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a b s t r a c t

We study the problem of maximizing constrained non-monotone submodular functions and provide
approximation algorithms that improve existing algorithms in terms of either the approximation factor
or simplicity. Different constraints that we study are exact cardinality and multiple knapsack constraints
for which we achieve (0.25� ✏)-factor algorithms.

We also show, as our main contribution, how to use the continuous greedy process for non-monotone
functions and, as a result, obtain a 0.13-factor approximation algorithm for maximization over any
solvable down-monotone polytope.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Submodularity is the discrete analogous of convexity. Submod-
ular set functions naturally arise in several different important
problems including cuts in graphs [16,13], rank functions of ma-
troids [8], and set covering problems [9]. The problem of maximiz-
ing a submodular function is NP-hard as it generalizes many im-
portant problems such as Maximum Cut [10], Maximum Facility
Location [2,1], and the Quadratic Cost Partition Problemwith non-
negative edge weights [14].

Definition 1. A function f : 2X ! R+ is called submodular if and
only if 8A, B ✓ X , f (A) + f (B) � f (A \ B) + f (A [ B). An
alternative definition is that the marginal values of items should
be non-increasing, i.e., 8A, B ✓ X , A ✓ B ✓ X and x 2 X \ B,
fA(x) � fB(x), where fA(x) = f (A [ {x}) � f (A); fA(x) is called the
marginal value of xwith respect to A.

The Submodular Maximization Problem is a pair (f , �), where f is
a submodular function and � is the search domain. Our aim is to
find a set A⇤ 2 � whose value, f (A⇤), is maximum. Our focus is on
non-monotone submodular functions, i.e., we do not require that
f (A)  f (B) for A ✓ B ✓ X .
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Definition 2. A packing polytope is a polytope P ✓ [0, 1]X that is
down-monotone: If x, y 2 [0, 1]X with x � y and y 2 P , then x 2 P .
A polytope P is solvable if we can maximize linear functions over
P in polynomial time [21].

A packing polytope constraint binds the search domain (�) to a
packing polytope.

Definition 3. For a ground set X , k weight vectors {wi}ki=1, and k
knapsack capacities {Ci}ki=1 are given. A setV ✓ X is called packable
if

P
j2V wi

j  Ci, for i = 1, . . . , k.

The multiple knapsack constraint forces us to bind the search
domain to packable subsets ofX . In the exact cardinality constraint,
we have � = {S ✓ X : |S| = k}.
Background. The problem of maximizing non-monotone sub-
modular functions, with or without some constraints, has been
extensively studied in the literature. In [11], a 0.4-factor approx-
imation algorithm was developed for maximizing unconstrained
(non-negative, non-monotone) submodular functions. The ap-
proximation factor was very recently improved to 0.41 by Oveis
Gharan and Vondrák [20].

For the constrained variants, Lee et al. [19], Vondrák [22],
and Gupta et al. [15] provide the best approximation algorithms.
Lee et al. [19] developed a 0.2-approximation for the problem
subject to a constant number of knapsack constraints, followed
by a 0.25-approximation for the cardinality constraint and a 0.15-
approximation for the exact cardinality constraint. The latter two
approximation factors were later improved by Vondrák [22] to
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Table 1

Comparison of our results with the existing ones.

Constraint [19] [22] [15] Our result Claim

Exact cardinality 0.15 0.25 0.17 0.25 Simpler
k-Knapsacks 0.2 – – 0.25 Better ratio
Packing polytope – – – 0.13 New ratio

0.309 and 0.25, respectively. As a new way of tackling these
problems, Gupta et al. [15] provide greedy algorithms that achieve
the approximation factor of 0.17 for a knapsack constraint.
Greedy algorithms are more common for maximizing monotone
submodular functions.

In a recent work, Vondrák [23] and Calinescu et al. [3] used
the idea of multilinear extension of submodular functions and
achieved optimal approximation algorithms for the problem of
maximizing amonotone submodular function subject to amatroid.

1.1. Our results

We consider the problem subject to different constraints. Our
results are summarized in Table 1 and are compared with existing
results. We obtain simple algorithms for the exact cardinality
constraint, multiple knapsack constraints. Moreover, we use the
continuous greedy process for non-monotone functions to obtain
a 0.13-factor approximation algorithm for maximization over
any solvable down-monotone polytope. This implies a 0.13-
approximation for several discrete problems, such asmaximizing a
non-negative submodular function subject to a matroid constraint
and/or multiple knapsack constraints.

1.2. Preliminaries

In this section, we introduce the concepts and terms that we
often use throughout this paper.
Multilinear extension. For a submodular function f : 2X ! R+, the
multilinear extension of f is defined as follows [4]: F : [0, 1]X !
R+ and

F(x) = E[f (x)] =
X

S✓X
f (S)

Y

i2S
xi

Y

i2X\S
(1� xi).

This concept is frequently used in recent works [4,3,17,19,22]. The
multilinear extension of every submodular function is a smooth
submodular function [3]. The gradient of F is defined as rF =
( @F

@x1
, . . . , @F

@xn
).

Matroid. A matroid is a pair M = (X, I) where I ✓ 2X and
• 8B 2 I, A ⇢ B) A 2 I.
• 8A, B 2 I, |A| < |B|) 9x 2 B \ A; A [ {x} 2 I.
Matroid polytopes. A matroid polytope is a solvable packing
polytope with special properties. Given a matroid M = (X, I), we
define the matroid polytope as

P(M) =
(

x � 0 : 8S ✓ X;
X

j2S
xj  rM(S)

)

where rM(S) = max{|I| : I ✓ S; I 2 I} is the rank function of
matroid M. This definition shows that the matroid polytope is a
packing polytope.
Randomized pipage rounding. Given a matroid M = (X, I), the
randomized pipage rounding converts a fractional point in the
matroid polytope, y 2 P(M) into a random set B 2 I such
that E[f (B)] � F(y), where F is the multilinear extension of the
submodular function f [4,3,22].

1.3. Recent developments

There has been some very recent relevant works independent
and concurrent to our work. Kulik et al. give an (0.25 � ✏)-

approximation algorithm for maximizing non-monotone sub-
modular functions subject to multiple knapsacks [18]. Chekuri
et al. [6] show that, by using a fractional local search, a 0.325-
approximation could be achieved for maximizing non-monotone
submodular functions subject to any solvable packing polytope.
However, our 0.13-factor approximation algorithm is still of inde-
pendent interest in that it uses the continuous greedy approach
rather than local search and, thus, it would be more efficient in
practice.

2. Exact cardinality constraint

In this section, we propose very simple algorithm for the
exact cardinality constraint problem whose approximation factor
matches the best existing one, yet it is much simpler and easy to
implement. Our algorithm is a simple combination of existing local
search or greedy based algorithms. Our main tool is the following
useful lemma from [15].

Lemma 1 ([15]). Given sets C, S1 ✓ X, let C 0 = C \ S1 and
S2 ✓ X \ S1. Then, f (S1 [ C) + f (S1 \ C) + f (S2 [ C 0) � f (C).

Let k be the right-hand side of the cardinality constraint.

Theorem 1. There is a 0.25-factor approximation algorithm for
maximizing a non-monotone submodular function subject to an exact
cardinality constraint.

Proof. First, we use the local search algorithmof [19] and compute
a set S1 whose size is k and 2f (S1) � f (S1 [ C) + f (S1 \ C) for any
C with |C | = |S1| = k. Next, we use the greedy algorithm of [15]
and compute a set S2 ✓ X \ S1 of size k such that for any C 0 with
|C 0|  k, f (S2) � 0.5f (S2 [ C 0). Let C be the true optimum and
C 0 = C \ S1. Therefore,

2f (S1) + 2f (S2) � f (S1 [ C) + f (S1 \ C) + f (S2 [ C 0)
� f (C) = OPT .

Thus, the better of S1 and S2 gives an approximation factor 0.25.
Here, we have assumed that k  |X |

2 . If not, we can alternatively
solve the problem for the derived submodular function g(S) =
f (X \ S) subject to cardinality constraint k0 = |X |� k. ⇤

The approximation factor 0.25 matches that of [22], though our
algorithm is simpler and straightforward to implement.

3. Multiple knapsack constraints

Lee et al. [19] propose a 0.2-factor approximation algorithm for
the problem. They basically divide the elements into two sets of
heavy and light objects and then solve the problem separately for
each set and return the maximum of the two solutions.

We improve their result by considering both heavy and light
elements together. Our algorithm finds a fractional solution and
then integrates it by using independent rounding. We use some
of the properties of the independent rounding; For the sake
of completeness, we mention it before presenting the main
algorithm.

Let x = (x1, . . . , xn) be a fractional solution and (X1, . . . , Xn) 2
{0, 1}n be an integral solution obtained from x by randomized
independent rounding. We observe that E[Xi] = xi and for
any subset T , E[Qi2T Xi] = Q

i2T xi, and E[Qi2T (1 � Xi)] =Q
i2T (1 � xi). Considering these properties, as in [7] (Theorem

II.1) and [12] (Theorem 3.1), we obtain the following Chernoff-type
concentration bound for linear functions of X1, . . . , Xn.
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Lemma 2. Let ai 2 [0, 1] and X = P
aiXi where (X1, . . . , Xn)

are obtained by randomized independent rounding from a starting
point (x1, . . . , xn). If � 2 [0, 1], and µ � E[X] = P

aixi, then
Pr[X � (1 + �)µ]  e�µ�2/3.

Moreover, the independent rounding gives a concentration
inequality for submodular functions as stated in [24].

Lemma 3 ([24]). If Z = f (X1, . . . , Xn) where Xi 2 {0, 1}
are independently random and f is non-negative submodular with
marginal values in [�1, 1], then for any � > 0,
• Pr[Z � (1 + �)E[Z]]  e��2E[Z]/(4+5�/3).
• Pr[Z  (1� �)E[Z]]  e��2E[Z]/4.

We use the lower bound tail for our purpose. Our algorithm
(Algorithm1below) is basedon the algorithmof [7] formaximizing
monotone submodular functions subject to one matroid and
multiple knapsack constraints. We have made somemodifications
to use it for non-monotone functions.

Input: Elements weights {ci,j}, parameter 0 < ✏ < 1/(4k2),
and a non-monotone submodular function f

D ;.
foreach subset A of at most 1/✏4 elements do

0. Set D A if f (A) > f (D);
1. Redefine Cj = 1�P

i2A cij for 1  j  k.;
2. Let B be the set of items i /2 A such that either
fA(i) > ✏4f (A) or cij > k✏3Cj for some j;
3. Let x⇤ be the fractional solution of the following
problem:

max{G(x) : x 2 P(M); 8j
X

cijxi  (1� ✏)Cj} (1)

where M is the free matroid over the ground set
X 0 = X \ (A [ B), and G(x) is the multilinear extension of
g(S) = fA(S), S ✓ X 0.;
4. Let R be the result of the independent rounding applied
to x⇤ with respect to the matroid polytope P(M). Set
D A [ R if f (A [ R) > f (D);

end

Return D.
Algorithm 1: Non-Monotone Maximization Subject to Multi-
ple Knapsacks

The following theorem shows how good our algorithm is.

Theorem 2. Algorithm 1 returns a solution of expected value at least
(0.25� 2✏)OPT .
Proof. The proof follows the line of proofs of [7] with major
changes to adapt it for non-monotone case. Let O be the optimal
solution and OPT = f (O). Assume |O| � 1

✏4
; otherwise, our

algorithm finds the optimal solution in Line 0. Sort the elements
of O by their decreasing marginal values, and let A ✓ O be the first
1
✏4

elements. Consider the iteration in which this set A is chosen.
Since A has 1

✏4
elements, the marginal value of its last element and

every element not in A is at most ✏4f (A)  ✏4OPT . So, throwing
away elements whose marginal value is bigger than ✏4f (A) does
not hurt. We also throw away the set B ✓ N \ A of items whose
size in some knapsack is more than k✏3Cj. In O \ A, there can be
at most 1/(k✏3) such items for each knapsack, i.e., 1/✏3 items in
total. Since their marginal values with respect to A are bounded by
✏4OPT , these items together have value g(O\B) = fA(O\B)  ✏OPT .
The set O0 = O \ (A [ B) is still a feasible set for the maximization
problem, and by submodularity has value:

g(O0) = g((O \ A) \ (O \ B))
� g(O \ A)� g(O \ B) � OPT � f (A)� ✏OPT .

The indicator vector (1 � ✏)1O0 is a feasible solution for Problem
(1) (specified at step 3 of Algorithm 1). By the concavity of G(x)
along the line from the origin to 1O0 , we have G((1 � ✏)1O0) �
(1� ✏)g(O0) � (1� 2✏)OPT � f (A). By Theorem 4 of [19] we can
compute in polynomial time a fractional solution x⇤ with value:

G(x⇤) � 1
4
G((1� ✏)1O0) �

✓
1
4
� 2✏

◆
OPT � f (A).

Finally, we apply independent rounding to x⇤ and call the resulting
set R. By the construction of independent rounding, we have
E[g(R)] = G(x⇤). However, R might violate some of the knapsack
constraints. Consider a fixed knapsack constraint,

P
i2S cij  Cj.

Our fractional solution x⇤ satisfies
P

cijx⇤i  (1 � ✏)Cj. Also,
we know that all sizes in the reduced instance are bounded by
cij  k✏3Cj. By scaling, c 0ij = cij/(k✏3Cj), we use Lemma 2 with
µ = (1� ✏)/(k✏3):

Pr

"
X

i2R
cij > Cj

#

 Pr

"
X

i2R
c 0ij > (1 + ✏)µ

#

 e�µ✏2/3 < e�1/4k✏ .

Finally, we show that g(R) has a high value with respect to G(x⇤).
In the reduced instance, all items have value g(i)  ✏4OPT . Let
µ = G(x⇤)/(✏4OPT ). Using Lemma 3, we get

Pr[g(R)  (1� �)G(x⇤)] = Pr[g(R)/✏4OPT  (1� �)µ]
 e��2µ/4 = e��2G(x⇤)/(4✏4OPT ).

By setting � = OPT
G(x⇤)✏, we obtain

Pr[g(R)  G(x⇤)� ✏OPT ]  e�OPT/(4✏2G(x⇤))  e�1/4✏
2
.

Therefore, Pr[g(R)  G(x⇤) � ✏OPT or 9j : P
j2R cij > Cj] 

e�1/4✏
2 + ke�1/4k✏ . For ✏  1/(4k2) this probability is at most

e�4k
4 + ke�k < 1. Finally, we have a feasible solution of expected

value E[f (R)] = f (A)+E[g(R)] = f (A)+G(x⇤) � ( 1
4�2✏)OPT . ⇤

4. Packing polytope constraint

In this section, we adapt the continuous greedy process for non-
monotone submodular functions and propose an algorithm for
solving the optimization problems subject to a packing polytope
constraint. As an application of the technique,we then consider the
problem of submodular maximization subject to both one matroid
and multiple knapsacks constraints. Finally, we briefly show how
to replace this continuous process with a polynomial time discrete
process without suffering much.

4.1. Continuous greedy process for non-monotone functions

Similar to [3], the greedy process starts with y(0) = 0 and
increases over a unit time interval as follows:
dy
dt

= vmax(y),

where vmax(y) = argmaxv2P(v.rF(y)). For the case where F
is a non-monotone smooth submodular function, we have the
following lemma.

Lemma 4. y(1) 2 P and F(y(1)) � (1� e�1)(F(x_y(1))� FDMAX ),
where x 2 P, and FDMAX = max0t1 F(y(1)� y(t)).

Proof. The proof is essentially similar to that of [3] with some
modifications to adapt it for non-monotone functions. First, the
trajectory for t 2 [0, 1] is contained in P since

y(t) =
Z t

0
vmax(y(⌧ ))d⌧
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is a convex linear combination of vectors in P . To prove the
approximation guarantee, fix a point y. Consider a direction v⇤ =
(x_ y)� y = (x� y)_ 0. This is a non-negative vector; since v⇤ 
x 2 P and P is down-monotone, we also have v⇤ 2 P . Consider
the ray of direction v⇤ starting at y, and the function F(y + ⇠v⇤),
⇠ � 0. The directional derivative of F along this ray is dF

d⇠ = v⇤.rF .
Since F is smooth submodular (that means, each entry @F

@yj
of rF

is non-increasing with respect to yj) and v⇤ is nonnegative, dF
d⇠ is

non-increasing too and F(y + ⇠v⇤) is concave in ⇠ . By concavity,
we have

F(y(1) + v⇤)� F(y(t))  F(y(t) + v⇤)� F(y(t)) + F(y(1)� y(t))
 v⇤.rF(y(t)) + FDMAX .

Since v⇤ 2 P and vmax(y) 2 P maximizes v.rF(y) over all vectors
v 2 P , we get

vmax(y).rF(y) � v⇤.rF(y) � F(y(1) + v⇤)� FDMAX � F(y). (2)

Wenowget back to the continuous process and analyze F(y(t)).
Using the chain rule and the inequality (2), we get

dF
dt

=
X

j

@F
@yj

dyj
dt

= vmax(y(t)).rF(y(t))

� F(x _ y(1))� FDMAX � F(y(t)).

Thus, F(y(t)) dominates the solution of the differential equation

d�
dt

= F(x _ y(1))� FDMAX � �(t)

which means �(t) = (1 � e�t)(F(x _ y(1)) � FDMAX ). Therefore,
F(y(t)) � (1� e�t)(F(x _ y(1))� FDMAX ). ⇤

4.2. Extending smooth local search

As our final tool for obtaining themain algorithmof this section,
we propose an algorithm for the following problem: Let f be a
submodular function and F be its multilinear extension. Let ui 2
[0, 1], 1  i  n, be a set of upper bound variables and U := {0 
yi  ui 8i 2 X}. We want to maximize F over the region U:

max{F(y) : y 2 U}
For this, we extend the 0.4-approximation algorithm (Smooth

Local Search or SLS) of [11] as follows.We call our algorithm FMVY .
We define a discrete set ⇣ of values in [0, 1], where ⇣ =

{p.� : 0  p  1/�}, � = 1
8n4 and p is integer. The algorithm returns

a vector whose values come from the discrete set ⇣ . We show that
such a discretization does not substantially harm our solution, yet
it reduces the running time.

LetU be amultiset containing si = b 1
�
uic copies of each element

i 2 X . We define a set function g : 2U ! R+ with g(T ) =
F(. . . , |Ti|

si
, . . .), where T ✓ U and Ti contains all copies of i in T . The

function g has been previously introduced in [19] and proved to be
submodular. Let B be the solution of running the SLS algorithms for
maximizing g and y be its corresponding vector.

Based on [11], we have g(B) � 0.4g(A), 8A 2 U; thus

F(y) � 0.4F(z), 8z 2 U \ ⇣ n. (3)

and we can prove the following claim.

Claim 1. For any x 2 U, 2.5F(y) � F(x) � fmax
4n2 , where fmax =

max{f (i) : i 2 X}.
Proof. Let z be the point in ⇣ n \U that minimizes

Pn
i=1(xi � zi).

By Claim 3 of [19], F(z) � F(x)� fmax
4n2 . Using the inequality (3), we

get F(y) � 0.4(F(x)� fmax
4n2 ). This completes the proof. ⇤

4.3. The algorithm

We now present our algorithm for maximizing a smooth
submodular function over a solvable packing polytope:

Input: A packing polytope P and a smooth submodular
function F

1. y1  � The result of running the continuous greedy
process.
2. y01  � argmax0t1F(y1 � y(t)).
3. y1max  � The result of running FMVY with the upper
bound y1.
4. y2  � The result of running the greedy process over the
new polytope P 0 which is built by adding constraints
yi  1� y1i for any 1  i  n to P . Note that P 0 is a
down-monotone polytope.
5. y02  � argmax0t1F(y2 � y(t)).
6. Return argmax(F(y1), F(y2), F(y1max), F(y01), F(y02)).

Algorithm 2: Continuous greedy process for non-monotone
functions

Theorem 3. The above algorithm is a 2e�2
13e�9 -approximation algo-

rithm for the problem of maximizing a smooth submodular function
F over a solvable packing polytope P.

Proof. Suppose x⇤ 2 P is the optimum and F(x⇤) = OPT . By
Lemma 4, F(y1) � (1 � e�1)(F(x⇤ _ y1) � F(y01)). We also have
F(y2) � (1� e�1)(F(x0 _ y2)� F(y02)), where x0 = x⇤ � (x⇤ ^ y1).
Note that x0 2 P 0. By Claim 1, we also have F(y1max) � 0.4(F(x⇤ ^
y1)� fmax

4n2 ) as x⇤ ^ y1 � y1.
By adding up the above inequalities, we get

e
e� 1

(F(y1) + F(y2)) + F(y01) + F(y02) + 2.5F(y1max)

� F(x⇤ _ y1) + F(x0 _ y2) + F(x⇤ ^ y1)�
fmax

4n2

� F(x⇤)� fmax

4n2 = OPT � fmax

4n2 .

Therefore, the approximation factor of the algorithm is at least
2e�2
13e�9OPT . ⇤

Both one matroid and multiple knapsacks. As a direct result of the
above theorem, we propose the first approximation algorithm for
maximizing a submodular function subject to both one matroid
and multiple knapsacks. This problemwas solved (approximately)
in [5] for monotone submodular functions.

Theorem 4. There exists an algorithm with expected value of at least
( 2e�2
13e�9 � 3✏)OPT for the problem of maximizing any non-monotone

submodular function subject to one matroid and multiple knapsacks.

Proof. The intersection of the polytopes corresponding to one
matroid andmultiple knapsacks is still a solvable packing polytope.
Thus, we can achieve a fractional solution by using Algorithm 2
together with the enumeration phase (as in Algorithm 1), and then
we can round the fractional solution into the integral one using
randomized pipage rounding.

Our algorithm is very similar to that of [5] with some
modifications to adapt it for non-monotone functions. As the two
algorithms are similar, we only highlight the modifications to our
algorithm.

The algorithm in [5] is for maximizing monotone submodular
functions subject to one matroid and multiple knapsacks and uses
partial enumeration. At each iteration, after getting rid of all items
of large value or size, it defines an optimization problem with
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scaled down constraints. Since the objective function is monotone,
the reduced problem at each iteration is solved using continuous
greedy algorithm to find a fractional solutionwithin a factor 1�1/e
of the optimal.

For our case, we cannot use the continuous greedy algorithm
as our function is not monotone. Instead, we use Algorithm 2 to
solve the reduced problem and achieve a fractional solution with
approximation factor 2e�2

13e�9 . The final step of the two algorithms are
identical. At each iteration, we apply randomized pipage rounding
to the fractional solution with respect to contracted matroid of
the that iteration. The result is the set with maximum objective
functions over all iterations.

Our analysis is similar to that of [5] except that our approxima-
tion factor for the reduced problem (at each iteration) is 2e�2

13e�9 as
opposed to 1�1/e of [5]. So, the same analysis works with the two
approximation factors exchanged.

Note that, because of considerations in the design of the
algorithm, randomized pipage rounding does not violate,with high
probability, the capacity constraints on knapsacks and, therefore,
our solution is a feasible one with constant probability. We remark
that the argument for the concentration bound in [5] is applicable
to our analysis, as well. ⇤

4.4. Discretizing continuous process

In order to obtain a polynomial time, we discretize the
continuous greedy process for non-monotone functions and
show that by taking small enough time steps, this process only
introduces a small error that is negligible and the solution to the
differential inequality does not significantly change.

Let � = 1
n2
, and ⇣ = {p.� : 0  p  1/�} be a set of discrete

values. We set the unit time interval equal to � in Algorithm 2, and
change lines 2 and 5 of it as follows.

2 y01  � argmaxF(y1 � y(t)), 8t 2 ⇣

5 y02  � argmaxF(y2 � y(t)), 8t 2 ⇣

and obtain the following lemma which is weaker (but not very
different) than Lemma 4.

Lemma 5. y(1), y01 2 P and F(y(1)) � (1 � e�1)(F(x _ y(1)) �
F(y01)) � o(1)OPT , where x 2 P, where P is any solvable packing
polytope.
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