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a b s t r a c t

In this paper, we consider the following problem: given an undirected graph G = (V , E) and an integer k,
find I ⊆ V 2 with |I| ≤ k in such a way that G′ = (V , E ∪ I) has the maximum number of triangles (a cycle
of length 3). We first prove that this problem is NP-hard and then give an approximation algorithm for it.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The problem of augmenting networks in order to optimize their
properties has been extensively tackled with a number of different
approaches in recent years. The main goal of such augmentation is
to improve network efficiency or constructingmodelswith desired
properties.

In general, to improve the network efficiency onewould have to
either change the transmission protocols [17,26,28] or change the
underlying structure [4,8,32,9,20]. To support the latter approach,
which is the main focus of this paper, an active line of research
studies the impact of different structural properties on the per-
formance of different network dynamics [14,29,1,31]. Therefore, to
improve different network dynamics, we can optimize their asso-
ciated structural properties.

The second important application of such network optimization
problems, is to calibrate structural network models. These models
are simply artificial graphs generatedwith real network properties
and are used as a base for simulating different network dynamics.
The main goal of these models is to study network behaviors
under different conditions. Although numerous structural network
models have been proposed over the years, none of them is
complete because each focuses on only a subset of these properties
and thus misses the others [30,3,2,18]. When a model N does not
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satisfy a property P , we can calibrateN by optimizing P withminor
modifications to the structure of N .

While heuristics have been applied extensively for a wide
range of network properties such as diameter and average path
length [23], robustness [16,4,32,21] and synchronizability [8,21],
approximation algorithms with guaranteed approximation factors
have not received much attention. To the best of our knowledge,
the only structural properties for which approximation algorithms
and non-approximability results are proposed, are diameter,
average path length [20,9,6,7] and Eulerian extension [10,15].

A high density of triangles (a cycle of length 3) is a beneficial
structural property of graphs. The main behavior of graphs with
this property is their fast collective dynamics [24,27]. Examples of
such dynamics can be seen in a wide variety of fields such as re-
laxation oscillations in gene regulatory networks [19,11], synchro-
nization in biological circuits [14,13], opinion formation in social
networks [25] and consensus dynamics of agents in multi agent
systems [22]. Thus, optimizing the number of triangles in networks
with minor changes in their structure is an important problem.

In this paper, we concentrate on the problem of changing the
structure of networks in a way that maximizes the number of their
triangles. The change in the structure is done through drawing
shortcut edges. We consider the limited budget case where we are
only allowed to purchase at most k such shortcut edges.

Definition 1 (Triangle-Max Problem). Given an undirected graph
G = (V , E) and an integer k <


|V |
2


− |E|. Find a set I ⊆ V 2 of

at most k shortcut edges (|I| ≤ k) such that T (G′) is maximized,
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where G′ = (V , E ∪ I) and T (G′) defines the number of triangles
in G′.

In this paper, we first show that Triangle-Max is NP-hard. Then
for instances of order n, we give a constant factor approximation
algorithm for k ≥ n and an O(n

1
4 )-factor approximation algorithm

for k < n.

2. Hardness

In this section, our main goal is to prove the NP-hardness of
the Triangle-Max problem. First we define a modified class of
the problem in which we only want to maximize the number of
triangles with exactly i newly added edges.

Definition 2 (Triangle-Max(i) (for 1 ≤ i ≤ 3)). Let G = (V , E) be
an undirected graph and k <


|V |
2


− |E| be an integer. Find a set

I ⊆ V 2 of at most k shortcut edges such that Ti(G′, I) is maximized
whereG′ = (V , E∪I) and Ti(G′, I) defines the number of i-triangles
in G′ i.e. the triangles having exactly i edges in I .

Observation 1 shows that the Triangle-Max(1) problem can be
solved in polynomial time. A simple greedy algorithmwill work for
this problem. For each shortcut edge e = (u, v) ∉ E with u, v ∈ V ,
define F(e) to be the set of 1-triangles generated by drawing e. One
can see that for each e ≠ e′, F(e)∩ F(e′) = ∅, therefore selecting k
of these shortcut edges with maximum cardinality of F will obtain
the optimal solution.

Observation 1. Triangle-Max(1) is solvable in polynomial time.

Although Triangle-Max(1) is in P , the other two problems in
this class i.e. Triangle-Max(2) and Triangle-Max(3) are both NP-
hard. Theorems 1 and 2 prove the hardness of these problems.

Theorem 1. Triangle-Max(2) is NP-hard.

Proof. We shall reduce the densest k-subgraph problem (DkS) to
Triangle-Max(2) problem. The DkS problem is defined as follows:
Given a graph G with n vertices and an integer k ≤ n, the problem
is to find a subgraph ofG induced by k of its verticeswithmaximum
number of edges. Let G = (V , E) and k specify an instance of DkS.
Assume that V = {v1, v2, . . . , vn} and let x be the number of edges
in the densest subgraph of G of size k.

Algorithm 1 Reducing DkS to Triangle-Max(2)

input: G and k
output: One of the densest subgraphs of G with k vertices
1: Define V ′ = {v′1, v

′

2, ..., v
′
n} and U = {u1, u2, ..., un3}. Let

V (G′) = V ′ ∪ U ∪ {v}.
2: For each e = vivj ∈ E(G) draw an edge between v′i and v′j such

that G′[V ′] and G are isomorphic (G′[V ′] is the subgraph of G′
which is induced by V ′).

3: Draw an edge between all pairs of vertices in U such that G[U]
becomes a clique with n3 vertices.

4: Insert an edge between every two vertices v′i ∈ V ′ and uj ∈ U .
5: Set k′ = n3

+ k.
6: Solve Triangle-Max(2) on the input (G′, k′). Let Q be the set of

v’s neighboring vertices in the returned solution.
7: Define T to be a set of k randomly selected vertices from Q \U .
8: return vertices in G corresponding to those in T .

Algorithm 1 describes a polynomial-time reduction of the DkS
problem to the Triangle-Max(2) problem. In the steps of 1 through
4 of this algorithm, an instance (G′, k′) of the Triangle-Max(2)

problem will be built. G′ would be a combination of a clique with
Fig. 1. G′ graph.

n3 vertices, an isomorphic graph to Gwhose vertices are connected
to all vertices of the clique and an isolated vertex v (see Fig. 1).

We claim that any solution of Triangle-Max(2) to the instance
(G′, k′) gives a solution for the DkS problem to the instance (G, k)
by the steps 6 through 8 of Algorithm 1.

To prove this, first we need to show that all k′ edges in the op-
timum solution (which we call OPT from now) of Triangle-Max(2)

are adjacent to v. Let S be the set of edges in OPT which are not ad-
jacent to v. Edges in S connect vertices in V ′, so |S| ≤

n
2


. Thus the

number of edges adjacent to v is at leastn3
+k−

n
2


≥ n3
−n2. There

is an optimal solution where all these edges are adjacent to ver-
tices of U. We choose this optimal solution because in this case the
maximum number of 2-triangles can be generated. Hence adding
an edge to v would increase the number of 2-triangles by at least
n3
− n2.
By removing S’s edges, the number of 2-triangles would be de-

creased by at most

|S|
2


, because each pair of these edges can make

at most one 2-triangle. Therefore removing edges in S and adding
|S| adjacent edges to v instead, the number of 2-triangles would be
increased by at least

|S|(n3
− n2)−


|S|
2


≥ |S|


n3
− n2
−
|S| − 1

2


≥ n3
−

3
2
n2,

which is greater than 0 for n > 1. Thus, S = ∅, i.e. all edges in OPT
are adjacent to v.

Now, we prove that the set T returned by Algorithm 1 is one
of the densest subgraphs for graph G′[V ′] (and their correspond-
ing vertices in V (G) for G). Each edge in G′[Q ] is included in only
one 2-triangle. So the number of 2-triangles created by the edges
in OPT is equal to the number of edges in G′[Q ]. First, notice that
there exists a solution for Triangle-Max(2) to the instance (G′, k′)
which creates y =

n3
2


+ x+ k · n3 2-triangles. It is enough to con-

nect v to the vertices of U ∪ D where D is the set of vertices in the
densest subgraph of G′[V ′]. We will show that OPT cannot gener-
ate more than y 2-triangles and if the equation holds, T must be a
densest subgraph of G′[V ′].

T ⊆ V ′ and |T | = k, therefore the number of edges in G′[T ] is
less than or equal to x. Also the number of edges in G′[Q \ T ] is less
than or equal to

n3
2


, because Q \ T has exactly k′ − k = n3 ver-

tices. Moreover the number of edges between these two subgraphs
is less than or equal to k · n3. Thus the number of edges in G′[Q ] is
less than or equal to y and the equality can only happen when T is
a densest subgraph of G′[V ′], G′[Q \ T ] is a clique and all vertices
in T are connected to all vertices in Q \ T . �

Our next step is to prove the NP-hardness of the Triangle-
Max(3) problem.

Theorem 2. Triangle-Max(3) is NP-hard.
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Proof. We shall reduce the Maximum Independent Set problem
to the Triangle-Max(3) problem. In the Maximum Independent
Set problem, we are given an undirected graph G = (V , E) and a
number k > 0 andwewant to find a subset C ⊆ V (G)with |C | = k
for which G[C] is an empty graph. Let k′ =

k
2


. We show that

the maximum independent set of G is equal to k if and only if the
optimum solution to the instance (G, k′) of the Triangle-Max(3)

problem is equal to
k
3


.

Assume G has an independent set C of size k. Thus, there are
k′ edges available to build

k
3


3-triangles, i.e. adding edges in

{(u, v)|u, v ∈ C} to G builds
k
3


3-triangles. One can see that

achieving more than
k
3


3-triangles is impossible.

To prove the only if part, assume that adding edges in I
generates

k
3


3-triangles and define G′ = (V , E ∪ I). We claim that

there is no edge present in more than 3(k3)
(k2)
= (k − 2) 3-triangles.

Assume to the contrary, there exists an edge (u, v) ∈ I included in
at least (k − 1) 3-triangles. Thus degG′,I(u) ≥ k (degG′,I(u) is the
degree of vertex u in graph G′ through edges in I) because u and v
must be connected to at least (k − 1) vertices by the edges in I to
generate these 3-triangles. Therefore by deleting these edges, the
remaining graph has

k
2


− k =

k−1
2


− 1 shortcut edges which can

build less than
k−1

3


3-triangles. u can build at most

k
2


triangles

with its adjacent short-cut edges. Hence, the number of 3-triangles
in G′ is less than

k−1
3


+

k
2


=

k
3


which is a contradiction.

Since the total number of shortcut edges in G′ is
k
2


and none of

them is present in more than k − 2 triangles, every shortcut edge
in G′ is included in exactly k−2 triangles. Also, as shown, for every
vertex x ∈ G′, degG′,I(x) ≤ k− 1. Thus degG′,I(x) = k− 1, so edges
in I make a k-vertex clique which is equivalent to an independent
set of size k in G. �

Theorem 3 is the main result of this section. In this theorem,
we will show that the Triangle-Max problem is not solvable in
polynomial time, unless P = NP .

Theorem 3. Triangle-Max is NP-hard.

Proof. We shall reduce the Triangle-Max(3) problem to Triangle-
Max problem. Let G = (V , E) and 0 < k <


|V |
2


− |E| provide an

instance of Triangle-Max(3). We construct G′ = (V1 ∪ V2, E ′) as
follows.

For every vertex u ∈ V , we add a vertex u′ in V1 and for ev-
ery pair of u, v ∈ V with (u, v) ∉ E, we add |V |3 vertices to
V2 and connect them to both u′ and v′. Therefore |V1 ∪ V2| =
|V |
2


− |E|


|V |3 + |V |.

Now, consider the instance (G′, k) of the Triangle-Max prob-
lem. Suppose that C is the set of edges of size k for which G′′ =
(V1 ∪ V2, E ′ ∪ C) generates the maximum number of triangles. We
prove that for every edge e = (u′, v′) ∈ C , u′, v′ ∈ V1 and (u, v) ∉
E. Assume to the contrary that there exists an edge (w′, z ′) ∈ C
which does not satisfy these conditions. Since k <


|V |
2


−|E|, there

exists another edge (x′, y′) ∉ C , where x′, y′ ∈ V1 and (x, y) ∉ E.
If one of the vertices w′ or z ′ is in V2, its degree in G′′ would be at
most 2+ k ≤ |V |2. Suppose that this edge is present in b triangles.
We have b ≤ min{degG′′(w

′), degG′′(z ′)} ≤ |V |2. Thus replacing
(w′, z ′)by (x′, y′), will lead tomore triangles (|V |3 triangles).More-
over, if (w′, z ′) ∈ E, this edge would be present in at most |V | +
k ≤ |V |2 triangles, which is less than the |V |3 triangles added by
(x′, y′).

For each edge (u′, v′) ∈ C add its corresponding edge (u, v) to
G. We will prove that this is an optimal solution for the (G, k) in-
stance of the Triangle-Max(3) problem. First consider that by the
above reasoning this solution is feasible. Since G′[V1] is initially an
empty graph and all shortcut edges are added inside V1, we will
have no 2-triangle in G′. The number of 1-triangles in G′ is exactly
k · |V |3 and so is independent from the locations of C ’s edges in
G′[V1]. Therefore edges in C generate the maximum number of
3-triangles which can only be built in G′[V1]. Thus since the so-
lution is feasible, C ’s corresponding edges in G also generate the
maximum number of 3-triangles in G. �

3. Approximation algorithm

In this section, we provide an approximation algorithm for
the Triangle-Max problem. To reach this aim, we also take the
Triangle-Max(i) problems into consideration.

Assume that a graph G and a number k is given. Let OPT
denote the number of triangles in the optimal solution of the
Triangle-Max problem. Similarly defineOPT (i) to be the number of
i-triangles in the optimal solution of the Triangle-Max(i) problem.
The general idea is to find sets Ii ⊆ V 2 and numbers fi > 0 for
1 ≤ i ≤ 3, such that ∀1≤i≤3|Ii| ≤ k and the number of triangles
in Gi = (V , E ∪ Ii) is at least 1

fi
· OPT (i) and then compute the final

algorithm by combining these intermediate solutions.
From Observation 1, we know that Triangle-Max(1) is solvable

in polynomial time. We solve this problem and set I1 equal to the
optimum solution of this problem. We will have

T (G1) ≥ OPT (1),

where G1 = (V , E ∪ I1).
Now we focus on finding the set I3. Theorem 4 shows that

choosing an arbitrary subset of vertices and adding (or redrawing)
k of its inside edges will suffice.

Theorem 4. Given an undirected graph G = (V , E) and an integer k,
there is a polynomial time algorithmwhich finds a set of shortcut edges
I3, such that |I3| ≤ k and T (G3) ≥

1
4OPT

(3), where G3 = (V , E ∪ I3).

Proof. Assume that
k′
2


≤ k <

k′+1
2


. Let S ⊆ V be an arbitrary

subset of V of size k′. For every pair of vertices u, v ∈ S add (u, v)

to I3, hence |I3| =
k′
2


and there are at least

k′
3


triangles in G3. One

can easily show that OPT (3) <
k′+1

3


. If k′ < 3, then k < 3 and

OPT (3)
= 0, therefore we assume k′ ≥ 3, i.e.,

k′+1
3


/
k′
3


≤ 4. Thus

we can conclude

T (G3) ≥


k′

3


≥

1
4


k′ + 1

3


≥

1
4
OPT (3). �

Finding the set I2 is the most difficult part. Define EG(S) as the
set of G’s edges induced by S ⊆ V (G) and

dnsG(S) =
|EG(S)|
|S|

as the density of edges in set S. Moreover assume thatNG′,I(x) is the
set of x’s neighbors in G′ through edges in I . Lemma 1 gives another
formulation for T2(G′, I) (the number of 2-triangles) and an upper
bound for T (G′), where G′ = (V , E∪ I). Consider that in the second
part of this lemma I ∩ E may be non-empty.

Lemma 1. Let G = (V , E) be an undirected graph and I be a set of
shortcut edges. Let G′ = (V , E∪ I). We have the following statements:

1. If I ∩ E = ∅, then T2(G′, I) =


(u,v)∈I dnsG(NG′,I(u)) +
dnsG(NG′,I(v)).

2. T (G′) ≥ 1
3


(u,v)∈I dnsG(NG′,I(u))+ dnsG(NG′,I(v)).

Proof. First assume that I ∩ E = ∅. Each 2-triangle of I in G
can be represented using the joint vertex of its two edges of I .
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Therefore the number of triangles corresponding to vertex x is
equal to |EG(NG′,I(x))|. Thus,

T2(G, I) =

x∈V

|EG(NG′,I(x))| =

x∈V


y∈NG′,I (x)

|EG(NG′,I(x))|
|NG′,I(x)|

=


(u,v)∈I

|EG(NG′,I(u))|
|NG′,I(u)|

+
|EG(NG′,I(v))|

|NG′,I(v)|

=


(u,v)∈I

dnsG(NG′,I(u))+ dnsG(NG′,I(v)).

For the second part, consider a 2-triangle T created by three
edges (a, b), (b, c) and (a, c). In the sum


(u,v)∈I dnsG(NG′,I(u))+

dnsG(NG′,I(v)), T is counted at most three times and this happens
when (a, b), (b, c), (a, c) ∈ I ∩ E. �

Algorithm 2 Finding I2
input: G, k, S
1: I ′2 ← ∅
2: for all u ∈ V (G) do
3: mark[u] ← false
4: end for
5: while there exists a node u ∈ V (G) \ S with mark[u] =false

and |I ′2| + |S| ≤ k do
6: mark[u] = true
7: for all v ∈ S do
8: Add edge (u, v) to I ′2
9: end for

10: end while
11: if |I ′2| ≠ |S||V \ S| then
12: return I ′2
13: end if
14: I ′′2 ← ∅
15: k1 ← k− |I ′2|
16: for all u ∈ V (G) do
17: mark[u] ← false
18: end for
19: vmax ← a vertex x ∈ Swithmaximumdegree∆ = max degS(x)
20: freeNodes← |S| ◃ freeNodes denotes the number of unmarked

vertices in S
21: while there is a node u ≠ vmax ∈ S with mark[u]=false and
|I ′′2 | + freeNodes− 1 ≤ k1 do

22: mark[u] = true
23: freeNodes← freeNodes− 1
24: for all v ∈ S do
25: ifmark[v] = false then
26: Add edge (u, v) to I ′′2
27: end if
28: end for
29: end while
30: if |I ′′2 | ≠


|S|
2


then

31: return I ′2 ∪ I ′′2
32: end if
33: I ′′′2 ← ∅
34: k2 ← k− |I ′2| − |I

′′

2 |

35: while |I ′′′2 | < k2 and there exist two vertices u, v ∈ V (G) \ S
such that (u, v) /∈ E(G) ∪ I ′′′2 do

36: Add edge (u, v) to I ′′′2
37: end while
38: return I ′2 ∪ I ′′2 ∪ I ′′′2

Define dnskmax(G) to be the density of the densest subgraph of G
with atmost k vertices. The following theorem is critical for finding
the set I2.
Theorem 5. Given an undirected graph G = (V , E), an integer k,
and a set of vertices S ⊆ V where |S| ≤ k, there is a polynomial time
algorithmwhich finds a set of shortcut edges I2, such that |I2| ≤ k and
T (G2) ≥ ⌊

1
24

dnsG(S)
dnskmax(G)

OPT (2)
⌋, where G2 = (V , E ∪ I2).

Proof. We show that Algorithm 2 satisfies the conditions of this
theorem. So we set I2 to be the returned edge set of this algorithm.
By using the first part of Lemma 1, we have

2k · dnskmax(G) ≥ OPT (2). (1)

Algorithm 2 has three phases in which 3 sets I ′2, I
′′

2 and I ′′′2
of shortcut edges will be computed and added to the result set.
When the cardinality of the result set becomes k, the algorithm
terminates. In the first phase, shortcut edges are chosen fromedges
between S and V \ S. In the second and third phases, these edges
are chosen from the inside edges of S and (V \ S), respectively. In
the following, we count the number of 2-triangles created by this
process and compute a lower-bound for each phase.

Consider the lines 1–13 of this algorithm, and assume that
G′2 = (V , E ∪ I ′2). In each iteration of the while loop in lines 5–10,
Algorithm 2 chooses a vertex u ∈ V − S and for every vertex v ∈ S
adds the edge (u, v) to I ′2, hence |S| edges will be added to I ′2. These
edges result in |EG(S)| triangles in G′2. This process will continue
until |S| + |I ′2| ≥ k.

If S = V , no edge will be chosen to be added to I ′2 and thereafter
|I ′2| = |S| |V \ S| = 0 and I ′2 will not be returned by the algorithm.
So assume that S ≠ V . By the above discussion, at the end of the
while loop, the number of triangles in G′2 will be at least

T (G′2) ≥
|I ′2|
|S|
|EG(S)| = |I ′2|dnsG(S).

If |I ′2| ≠ |S| |V − S| then I ′2 will be returned by the algorithm,
thus I2 = I ′2 and G2 = G′2. At the end of the while loop, we have
|I ′2| + |S| ≥ k. We know |I ′2| ≥ S, thus |I ′2| ≥

1
2k. Applying Eq. (1),

we conclude

T (G2) = T (G′2) ≥
k
2
dnsG(S) ≥

1
4

dnsG(S)
dnskmax(G)

OPT (2),

as desired. Now we assume |I ′2| = |S| |V \ S|. Hence every vertex
in V \ S is connected to all vertices in S through edges in I ′2.

Now consider lines 14–32 of Algorithm 2 and define G′′2 =
(V , E ∪ I ′2 ∪ I ′′2 ). In each iteration of the while loop in lines 21–29,
Algorithm 2 picks a vertex u ≠ vmax ∈ S and for every other
vertex v ∈ S adds a shortcut edge (u, v) to I ′′2 . Assume that the
chosen vertex is u and the H is the induced subgraph of G′′2 on S. So
NH,I ′′2

(u) = S \ {u}. We show that dnsG(S \ {u}) ≥ ⌊ 12dnsG(S)⌋
for every chosen vertex u by the lines 14–32 of Algorithm 2.
This proves that for each edge (u, v) ∈ I ′′2 , dnsG(NH,I ′′2

(u)) +
dnsG(NH,I ′′2

(v)) ≥ ⌊ 12dnsG(S)⌋, as at least one of the two end points
was chosen in the algorithm as vertex u. Thus by Lemma 1 part 2,
we have,

T (H) ≥
1
3


(u,v)∈I ′′2

dnsG(NH,I ′′2
(u))+ dnsG(NH,I ′′2

(v))

≥


1
6
|I ′′2 |dnsG(S)


.

To prove the claim, consider first the case when vmax is the only
vertex with degree ∆. Since u ≠ vmax, we have degG(u) < δ and
thus dnsG(S \ {u}) ≥ 1

2dnsG(S), which proves the claim.
If degG(u) = ∆, we know that vmax ∈ S \{u} and its degree is∆.

Thus, if the number of edges in G[S \{u, vmax}] is K , dnsG(S \{u}) ≥
∆−1+K
|S|−1 which is greater than or equal to ⌊ 2∆+K2|S| ⌋ ≥ ⌊

1
2dnsG(S)⌋ for

|S| ≥ 2.
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If |I ′′2 | ≠

|S|
2


then I2 = I ′2∪ I

′′

2 will be returned by the algorithm.
|I ′2| + |I

′′

2 | ≥
1
2k because |I ′′2 | + |S| > k2 = k− |I ′2|. Thus, G

′′

2 has at
least |I ′2|dnsG(S) triangleswith exactly two vertices in S and at least
1
6 |I
′′

2 |dnsG(S) triangles with exactly three vertices in S. Therefore,
we have

T (G2) = T (G′′2) ≥

|I ′2| +

1
6
|I ′′2 |


dnsG(S)


≥


1
6
(|I ′2| + |I

′′

2 |)dnsG(S)


≥


1
12

k · dnsG(S)


≥


1
24

dnsG(S)
dnsmax(G)

OPT (2)


.

Thus we assume |I ′′2 | =

|S|
2


, therefore every two vertices in S are

connected through edges in I ′′2 . Now consider lines 33–38 of the
algorithm. When Algorithm 2 reaches these lines, I2 = I ′2 ∪ I ′′2 ∪ I ′′′2
will be returned, therefore G2 = (V , E ∪ I ′2 ∪ I ′′2 ∪ I ′′′2 ). Assume that
(u, v) with u, v ∈ V \ S is an arbitrary edge in I ′′′2 . Since for every
vertex x ∈ S, (u, x), (v, x) ∈ E ∪ I ′2 ∪ I ′′2 , there are |S| triangles with
(u, v) and two edges between V \ S and S. Thus we can conclude
that a = |I ′′′2 | |S| of such triangles exist in G2. Since dnsG(S) ≤

|S|−1
2 ,

we have a ≥ 2|I ′′′2 |dnsG(S). Seeing that k = |I ′2| + |I
′′

2 | + |I
′′′

2 |, we
have

T (G2) ≥


1
6
(|I ′2| + |I

′′

2 | + |I
′′′

2 |)dnsG(S)


≥


1
6
k · dnsG(S)


≥


1
12

dnsG(S)
dnsmax(G)

OPT (2)


. �

Theorem 6. Given an undirected graph G = (V , E) of order n and an
integer k. There is a polynomial time approximation algorithm which
finds a set of shortcut edges I, such that |I| ≤ k and
• for k ≥ n, T (G′) ≥ 1

30OPT

• for k < n, T (G′) ≥ c · n−
1
4 OPT (c ∈ O(1))

whereG′ = (V , E∪I) andOPT is the optimal solution of the Triangle-
Max problem.

Proof. Let ti be the number of i-triangles in the optimal solution,
thus t0 + t1 + t2 + t3 = OPT . From Observation 1, Theorems 5 and
4, we can find sets Ii ⊆ V 2 for 1 ≤ i ≤ 3, such that ∀1≤i≤3|Ii| ≤ k
and

T (G1) ≥ OPT (1)
≥ t1,

24f · T (G2) ≥ OPT (2)
≥ t2,

4T (G3) ≥ OPT (3)
≥ t3,

where Gi = (V , E ∪ Ii) and f = dnskmax(G)

dnsG(S) . Therefore,

T (G)+ T (G1)+ 24f · T (G2)+ 4T (G3) ≥ t0 + t1 + t2 + t3 = OPT .

Let m = max{T (G), T (G1), T (G2), T (G3)}. Thus (6 + 24f )m ≥
OPT and by choosing the set with maximum number of triangles,
we have a (6 + 24f )-factor approximation for the Triangle-Max
problem.

To have an upper bound for f , we must compute the densest
subgraph of G with maximum k vertices. Existing algorithms
provide the optimal value of dnskmax(G) for k ≥ n [12] (i.e. there
is no limitation on k) and an O(n

1
4 )-factor solution for k < n [5]

which finalizes the proof. �
4. Conclusion

An important follow-up work is to consider optimizing other
essential graph properties by limited number of structural
modifications. Solving these problems may have applications in
scientific and technological contexts.
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