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ABSTRACT
This paper presents a game-theoretic approach that models
the formation of signed networks which contain both friendly
and antagonistic relations. In our model, nodes have a plea-
sure through their links to the others which is defined ac-
cording to their triadic relations. They have a self centered
goal based on the balance theory of signed networks: each
node tries individually to minimize its stress from undesir-
able relations with other nodes by maximizing the number of
balanced triangles minus the number of unbalanced triangles
she participates in. Since nodes act selfishly and don’t con-
sider the social welfare, many theoretical problems about
existence of the equilibrium, convergence and players’ in-
teraction are raised and verified in this paper. We prove
the NP-hardness of computing best-response and give an
approximation for it by using quadratic programming and
rounding its solution. We show that there is a tight relation
between players’ best-responses. This result leads to a proof
for convergence of the game. In addition, we report some ex-
perimental result on three online datasets. We show that as
nodes play their best-response and time goes forward, the
total pleasure of the network increases monotonically. Fi-
nally, we introduce a smartness factor for social media sites
that helps people to measure the amount of deviation from
best possible strategy and suggest a new model that is more
adapted to these media. This measure can also be applied
in the verification of all kinds of network formation games.
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1. INTRODUCTION
Nowadays, one of the most important technologies for

managing social relations are online social networks. Over
the past years, analysis of the interaction between people
in online social media has been taken into consideration.
There exist a wide variety of relations on the online social
networks; most of such relations have positive aspect, such
as friendship, like, trust, and follow. Alongside these fine
relations, there are always some negative relations such as
antagonism, distrust, and unlike. The main focus of social
network researches has been on the positive relations; how-
ever, some recent works investigate the interplay between
positive and negative relations in social media sites [15, 8].

Social network analysis is usually based on the network
theory concepts studied on the underlying network (graph).
Such a network consists of a set of nodes along with a set of
edges that connect them.

Our focus in this work is on signed networks. In signed
networks, every edge has a sign which takes two values: pos-
itive (+) for positive relations or negative (−) for negative
relations.

One of the most important problems in the signed net-
works is the interplay between signs and their effects on the
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Figure 1: Possible undirected triad in a signed network: triad (a) and (c) are balanced and relatively stable,
but triad (b) and (d) are unbalanced and susceptible to break apart. Full and dashed lines represent positive
and negative relations respectively.

dynamics of the network. Structural balance theory is a ba-
sic framework to perceive such interactions between nodes’
relations. In this work we present a robust evolutionary
model that allows us to see the power of structural balance
theory in signed networks.
Balance theory was formed by Heider [11] in 1946. Harary

[10] developed some notion about this theory and, later on,
Cartwright and Harary [4] extended the results to a graph-
based concept. Structural balance theory describes attitudes
of individuals to reduce cognitive dissonance among each
other. When people set up dyadic relations that contain
both positive and negative interactions, four different types
of triad relations would be created (Figure 1). In conformity
to this theory, we can classify these triangles in 2 classes:
balanced and unbalanced.
A balanced triangle shows a relationship between three

people without cognitive disturbance. Such as Figure 1-a
that shows three people who are mutual friends and Figure
1-c shows two friends who have a mutual enemy. But in an
unbalanced triangle we observe a psychological stress into
the relationship. In the Figure 1-b we see a pair of enemies
that have a common friend. In this situation these enemies
feel pressure from their common friend to become friends; or
else there is a pressure from one of the enemies on its friend
against the other. In Figure 1-d we watch a challenging
state. When three people are enemies, there is a chance for
two of them to join together against the third person.
A usual variant of the structural balance theory is weak

structural balance proposed by Davis [6]. This variant of the
theory relaxes the assumption that ”the enemy of my enemy
is my friend”and considers a triangle like the one in Figure 1-
d as a balanced triangle. Leskovec et al. [15] considered the
online social media and counted the number of each triangle
in corresponding datasets. They report that the number of
triangles with three negative links appear much more than in
the randomly generated graphs. These results confirm the
validity of the weak balance theory of Davis in the online
social media.
Many types of networks connect different individuals and

the formation of such networks depends on the decisions of
many participants. Network formation models have been
widely used in order to characterize how network structures
form and how they are affected by individuals’ decisions [13].
Aumann and Myerson [2] presented the first network forma-
tion model describing the formation of a network in the con-
text of cooperative games with communication structures.
Later, several models in this context presented in both on-
time and dynamic perspective [19, 12, 3, 5, 14, 9, 7]. Re-
cently Arount van de Rijt [20] attempted to investigate the
structure of signed graphs by this type of modeling. He pre-
sented a best-response model which has a node utility func-

tion that takes its maximum when the number of balanced
triads that involve the node are maximized. He proved cou-
ple of statements about balanced and stochastically stable
graphs that appear in the model. The main difference of
this work from the aforementioned works is that he stud-
ied the evolution of sign changes while leaving the network
structure fixed.

What we present here is a network formation game for
studying the evolution of signed networks based on the struc-
tural balance theory. The players are nodes and their strat-
egy is creating positive/negative/neutral edges to all other
nodes. The edges are undirected and, once created, rep-
resent bilateral friendship/antagonism relationship among
players, regardless of which node created it. The sum of
these edges is the resulting signed graph. Each node has a
self-centred goal: to minimize the stress of undesirable rela-
tions between itself and all other nodes. We formulate this
goal in a best-response model by using the balance theory:
each node attempts to maximize the number of balanced
triangles minus the number of unbalaced ones. We show
that computing the best-response in this model is NP-Hard
and present a convex optimization method for its approxi-
mation. We also analyse the Nash equilibrium of the model
and provide some relevant results.

1.1 Related works
There are many works considering structural balance the-

ory in signed networks. Antal et al. [1] presented simple dy-
namical rule for resolving unbalanced triads and investigated
the resulting evolution of the signed networks. They study
the conditions and times under which their model reaches
a balanced state. They also characterize a class of jammed
states; states in which unbalanced triangles exist and the
change of any link’s sign increases the number of unbalanced
triangles. They proved that jammed states turn out to be
much more numerous than balanced states. Following An-
tal’s work, Marvel et al. [17] define an energy landscape for
signed networks and find out that the jammed states with
higher energy are not only very rare, but they also have in-
herently greater structural complexity, as measured by their
number of balanced cliques.

Ludwig and Abell [16] proposed a model that used balance
theory to describe the development of social networks. Their
model has two parameter, the first is a friendliness index
that help to determine the probability of a link’s sign to
be positive. The second is a uniformly distributed threshold
that indicates the quantity of unbalanced triangles that each
node tolerates.

Some works such as [15, 18] examine the validity of struc-
tural balance in online social media sites. Leskovec et al.
show that aspects of balance theory hold more strongly on



the links that are reciprocated (consisting of directed links
in both directions between two nodes). Szell shows that a
vast majority of changes in the signed networks are due to
the creation of new positive and negative links, not due to
switching of existing link from plus to minus or vice versa.

1.2 The Best-Response Model
We consider a repeated game with n players labeled by

1, 2, · · · , n. Each player i chooses a (n−1)-dimensional vec-
tor Li ∈ {−1, 0,+1}n−1 with components lij where lij ∈
{−1, 0,+1} for each j ∈ {1, · · · , N} \ {i} as its strategy to-
ward the others. At time t, by combining players’ strategies
L = (L1, L2, , Ln) an undirected signed graph Gt with ver-
tices {1, · · · , n} is formed. There is an edge between vertices
i and j in Gt iff lij ̸= 0. The sign of this edge is equal to
the sign of lij . The pleasure received by player i under L is
defined to be

pi(L) = (△bi −▽ubi) (1)

where △bi is the number of balanced triangles that i partici-
pated in and▽ubi is the number of unbalanced triangles. By
choosing the best possible strategy, players attempt to max-
imize their pleasure in the network (best-response of player
i). Player i is just permitted to play its best response at
times t = kn+ i for 0 ≤ k. We say that a strategy profile L
is a (pure) Nash equilibrium if for each player i, and for all L′

that differ from L only in the ith component, pi(L) ≥ pi(L
′).

In our model computing the best-response for each player is
not possible in polynomial time. A proof for this is given in
section 2. So we should propose a method for its approxi-
mation. We will prove that the best response is an integral
answer of a famous semidefinite programming.

2. GAME INTRACTABILITY
In this section, we provide a theoretic interpretation of

the game. Let us start with introducing some notations and
an easy yet supportive lemma:

• v-triangle: Is a triangle whose vertex set includes v.

• uv-triangle: Is a triangle whose vertex set includes
both u and v.

• ∆abc: Is a triangle whose vertex set is {a, b, c}.

• δ(A,B): The number of triangles whose vertex set in-
clude all vertices in A and at least one vertex from
B.

Lemma 2.1. Assume u is playing its best response in Gt.
Adding any set of edges to u with any sign does not decrease
u’s pleasure.

Proof. Let v be a vertex that u is not connected to.
Connect u to v with positive sign. Let a be the number
of balance uv-triangles and b be the number of unbalanced
ones. So, the pleasure of u changes by a − b. If we change
the sign of uv then the pleasure of u changes by b−a (every
balanced uv-triangles becomes unbalanced and vice versa).
So, we must have a = b or u is not playing its best response.
We use the same argument for every other vertex that u is
not connected to and obtain a graph in which u is connected
to every other vertex. A side corollary of this result is that
there exist a best response playing for player u that connects
it to all other vertices.

One important question while we are studying a game is
the computational status of various solution concepts such
as best response and Nash equilibirum. We prove that in
our game, computing best-response for each player at each
time is NP-hard.

Theorem 2.2. Given a strategy profile L ∈ L0×L1×· · ·×
Ln and player i ∈ {1, .., N}, computing the best response of
i is NP-hard.

Proof. The proof follows by reducing from the Max-Cut
problem. In the Max-Cut problem, we are interested in par-
titioning the vertices of a given graph G into two sets A and
B so as to maximize the number of edges between A and B.
Let G be a graph that we want to find its maximum cut.
Put a negative sign for every edge of the graph. Add a new
vertex v to G. We prove that v’s best response is, in fact,
equivalent to finding a maximum cut in G. By Lemma 2.1,
we find a best response playing by v in which v draws edge
to every vertex of G. Now partition G’s vertices into two
subsets:

• A = {u|l(vu) = −1}

• B = {u|l(vu) = +1}

We prove that (A,B) is a maximum cut. We have:

BR(v) = △bv −▽ubv = E(A,B)− E(A,A)− E(B,B)

= 2E(A,B)− E(G)

where E(X,Y ) is the number of edges with one endpoint
in X and one in Y and E(G) is the number of edges in G.
Since v is playing best response, E(A,B) must be maximum
over all possible cuts.

If we allow the edge signs to be real values in the interval
[−1, 1] instead of integer values then we can compute the
best response of every player in by quadratic programming.
Assume we want to compute the best response of u. We first
remove u from the network and model its best response by
the following QCQP optimization problem.

minimize−XiAXT
i

subject to− 1 ≤ xij ≤ +1, j = 1, · · · , n− 1
(2)

where n is the number of nodes in the network, the (n−
1) × (n − 1) matrix A is the weighted adjacency matrix of
G−{i}, and x is the best-response of node i to the remain-
der of the network (Figure 2). We know that a triangle
containing an even number of negative edges is defined as
balanced while a triangle with an odd number of negative
edges is unbalanced. Therefore, any integer solution to the
above formulation computes the number of balanced trian-
gle minus the number of unbalanced triangles that contain
u.

We next consider the repeated game (in which one vertex
is picked at each time and plays its best response). Our
focus is the convergence of this game. First, we start with
the following lemma:

Lemma 2.3. Let u and v be two vertices that play their
best responses at times t and t + 1, respectively. Then we
have

• If lvu = +1, then we have: luk = lvk, for all k ̸= u, v
with luk ̸= 0.
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Figure 2: Node i’s best-response computation.
When node i decides to change her current strategy
to achieve a better pleasure, she ignores her current
relations and computes her best-response by QCQP
optimization. xik and xij represent unknown rela-
tions that node i attempts to find according to the
relations between nodes k and j (i.e. Ajk).

• If lvu = −1, then we have: luk = −lvk, for all k ̸= u, v
with luk ̸= 0.

Proof. W.l.o.g suppose that at time t, we have luv = +1.
The case luv = −1 is treated similarly. We use u’s best-
response to build a strategy for v and prove that this strategy
is strictly better than all other strategies for her. Define the
following sets of vertices:

• X: The set of vertices which are connected to vertex
u at time t.

• Y : The set of vertices which are connected to vertex v
and have no edge to vertex u at time t.

Define f(u) to be the pleasure of vertex u in graph Gt[X ∪
{u}] (the induced subgraph of Gt over the vertices of X ∪
{u}). Let Lv be a strategy for v in which lvk = luk for each
k ∈ X. At this time, the pleasure of v is equal to f(u)+ |X|,
because its edges to X have the same sign as u’s edges to
X and for every k ∈ X we have one balanced uv-triangle,
∆uvk. Next, at each step we choose a vertex k′ from Y and
set lvk′ in such a way that it strictly increases the pleasure
of v. We will prove that it is always possible.
At time t, there isn’t any edge between k′ and u. By

Lemma 2.1 adding an edge between k′ and u does not change
u’s pleasure. So the number of balanced uk′-triangles and
unbalanced uk′-triangles are equal (If the edge uk′ exists).
This means that the number of uk′-triangles is even. This is
true for every other y ∈ Y . Consider two of the vertices in Y ,
such as y1 and y2. We claim that there is no edge between
these two vertices. Suppose that y1y2 is an edge of Gt.
Again by using Lemma 2.1 we can show that the number of
uyi-triangles for i = 1, 2 is even. The contradiction happens
here:

δ({u}, {y1, y2}) = δ({u}, {y1}) + δ({u}, {y2})−
δ({u, y1, y2}, ∅)

and we have δ({u, y1, y2}, ∅) = 1. This contradicts our as-
sumption because left hand side of the above equality is even
while the right hand side is odd. So there is no edge between
any y1, y2 ∈ Y and G[Y ] is independent set.

Now, consider vertices v and k′. The number of uk′-
triangles in Gt by assuming existence of uk′ is even (note
that in this graph vk′ is available and there is no edge be-
tween vertices of Y ). So, the number of vk′-triangles in
the graph Gt+1 and in the absence of uk′ is odd because
∆uvk′ won’t be enumerated. So we can choose a suit-
able sign for the edge vk′ which makes the number of bal-
anced vk′-triangles more than the number of unbalanced
ones. The proof for the claim is now complete and the plea-
sure of vertex v is at least f(x) + |X| + |Y | which means
BR(v) ≥ f(x) + |X|+ |Y |.

Now, suppose that v chooses another strategy S. By using
Lemma 2.1 we can assume that in S there is an edge from
v to every vertex in X. Define X1 to be the set of vertices
which have edges to both u and v and their edges to these
vertices have the same sign (In graph Gt+1 constructed by
adding S to Gt). Similarly define X2 to be the set of vertices
which have edges to both of these vertices but with different
signs. Clearly we have, X = X1 ∪ X2. Define X ′

1 and X ′
2

in a manner similar to X1 and X2 over the graph Gt. We
have:

BR(v) = f(v) + |X1| − |X2|

BR(u) = f(u) + |X ′
1| − |X ′

2|

We proved that BR(v) ≥ f(u) + |X| + |Y |, hence by ex-
tending this inequality we obtain:

f(v) + |X1| − |X2| ≥ |X|+ |Y |+ f(u) (3)

Now suppose that at time t vertex u uses the best response
of vertex v at time t+ 1. Therefore:

BR(u) ≥ f(v) + |X ′
1| − |X ′

2| − |X2| − |Y |

From BR(u) = f(u) + |X ′
1| − |X ′

2|, thus:

f(u) ≥ f(v)− |X2| − |Y | (4)

From Inequalities 3 and 4 we have:

|X1| ≥ |X| ⇒ |X2| ≤ 0

And the proof is complete.

Lemma 2.3 reveals important information regarding the struc-
ture of the game equilibrium and its convergence time. We
show that the equilibria of this repeated game are complete
graphs and convergence happens after O(n) steps.

Theorem 2.4. After one round the graph of the game will
be complete.

Proof. Suppose that there is no edge between two ver-
tices u and v, and u plays its best response first. Assume
that in v’s turn, v does not draw an edge to u. So by using
Lemma 2.1 we know that drawing an edge with positive sign
between these two vertices will not change v’s pleasure. This
is also true for an edge with negative sign. Define X to be
the set of u’s neighbors after playing its best response. Now
consider two different signing patters for the edges from v
to X:



Table 1: A method for making a signed graph undi-
rected. This works because our datasets have very
small fraction of reciprocated edges and in the bal-
ance theory it is reasonable to expect that the re-
ciprocated edges have same signs. ′+′ , ′−′, and ′ϕ′

represent positive,negative, and unknown relations
between nodes u and v respectively.

k u→ v u← v u↔ v(undirected)
0 + + +
1 + ϕ +
2 ϕ + +
3 − − −
4 − ϕ −
5 ϕ − −
6 + − ϕ
7 − + ϕ

• E1: For each x ∈ X, vx’s sign is as same as the sign
of ux.

• E2: For each x ∈ X, vx’s sign is invert of the sign of
ux.

When we consider a positive edge between u and v, from
Lemma 2.3 we know that E1 signing pattern is strictly bet-
ter than all other strategies. However, when we consider a
negative edge between these vertices, E2 is the best strategy
for v. But as we justified earlier, these two strategies must
have the same pleasure for v, but this implies a contradic-
tion.

Theorem 2.5. After one round (O(n) steps) the game
graph converges to an equilibrium.

Proof. Suppose that we are at (n + 1)’th step and it is
player one’s turn to play its best response. W.l.o.g suppose
that the edge between player 1 and player n has positive sign.
We know that at the previous turn player n has played its
best response. From the proof of the Theorem 2.4 we know
that n has drawn edges to all vertices of the graph and its
best response follows the properties mentioned in Lemma
2.3, i.e., all the (n, i) edges have the same sign as (1, i) edges
have. So this lemma also holds for player 1 and its current
edges form its best response. So it has no desire for changing
its outgoing edges.

3. EXPERIMENTAL RESULTS
In this section we explore the above theoretical results

experimentally on realistic datasets. For this, we consider a
simulation scenario in which we start with an initial network
and then in each step nodes iteratively change their strategy.
Our simulations are conducted on both random networks
and online social media datasets. The results are discussed
in the following sections.
As mentioned in the previous section, computing best re-

sponse in each step is NP-hard (Theorem 2.2) and we need a
method for its approximation. As we said, the relaxed prob-
lem in which the integral constraints are removed, can be
solved by a QCQP (Equation 2). We solve this QCQP and
round its solution (values near ζ ∈ {−1, 0,+1} are rounded
to ζ). This would give a good approximation for the prob-
lem. Even though we round the obtained solution to the
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Figure 3: QCQP solution histogram. Frequency of
the solutions in a subnetwork of Wikipedia dataset
with 1000 nodes. Only very few of the solutions
needs rounding and this result shows that our QCQP
maximization method has a negligible noise.

nearest integer value, this process has little effect on the ac-
curacy of the optimized values achieved by relaxation vs.
the truly optimal values.

Our experiments on some real subnetworks as well as ran-
dom graphs show that almost all solutions to the QCQP
problem are very close to +1 or −1, and there are very few
different solutions. In Figure 3 the histogram of the players’
solutions in a subnetwork of Wikipedia dataset with 1000
nodes is depicted.

For speeding up our simulation process, we use Lemma
2.3 whenever it can be applied.

3.1 Simulation Scenario
We consider three online social networks that have been

used by Leskovec [15]: the trust network of the Epinions, the
social network of the blog Slashdot, and the voting network
of Wikipedia. While these datasets have hundreds of thou-
sand nodes, for each one, we randomly extract an induced
subnetwork that contains 1000 nodes. Moreover, these sub-
networks are directed and we make them undirected by the
procedure which is described in Table 1. We have two con-
vincing reasons for this process of making undirected: (i)
These datasets have very small fraction of reciprocated edges
that have different signs(%0.0032 for Epinions, %0.0037 for
Slashdot, and %0.0273 for Wikipeida), so the number of
deleted edges is too small. (ii) In the balance theory (as op-
posed to status theory [15]) it is reasonable to expect that
the reciprocated edges have same signs since the excessive
edges should not have conflict with structural balance prop-
erty of signed networks.

In addition to this real subnetworks, we use two randomly
signed networks which are available online1. One is a Gn,p

and the other is a random power law graph, both with 1000
nodes. we start by these networks as initial signed net-
works. At each time unit, a node is chosen and computes
her best-response, i.e., connects some edges to other nodes
and chooses their sign. This process is repeated until all
nodes apply their best-responses.

1You can find this datasets at :
http://snap.stanford.edu/na09/
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Figure 4: Normalized Total Pleasure of all nodes of
the signed network in time units which are power
of two. In each time step one node computed
her best-response with QCQP maximization method
and rounded its solution to values in {−1, 0,+1}.
Each line represents temporal P for related real or
random signed network.

Normalized Total Pleasure. We define normalized to-
tal pleasure (P) as the pleasure of all nodes divided by total
number of triangles in the underlying network:

P =

∑
i pi∑

i,j,k | Aij | × | Ajk | × | Aki |
(5)

In Figure 4, we calculate the normalized total pleasure in
time units which are power of two. As we can see, indepen-
dent of the initial value of P, the normalized total pleasure
of the network increases as time goes. One of the main ob-
servations of this experiment in random networks is that
once the first player plays her best-response, many of the
existing unbalanced triangles become balanced and, con-
sequently, the normalized total pleasure of the underlying
network substantially increases. Later on, this quantity in-
creases at a decreasing rate. That is, whenever the first
few changes in the structure of a random network are made
based on the best-response model, the structure of random
signed networks approaches to real-world signed networks.
Another interesting note about Figure 4 is that in the real-
world signed networks, unlike random networks, there is a
high initial value for P. The main reason for this difference
is that real-world connections are formed according to struc-
tural balance theory which makes the pleasure received by
each node in these networks high at the beginning.
Balanced Consistent Edges. One of the other prop-

erties of the signed networks, is the number of edges that
are consistent with Cartwright-Harary theorem [4]. The
Cartwright-Harary theorem suggests a global view of struc-
tural balance: the network can be divided into two mutually
opposite sets of friends, i.e. every pair of nodes that are in
the same set like each other, and every pair of nodes that
are in the different sets are the enemies. In each time unit
we calculate the number of edges that are consistent with
this theorem by a maximization heuristic method that is
also implemented and analysed by Leskovec [15]: we start
by randomly partitioning the nodes into two sets. Then re-
peatedly pick a random node, and change the set it belongs
to if that increases the number of positive edges with both
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Figure 5: The fraction of edges that are consistent
with global view of balance theory computed by
Leskovec’s method in [15]. After that each node
played her best-response we enumerate the num-
ber of balance consistent edges with a maximiza-
tion heuristic method. Each line represents tempo-
ral fraction of balance consistent edges for related
real or random signed network.

ends in the same set, plus the number of negative edges
with ends in opposite sets. Again we run the simulation and
enumerate the number of balanced consistent edges in time
units which are power of two. Figure 5 shows the temporal
fraction of edges that are consistent with generalized balance
theory. The existing spike in Epinions diagram is because of
the heuristic basis of the method. As nodes change their re-
lation based on best-response model, this quantity becomes
large and after a few time units it gets sufficiently close to
one.

Smartness Factor. One interesting way in analyzing
nodes’ behaviors is comparison between the current pleasure
that the nodes have, and the new pleasure that they achieve
if they play their best-response. Again, we randomly extract
an induced subnetwork from each dataset that contains 1000
nodes. We randomly select 100 nodes in each subnetwork
and calculate these two parameters: (i) pi(0) that is the
pleasure of node i in its current state. (ii) pi(BR) that is
the pleasure of node i if she uses her best-response to the
remainder of the network. Our results show that the former
has a wide variety in its value, but the latter has an almost
constant value. Based on these two parameters a smartness
factor is defined:

si =
pi(0)

pi(BR)
(6)

This factor shows currently, how close is node i to her best-
response. As shown in Figure 6, there is a big difference
between these two values; this can be explained by the as-
sumption that nodes have limited computational power to
compute their best response.

KORIP Model. As it was mentioned earlier, Szell [18]
shows that a vast majority of changes in the signed networks
are due to the creation of new positive and negative links
and not because switching of existing link from plus to minus
or vice versa. On the other hand, it is a natural assumption
that when two people are friends/enemies, they remain as
friends/enemies for a long time. According to these two
experimental and theoretical approaches, we introduce an
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Figure 6: Nodes’ pleasure, below lines show current pleasure and above lines show best-response pleasure

evolutionary model for signed social media that captures
this property in a better way.
This model is similar to our best-response model except

that when a node decides to play her best-response she
Keeps her Old Relations but Improves her Pleasure (KO-
RIP) by creating new connections that are suggested in the
best-response. In other word, in this extended model when
a node decides to play her best response, she considers two
new restrictions: (i) she cannot change the sign of her old
relations and (ii) she creates new links, based on her best
response, only if these new links improve her pleasure in the
network. The specification of the rest of the model remains
unchanged.
We simulated the model in two Gn,p and random power

law graphs with 1000 nodes in which the difference between
the number of positive and negative links in it was very
small. By considering these graphs as initial signed net-
works, we let each node play her best response several times
according to KORIP restrictions. Unlike the best-response
model that reaches a fully balanced network after n times,
the KORIP model stops in a an approximately balanced
network. As depicted in Table 2, the characteristics of the
above signed graphs gets close to the characteristic of the
online social media sites after 2n times.

4. CONCLUSIONS
Human social networks are often a mixture of friendly

and hostile relations that are usually modeled by signed
networks. Structural balance theory is a basic framework
to interpret the interactions between signs and their effects
on the dynamics of the signed networks. This theory dis-
cusses every possible type of triadic relations that is formed
among people in such networks. Triads that contain odd
number of negative signs are said to be unbalanced because
there are some pressure or stress on the people involved to
change their sentiments. Studies on real-world signed net-
works (such as [18, 15]) show that these changes lead the
network toward an approximately balanced state, where bal-
anced triangles dominate unbalanced ones. We present a
model of network formation games that capture the evolu-
tion of signed networks based on structural balance theory.
We investigate the theoretical aspects of the game. We

prove that computing the best response for a player is NP-
hard; we also obtain a good approximation for the best-
response. We further prove that after one round the graph
of the game will be complete and fully balanced. Also, we
examine the best-response model on three online data sets
and two types of random networks. We find that in the
real-world signed networks, unlike random networks, there
is a high initial value for total pleasure because of real-world
connections formed according to structural balance theory.
Furthermore, we conclude that in each signed network for
new users there is an upper bound on the pleasure that they
can achieve. Finally, we introduce a variant of the best-
response model in which at each time step a user keeps her
old relations and improves her pleasure by only creating new
connections. We realized that this modified model can fit
better in real signed networks modellings.

There are several directions for additional research. First,
we aim to have more theoretical and experimental investi-
gation on the KORIP model since its initial results show
that it can be useful for modeling formation and evolution
of the real social media networks. Second, we can pursue the
signed network modeling based on Davis theory [6] in which
a triangle with three negative sign is also considered as a
balanced triangle. This relaxation is accepted and verified
in various social media analysis and, therefore, has consid-
erable motivation for further modeling. Finally, we suggest
study of directed networks, where links among people need
not be symmetric. In directed network we confront with sta-
tus theory [15] which postulates that when person i makes a
positive link to person j, then i is asserting that j has higher
status.
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Table 2: Characteristic of initial and final signed graph according to KORIP model. T0, T1, T2 and T3 are
columns which are used to show the number of triangles of types d, c, b and a of Figure 1 respectively.

total pleasure total triangles balaced consistent edges ubalaced consistent edges T0 T1 T2 T3

initial GNP 109 334 8414 2526 41 119 85 103

KORIP GNP 142635186 144442865 945810 1960 226500 107963001 678228 35576025

initial RPL 1959 3218 24698 1947 182 1962 461 627

KORIP RPL 79249412 80559455 737350 1981 162684 59991528 492588 19912906
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