network
coding techniques. IEEE Trans Cloud Comput. https://​doi.​org/​10.​1109/​TCC.​2020.​30003​42

	 4.	 Yang A, Xu J, Weng J, Zhou J, Wong DS (2021) Lightweight and privacy-preserving delegatable
proofs of storage with data dynamics in cloud storage. IEEE Trans Cloud Comput 9(1):212–225.
https://​doi.​org/​10.​1109/​TCC.​2018.​28512​56

	 5.	 Luo S, Zhang G, Wu C, Khan S, Li K (2015) Boafft: distributed deduplication for big data storage in
the cloud. IEEE Trans Cloud Comput. https://​doi.​org/​10.​1109/​TCC.​2015.​25117​52

	 6.	 Paulo J, Pereira J (2016) Efficient deduplication in a distributed primary storage infrastructure.
Trans Storage 12(4):1–35. https://​doi.​org/​10.​1145/​28765​09

	 7.	 Li Y-K, Xu M, Ng C-H, Lee PPC (2014) Efficient hybrid inline and out-of-line deduplication for
backup storage. Trans Storage 11(1):2–1221. https://​doi.​org/​10.​1145/​26415​72

	 8.	 Dropbox A file-storage and sharing service. http://​www.​dropb​ox.​com
	 9.	 Google drive A file-storage and sharing service. http://​drive.​google.​com
	10.	 Mozy A file-storage and sharing service. http://​mozy.​com/
	11.	 Mao B, Jiang H, Wu S, Fu Y, Tian L (2014) Read-performance optimization for deduplication-

based storage systems in the cloud. Trans Storage 10(2):6–22. https://​doi.​org/​10.​1145/​25123​48
	12.	 Luo S, Zhang G, Wu C, Khan SU, Li K (2020) Boafft: distributed deduplication for big data storage

in the cloud. IEEE Trans Cloud Comput 8(4):1199–1211. https://​doi.​org/​10.​1109/​TCC.​2015.​25117​
52

	13.	 Yu C-M, Gochhayat SP, Conti M, Lu C-S (2020) Privacy aware data deduplication for side chan-
nel in cloud storage. IEEE Trans Cloud Comput 8(2):597–609. https://​doi.​org/​10.​1109/​TCC.​2018.​
27945​42

	14.	 Huang K, Zhang X-S, Mu Y, Rezaeibagha F, Du X (2021) Bidirectional and malleable proof-of-
ownership for large file in cloud storage. IEEE Trans Cloud Comput. https://​doi.​org/​10.​1109/​TCC.​
2021.​30547​51

	15.	 Opendedup Cloud storage gateway and filesystem. http://​opend​edup.​org/
	16.	 Meyer DT, Bolosky WJ (2011) A study of practical deduplication. ACM Trans Storage (ToS)

7(4):1–20
	17.	 Yan Z, Ding W, Yu X, Zhu H, Deng RH (2016) Deduplication on encrypted big data in cloud. IEEE

Trans Big Data 2(2):138–150. https://​doi.​org/​10.​1109/​TBDATA.​2016.​25876​59
	18.	 Wu T, Dou W, Hu C, Chen J (2014) Service mining for trusted service composition in cross-cloud

environment. IEEE Syst J 11(1):283–294. https://​doi.​org/​10.​1109/​JSYST.​2014.​23618​41
	19.	 Halevi S, Harnik D, Pinkas B, Shulman-Peleg A (2011) Proofs of ownership in remote storage sys-

tems. In: Proceedings of the 18th ACM Conference on Computer and Communications Security,
ACM, New York, pp 491-500

	20.	 Douceur JR, Adya A, Bolosky WJ, Simon P, Theimer M (2002) Reclaiming space from duplicate
files in a serverless distributed file system. In: Proceedings 22nd International Conference on Dis-
tributed Computing Systems, pp 617–624. https://​doi.​org/​10.​1109/​ICDCS.​2002.​10223​12

	21.	 Bellare M, Keelveedhi S, Ristenpart T (2013) Message-locked encryption and secure deduplication.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pp. 296-312 Springer, Heidelberg. https://​doi.​org/​10.​1007/​978-3-​642-​38348-​918

	22.	 Shamir A (1985) Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO
84 on Advances in Cryptology. Springer, New York, pp 47–53

	23.	 Zhang Y, Mao Y, Xu M, Xu F, Zhong S (2021) Towards Thwarting Template Side-Channel Attacks
in Secure Cloud Deduplications. IEEE Trans Depend Secure Comput 18(3):1008–1018. https://​doi.​
org/​10.​1109/​TDSC.​2019.​29115​02

	24.	 Sun Z, Shen J, Yong J (2011) DeDu: Building a deduplication storage system over cloud comput-
ing. In: Proceedings of the 2011 15th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), IEEE, pp 348–355. https://​doi.​org/​10.​1109/​CSCWD.​2011.​59600​97

https://doi.org/10.1109/TCC.2015.2511738
https://doi.org/10.1109/TCC.2017.2710043
https://doi.org/10.1109/TCC.2017.2710043
https://doi.org/10.1109/TCC.2020.3000342
https://doi.org/10.1109/TCC.2018.2851256
https://doi.org/10.1109/TCC.2015.2511752
https://doi.org/10.1145/2876509
https://doi.org/10.1145/2641572
http://www.dropbox.com
http://drive.google.com
http://mozy.com/
https://doi.org/10.1145/2512348
https://doi.org/10.1109/TCC.2015.2511752
https://doi.org/10.1109/TCC.2015.2511752
https://doi.org/10.1109/TCC.2018.2794542
https://doi.org/10.1109/TCC.2018.2794542
https://doi.org/10.1109/TCC.2021.3054751
https://doi.org/10.1109/TCC.2021.3054751
http://opendedup.org/
https://doi.org/10.1109/TBDATA.2016.2587659
https://doi.org/10.1109/JSYST.2014.2361841
https://doi.org/10.1109/ICDCS.2002.1022312
https://doi.org/10.1007/978-3-642-38348-918
https://doi.org/10.1109/TDSC.2019.2911502
https://doi.org/10.1109/TDSC.2019.2911502
https://doi.org/10.1109/CSCWD.2011.5960097

	 M. Gharib, M. Fazli

1 3

	25.	 Marques L, Costa CJ (2011) Secure deduplication on mobile devices. In: Proceedings of the
2011 Workshop on Open Source and Design of Communication OSDOC ’11, ACM, New York,
pp 19–26. https://​doi.​org/​10.​1145/​20167​16.​20167​21

	26.	 Anderson P, Zhang L (2010) Fast and secure laptop backups with encrypted de-duplication. In:
Proceedings of the 24th International Conference on Large Installation System Administration
LISA’10, USENIX Association, Berkeley, pp 1–8

	27.	 Bellare M, Keelveedhi S, Ristenpart T (2013) Dupless: server-aided encryption for deduplicated
storage. In: Proceedings of the 22Nd USENIX Conference on Security SEC’13, pp 179–194

	28.	 Chen R, Mu Y, Yang G, Guo F (2015) Bl-mle: block-level message-locked encryption for secure
large file deduplication. IEEE Trans Inf Forensics Secur 10(12):2643–2652. https://​doi.​org/​10.​
1109/​TIFS.​2015.​24702​21

	29.	 Atul A, William JB, Miguel C, Gerald C, Ronnie C, John RD, Jon H, Jacob RL, Marvin T, Roger
PW (2002) Farsite: federated available and reliable storage for an incompletely trusted environ-
ment. SIGOPS Oper Syst Rev 36:1–4. https://​doi.​org/​10.​1145/​844128.​844130

	30.	 Storer MW, Greenan K, Long DDE, Miller EL (2008) Secure data deduplication. In: Proceedings
of the 4th ACM International Workshop on Storage Security and Survivability StorageSS ’08,
ACM, New York, pp 1–10. https://​doi.​org/​10.​1145/​14564​69.​14564​71

	31.	 Wilcox-O’Hearn Z, Warner B (2008) Tahoe: the least-authority filesystem. In: Proceedings of
the 4th ACM International Workshop on Storage Security and Survivability StorageSS ’08,
ACM, New York, pp 21–26. https://​doi.​org/​10.​1145/​14564​69.​14564​74

	32.	 Rahumed A, Chen HCH, Tang Y, Lee PPC, Lui JCS (2011) A secure cloud backup system with
assured deletion and version control. In: 2011 40th International Conference on Parallel Process-
ing Workshops, pp 160–167. https://​doi.​org/​10.​1109/​ICPPW.​2011.​17

	33.	 Puzio P, Molva R, Onen M, Loureiro S (2013) Cloudedup: secure deduplication with encrypted
data for cloud storage. In: 2013 IEEE 5th International Conference on Cloud Computing Tech-
nology and Science, vol 1, pp 363–370. https://​doi.​org/​10.​1109/​Cloud​Com.​2013.​54

	34.	 Wen Z, Luo J, Chen H, Meng J, Li X, Li J (2014) A verifiable data deduplication scheme in
cloud computing. In: 2014 International Conference on Intelligent Networking and Collaborative
Systems, pp 85–90. https://​doi.​org/​10.​1109/​INCoS.​2014.​111

	35.	 Li J, Chen X, Li M, Li J, Lee PPC, Lou W (2014) Secure deduplication with efficient and reli-
able convergent key management. IEEE Trans Parallel Distrib Syst 25(6):1615–1625. https://​doi.​
org/​10.​1109/​TPDS.​2013.​284

	36.	 Li J, Li YK, Chen X, Lee PPC, Lou W (2015) A hybrid cloud approach for secure authorized
deduplication. IEEE Trans Parallel Distrib Syst 26(5):1206–1216. https://​doi.​org/​10.​1109/​TPDS.​
2014.​23183​20

	37.	 Jung T, Li XY, Wan Z, Wan M (2015) Control cloud data access privilege and anonymity with
fully anonymous attribute-based encryption. IEEE Trans Inf Forensics Secur 10(1):190–199.
https://​doi.​org/​10.​1109/​TIFS.​2014.​23683​52

	38.	 Harnik D, Pinkas B, Shulman-Peleg A (2010) Side channels in cloud services: deduplication in
cloud storage. IEEE Secur Privacy 8(6):40–47

	39.	 Wang B, Lou W, Hou YT (2015) Modeling the side-channel attacks in data deduplication with
game theory. In: 2015 IEEE Conference on Communications and Network Security (CNS), pp
200–208. https://​doi.​org/​10.​1109/​CNS.​2015.​73468​29

	40.	 Meyer DT, Bolosky WJ (2012) A study of practical deduplication. Trans Storage 7(4):14–20.
https://​doi.​org/​10.​1145/​20788​61.​20788​64

	41.	 Daemen J, Rijmen V (2002) The design of Rijndael: AES - the advanced encryption standard, 1st
edn. Springer, Heidelberg

	42.	 Ronald L, Rivest RS, Robshaw MJB, Yin YL The RC6 Block Cipher. https://​people.​csail.​mit.​
edu/​rivest/​pubs/​RRSY98.​pdf

	43.	 Boneh D, Franklin M (2001) Identity-based encryption from the weil pairing. In: Kilian J (ed)
Advances in Cryptology - CRYPTO 2001, vol 2139, Springer, pp 213–229. https://​doi.​org/​10.​
1007/3-​540-​44647-​813

	44.	 Gharib M, Moradlou Z, Doostari MA, Movaghar A (2017) Fully distributed ECC-based key
management for mobile ad hoc networks. Comput Netw 113:269–283. https://​doi.​org/​10.​1016/j.​
comnet.​2016.​12.​017

	45.	 Youtube. https://​www.​youtu​be.​com/

https://doi.org/10.1145/2016716.2016721
https://doi.org/10.1109/TIFS.2015.2470221
https://doi.org/10.1109/TIFS.2015.2470221
https://doi.org/10.1145/844128.844130
https://doi.org/10.1145/1456469.1456471
https://doi.org/10.1145/1456469.1456474
https://doi.org/10.1109/ICPPW.2011.17
https://doi.org/10.1109/CloudCom.2013.54
https://doi.org/10.1109/INCoS.2014.111
https://doi.org/10.1109/TPDS.2013.284
https://doi.org/10.1109/TPDS.2013.284
https://doi.org/10.1109/TPDS.2014.2318320
https://doi.org/10.1109/TPDS.2014.2318320
https://doi.org/10.1109/TIFS.2014.2368352
https://doi.org/10.1109/CNS.2015.7346829
https://doi.org/10.1145/2078861.2078864
https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf
https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf
https://doi.org/10.1007/3-540-44647-813
https://doi.org/10.1007/3-540-44647-813
https://doi.org/10.1016/j.comnet.2016.12.017
https://doi.org/10.1016/j.comnet.2016.12.017
https://www.youtube.com/

1 3

Secure cloud storage with anonymous deduplication using…

	46.	 Cheng X, Dale C, Liu J (2008) Dataset: Statistics and Social Network of YouTube Videos. In: 2008
16th Interntional Workshop on Quality of Service, IEEE, pp 229–238.http://​netsg.​cs.​sfu.​ca/​youtu​
bedata/

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

http://netsg.cs.sfu.ca/youtubedata/
http://netsg.cs.sfu.ca/youtubedata/

	Secure cloud storage with anonymous deduplication using ID-based key management
	Abstract
	1 Introduction
	2 Related works
	3 System model
	4 ID-based secure deduplication system
	5 N-anonymity-based algorithm
	5.1 Complete-equal queries
	5.2 Prefix-equal queries

	6 Security analysis and performance evaluation
	6.1 Security analysis
	6.2 Simulation detail and performance evaluation

	7 Conclusion
	References

