
1 23

Journal of Combinatorial
Optimization
 
ISSN 1382-6905
 
J Comb Optim
DOI 10.1007/s10878-014-9784-3

Team selection for prediction tasks

MohammadAmin Fazli, Azin
Ghazimatin, Jafar Habibi & Hamid
Haghshenas



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Comb Optim
DOI 10.1007/s10878-014-9784-3

Team selection for prediction tasks

MohammadAmin Fazli · Azin Ghazimatin ·
Jafar Habibi · Hamid Haghshenas

© Springer Science+Business Media New York 2014

Abstract Given a random variable O ∈ R and a set of experts E , we describe a
method for finding a subset of experts S ⊆ E whose aggregated opinion best predicts
the outcome of O . Therefore, the problem can be regarded as a team formation for
performing a prediction task. We show that in case of aggregating experts’ opinions
by simple averaging, finding the best team (the team with the lowest total error during
past k rounds) can be modeled with an integer quadratic programming and we prove
its NP-hardness whereas its relaxation is solvable in polynomial time. At the end,
we do an experimental comparison between different rounding and greedy heuristics
on artificial datasets which are generated based on calibration and informativeness of
exprets’ information and show that our suggested tabu search works effectively.

Keywords Team Selection · Information aggregation · Opinion pooling ·
Quadratic programming · NP-hard

1 Introduction

Predicting the outcome of a random variable is an essential part of many decision mak-
ing processes (Sprenger et al. 2012). For instance, companies have to forecast future
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customer demands or changes in market regulations to do a better planning for their
production (Attarzadeh and Ow 2011). In some cases, lack of sufficient information
(like statistical data) compels companies to seek advice from experts (Hammitt and
Zhang 2013; Chen et al. 2005). In order to make better informed decisions, it is logical
to integrate opinions of several experts because it leads to more accurate predictions
(Graefe et al. 2014).

In this work, we consider a situation in which a set of experts are available, each with
certain level of expertise. The goal is to predict the outcome of a continuous variable
O using their opinions. For each prediction task, we gather experts’ opinions and
aggregate them by simple linear opinion pooling. As proven before, the arithmetic
average of experts opinions is an efficient and robust aggregation method (Chen et
al. 2005, 2006). We have prediction profile of each of these experts for k previous
prediction tasks. The goal is to find a subset of experts with the best performance, i.e.
a subset whose aggregated opinion has the least error regarding the actual outcome
of O .

Accordingly, our method could be applied in a situation where the amount of effort
required to complete a specific task in a software project needs to be predicted for
effective planning and scheduling. As the relevant statistical data (data on efforts
made for completing same tasks in different projects) might not be enough for a
newly established company to base their predictions on, it would be justifiable to ask
employees about the effort required to do the task. Suppose that efforts for doing
similar tasks in previous projects of the company have been predicted by the workers.
Here, our method can be applied to find a subset of workers whose aggregated opinion
yield a good estimation of the effort which is crucial for successful control of software
projects (Jørgensen 2007; Malhotra and Jain 2011).

To formalize the problem, define E = {e1, . . . en} to be the set of experts. The ei ’s
prediction and the actual value of O in the t-th round are respectively profiled by yit

and xd . In order to compare prediction ability of different subsets such as S and S′,
we use the Sum of Squared Errors (SSE) measure over the past k rounds:

f (S) =
k∑

t=1

(∑
ei∈S yit

|S| − xd

)2

(1)

In the Team Selection problem, our goal is to find a subset S with minimum f (S).
In this paper, we first consider the relaxed version of this problem where we just
want to assign weights to experts and choose them fractionally. We show that this
problem can be easily converted to a simple quadratic programming and therefore
is polynomially solvable. Then, we show that the integer quadratic programming
representing the Team Selection problem is NP-hard (Sect. 2). To solve this problem,
we propose an augmented algorithm of the Tabu-Search used for solving the clique
problem (Sect. 3). Then we suggest some other heuristics for tackling the problem
and compare their precision experimentally on different artificial datasets with that of
Tabu-Search and show that the Tabu-Search can give a solution to the Team Selection
problem with a negligible error. In the rest of this section, some of the related works are
discussed.
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1.1 Related works

Various approaches for forecasting have been studied extensively. They can all be
categorized into statistical and non-statistical methods. Statistical approaches require
sufficient historical data to extract value patterns, whereas non-statistical approaches
are based on experts judgments and their aggregation (Chen et al. 2005, 2006). Meth-
ods for experts judgments aggregation include information markets, opinion pooling,
Bayesian and behavioral approaches (Chen et al. 2005; Clemen and Winkler 2007).
For information markets, scoring and compensation rules have been introduced to
induce truthful forecasts and ensure participation of experts (Othman and Sandholm
2010; Boutilier 2012; Chen and Kash 2011; Hora 2007; Zhang et al. 2012). Moreover,
decision rules are used to exploit aggregated judgments to make a decision (Boutilier
2012; Chen and Kash 2011). Opinion pooling and Bayesian approaches are mathemat-
ical methods for aggregating judgments to obtain accurate probability assessment for
an event (Clemen and Winkler 2007; Hora 2007; Christian and Zidek 1986; Dani et al.
2012; Jacobs 1995; French 2011; Morris 1974; Michaeli and Simon 2008). Bayesian
approach has been widely used in aggregating probability distributions with or without
taking the dependence between experts into account (Morris 1974; Kallen and Cooke
2002; Mostaghimi 1996; Mostaghimi 1997).

Expert opinion has been widely used in many fields. For safety assessment of a
nuclear sector, one should rely on opinions of experts as statistical data on catastrophic
events are often rare. Much the same goes for prediction of the force level and military
intentions of other countries (Cooke 1991). Therefore, one of the primary applications
of expert judgment is in risk analysis such as estimation of the seismic or flood risk
(Clemen and Winkler 2007, 1999; Reggiani and Weerts 2008; Cooke 1991).

Selecting a subset of experts who provide us with information about the outcome
of an event can be regarded as forming a team of advisors. Recently, team formation,
as a more general concept has received much attention. For instance, Lappas et al.
(2009), took into account the cost of communication among individuals and presented
two approaches for forming a team with minimum communication cost yet capable of
dealing with a defined task, based on two different communication cost functions. As
another example, Chhabra et al. (2013), proposed a greedy approximation to find an
optimal matching between people and some interrelated tasks by taking into account
the social network structure as an indicator of synergies between members. Kargar et
al. (2013), also, suggested approximation algorithms for finding a team with minimum
communication and personnel costs.

2 NP-hardness

In order to explore computational complexity of the Team Selection problem, consider
the following quadratic programming:

minimize g(w) =
k∑

t=1

(
n∑

i=1
wi yi t − xt

)2
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subject to
n∑

i=1
wi = 1

∀i, wi ∈
{
0, 1

m

}
(2)

Here, w = (w1, w2, . . . wn) is the variable vector and m is the number of experts
to be selected. By solving this problem for m = 1, 2, . . . n, one can solve the Team
Selection problem.

The relaxed version of the problem 2, where ∀i, 0 ≤ wi ≤ 1, can be interpreted as
weight assignment to each expert to indicate how much we should weigh his opinion.
Thus, we refer to this problem as the Weight Assignment problem. In this section, we
first show that the Weight Assignment problem is polynomially solvable by a simple
quadratic programming, while its original version (the Team Selection problem) is
equivalent to an NP-hard problem.

Define zit = yit − xt for all 1 ≤ i ≤ n and 1 ≤ t ≤ k. zit is the error of the i-th
expert’s forecast in the t-th round. So yit = zit + xt , we have

g(w) =
k∑

t=1

((
n∑

i=1

wi (zit + xt )

)
− xt

)2

=
k∑

t=1

((
n∑

i=1

wi zi t

)
+

(
n∑

i=1

wi xt

)
− xt

)2

=
k∑

t=1

(
n∑

i=1

wi zi t

)2

. (3)

The term inside the summation can be expanded as

(
n∑

i=1

wi zi t

)2

=
n∑

i=1

n∑

j=1

wi zi t z j tw j . (4)

Replacing (4) in (3) we get

g(w) =
k∑

t=1

n∑

i=1

n∑

j=1

wi zi t z j tw j

=
n∑

i=1

n∑

j=1

k∑

t=1

wi zi t z j tw j

=
n∑

i=1

n∑

j=1

wi

(
k∑

t=1

zit z j t

)
w j

= 1

2

n∑

i=1

n∑

j=1

wi

(
2

k∑

t=1

zit z j t

)
w j . (5)
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So the weight assignment problem can be stated as a quadratic programming

minimize 1
2wT Qw

subject to 1T w = 1,

w ≥ 0 (6)

where 1 is the all-one vector and Q is defined as

qi j = 2
k∑

t=1

zit z j t .

Clearly, Q is symmetric and hence the above quadratic programming is valid. We
should show that Q is positive-semidefinite i.e. for every non-zero vector u we have
uT Qu ≥ 0. Assume that

∑n
i=1 ui = c. Define u′ = 1

c u. We have
∑n

i=1 u′i = 1,
thus with respect to the definition of Q in (5) and (6), we have g(u′) = 1

2 u′T Qu′.
So uT Qu = (cu′)T Q(cu′) = c2u′T Qu′ = 2c2g(u′) which is clearly non-negative
(because g(.) is a quadratic error function).

We know that a quadratic programming with positive-semidefinite matrix can be
solved in polynomial time and hence the weight assignment problem is polynomially
solvable.

The main result of this section is to show the NP-hardness of the Team Selection
problem.

Theorem 1 The Team Selection problem is NP-hard.

Proof First consider the proposed QP (6) for the Weight Assignment problem. Adding
constraints ∀i, wi ∈ {0, 1

m } to this QP will lead to the following mathematical pro-
gramming which is equivalent to the Team Selection problem (when it is solved for
m = 1, 2, . . . , n).

minimize 1
2wT Qw

subject to 1T w = 1

∀i, wi ∈ {0, 1
m } (7)

where

qi j = 2
k∑

t=1

zit z j t .

Non-zero weight assigned to an expert means he is a member of the resulting
solution. We show that this mathematical programming cannot be solved in polynomial
time, unless P = N P . In order to prove its NP-hardness, we shall reduce the maximum
independent set problem in d-regular graphs to this problem. Given a graph G, assume
that V (G) = {v1, v2, . . . , vn} is the set of vertices of G, E(G) is the set of its edges
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and degG(vi ) denotes the vi ’s degree in G. In the maximum independent set problem,
the goal is to find an empty subgraph with maximum number of vertices. We will show
that every instance of the independent set problem can be transformed to an instance of
the following mathematical problem which can then be reduced to the Team Selection
problem:

minimize 1
2 xT A′x

subject to 1T x = m

∀i, xi ∈ {0, 1} (8)

where A′ = A + D, A is the adjacency matrix of G and D is a diagonal matrix with
Di,i = degG(vi ).

After solving the mathematical programming (8), all the vertices with xi = 1 make
a subgraph S. Let i(S) for S ⊆ V (G) denotes the number of G’s edges which reside
in S. That is to say,

i(S) = |{e = (x, y) ∈ E(G)|x, y ∈ S}|.

First notice that

xT A′x =
n∑

i=1

n∑

j=1

xi x j A′i j =
n∑

i=1

n∑

j=1

xi x j Ai j +
n∑

i=1

x2
i Dii .

It is easy to show that

n∑

i=1

n∑

j=1

xi x j Ai j = 2i(S),

and

n∑

i=1

x2
i Dii = dm

Thus

xT A′x = 2i(S)+ dm.

Minimizing xT A′x with constraint
∑n

i=1 xi = m leads to a m-vertex subgraph with
minimum number of edges. To reduce the maximum independent set problem to the
mathematical program (8), it is sufficient to solve (8) for all 1 ≤ m ≤ n and report the
maximum m for which the solution is equal to dm.

Finally, we reduce the problem (8) to the mathematical programming (7). It is
enough to choose zi s in such a way that Q = A′. Recall that
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qi j = 2
k∑

d=1

zit z j t = 2Zi .Z j

where Zi is a k-element vector composed of zids. For equality of matrices, we need
qi j = A′i j . In other words, we should have

Zi .Z j =

⎧
⎪⎨

⎪⎩

degG (vi )
2 if i = j,

1
2 if viv j ∈ E(G),

0 otherwise

(9)

To do this, first set k = |E(G)| (thus Zi has a coordinate for each edge of G). We
set Zi ’s l’th coordinate to 1√

2
if vi is connected to the l’th edge and otherwise we set it

to 0. To check that this assignment satisfies (9), one can see that when i = j , exactly
degG(vi ) coordinates of Zi are equal to 1√

2
and others are zero. So we have

Zi .Zi = degG(vi )× 1√
2
× 1√

2
= degG(i)

2
.

When vi and v j are endpoints of an edge (say, the l-th edge), the l-th coordinate of
both Zi and Z j equals to 1√

2
and they have no other common non-zero coordinate. So

we have

Zi .Z j = 1√
2
× 1√

2
= 1

2
.

Finally, when vi and v j are not connected, Zi and Z j have no common non-zero
coordinate and clearly

Zi .Z j = 0.

	

3 Tabu search

In the previous section, we showed that the Team Selection problem is NP-hard while
its relaxed version, the Weight Assignment problem, is solvable in polynomial time. In
this section, we propose a tabu search algorithm to solve the Team Selection problem.

Tabu Search has proved high performance in finding sets with specific character-
istics. Different variations of this method have been used for approximating the best
solution for similar problems like the Maximum Clique, Maximum Independent Set,
Graph Coloring and Minimum Vertex Cover (Wu and Hao 2012a, b, 2013). We choose
the algorithm introduced in (Wu and Hao 2013) for solving the Maximum Clique prob-
lem as a basis and transform it to an algorithm for the Team Selection problem.

Tabu Search starts from an initial solution and iteratively replaces it with one of its
neighbors in order to get closer to the optimal solution. In each iteration, a local search
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is done for finding a group whose collective prediction has the least error. If there is no
such neighbor, current solution is regarded as a local minimum. To escape from local
minimums, Tabu Search allows the least worse neighbor to be selected. Wu and Hao
use Probabilistic Move Selection Rule (PMSR) when no improving solution is found
in neighborhood. This strategy helps to move to other neighbors when the quality of
the local minimum is much less than that of the optimal solution (Wu and Hao 2013).
We use a similar strategy in our proposed algorithm. For preventing previous solutions
from being revisited, Tabu Search uses a tabu list which records the duration of each
element being kept from moving into or out of current solution.

Algorithm 1 Tabu Search For Team Selection Problem
Require: A Set of experts (E), Expert’s sequence of past predictions, integer Max I ter (Maximum number

of successive tries which fail to find better solution), m (size of the team)
Ensure: A team with minimum SSE if found
1: S← MaxW eights AssignedT o(E, m)

2: lowerBoundOfSSE← g(w) { w contains weights assigned to E }
3: i ← 0 { number of iterations }
4: bestSet← S { Records the best solution found so far }
5: while i < Max I ter do
6: S′ ← S ∪ {v}\{u} with minimum SSE among all u, v pairs not in tabu list
7: if f (S′) < f (S) then
8: S← S′
9: else
10: S← S′with probability 1− P
11: or a random neighbor with probability P
12: Update the tabu list { List of all u, v pairs which are tried in iterations}
13: if f (S) = lowerBoundOfSSE then
14: return S
15: if f (S) < f (best Set) then
16: bestSet← S
17: i ← 0
18: else
19: i ← i + 1
20: return bestSet

Algorithm 1, shows the pseudo code of our proposed tabu search. The first line
shows the initialization of the first set (team), which then goes through improvements in
the main loop. As the initial set can play an important role in Tabu Search performance
(Wu and Hao 2013), we suggest the initial set to be equal to the set of m experts who are
given the largest weights in an optimum solution for the Weight Assignment problem
(this is shown by MaxW eights AssignedT o(E, m)).

In each iteration of the loop, the amount of improvement gained by each possible
swap is calculated simply by subtracting SSE of the team resulting from swapping two
experts (one in the current set with another out of it) from the SSE of the current team.
If the best possible swap results in a better solution (lower SSE), then the current set
is updated with the new solution. Otherwise, a random set is selected as the current
solution with probability P . In another word, P is the probability of escaping from
a local minimum. Like various kinds of Tabu Search, we use tabu list to prevent
producing repeated sets. Therefore, after substituting a member with another expert
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out of the current set, tabu list is updated with regard to tabu tenure values calculated
for both selected experts. This implies that for some time these experts are not allowed
to move in or out of the current set in next iterations.

There are two terminating conditions for this algorithm. For one, the main loop ter-
minates by not finding any better set after max I ter successive iterations. For another,
when the current solution is equal to the solution of the Weight Assignment problem,
the algorithm stops the search process. That is to say, there is no other set with less SSE.

4 Comparision

In this section, inspired from algorithms proposed for similar problems, we suggest
different heuristics for the Team Selection problem and compare their efficiency with
the tabu search proposed in Sect. 3.

4.1 Heuristics

Random rounding Random rounding defines a threshold (T ) and selects experts with
weights above the threshold with probability P and the others with probability 1− P .
This process will continue until m experts are selected. Our experiments show that
higher amounts of T yields better results.
Max-weights This rounding algorithm takes the m experts with largest weights as
members of the team.
Min-effect In each round, this algorithm tries to find a member who has the minimum
effect on the SSE of E . According to the equation (3), the effect of each person on the
SSE function can be calculated as the following:

⎛

⎝2wi

∑

j 
=i

w j

k∑

d=1

zid z jd

⎞

⎠− w2
i

k∑

d=1

z2
id , (10)

which is equal to sum of the terms including zi .

Best pairs Despite the fact that experts with high prediction error are not desirable,
aggregated opinions of two or more of them may have an acceptable error. This is
due to the bracketing concept (Graefe et al. 2014). Thus, in this algorithm we allow
pairs whose aggregated opinion has the minimum absolute error to be selected. The
algorithm computes sum of the absolute errors of the aggregated opinions of all pairs
over past k rounds, then report �m

2 � of pairs with smallest calculated values. For odd
values of m, last person would be the one among remained experts with minimum
sum of absolute errors.

Remove least weights This algorithm runs the Weight-Assignment problem’s algo-
rithm iteratively and removes one with the least weight in each iteration. The process
continues until m experts are remained.

Minimum error One simple strategy of members selection is to find experts with
minimum sum of absolute errors during past k rounds. For simplicity, we call this
approach ”Minimum Error”.
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Fig. 1 Comparison of the algorithms and heuristics for the case Normal1

4.2 Comparison of algorithms

In this section, we evaluate the tabu search and other heuristics for solving the Team
Selection problem. We consider four different simulation scenarios with 15 experts,
each with known distribution for their predictions and tested the algorithms for team
sizes from 2 to 10. These scenarios are based on two measures for evaluating quality
of expert’s distribution (calibration and informativeness introduced by Hammitt and
Zhang (2013)) and are described as follows:

– Normal1 In this case, random variable O and experts’ beliefs have normal distri-
bution with μ = 10, thus, experts’ information are calibrated. Standard deviation
of each expert’s distribution is randomly selected from [1, 2].

– Normal2 This case models calibrated but less informative experts. Therefore, like
the previous case, all distributions are normal with μ = 10, but this time, standard
deviations of experts’ predictions are between 1 and 7 (σi is randomly selected
from [1, 7]).

– Normal3 In the third case, we simulate a situation in which some of the experts
are not calibrated. For doing this, experts’ beliefs have normal distribution with
random means that are selected uniformly from [8, 12]. Like Normal1, standard
deviations are chosen randomly between 1 and 2.

– Exp For the final case, we simulate both the reality and the experts’ predictions
with exponential distributions with μ = 10.

As presented in Figs. 1, 2, 3 and 4 and Table 1, Tabu Search produces far better
results in all cases. It can also be seen that the result of this algorithm is very near to
the best possible algorithm which tries all the feasible solutions and return the best
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Fig. 2 Comparison of the algorithms and heuristics for the case Normal2
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Fig. 3 Comparison of the algorithms and heuristics for the case Normal3

one. This means that our suggested algorithm is less sensitive to the distribution of
the event O . Thus, Tabu Search is more reliable than other proposed heuristics. Best
Pairs’s efficiency for normal distributions is comparable with Tabu search. Moreover,
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Fig. 4 Comparison of the algorithms and heuristics for the case Exp
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Fig. 5 Eeffect of the team size on the average of the SSE of the best teams when 12, 13, 14 or 15 experts
are available

the average execution time of Best Pairs is around 0.02 of Tabu Search (Table 2).
Therefore, it would be an acceptable method for quickly forming a team. However, in
the case of exponential distributions, Best Pairs performance for small teams is even
worse than Min-Effect which is due to the increase in diversity of the forecasts. Hence,
the probability of neutralization of an expert’s error by another, decreases.
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Fig. 6 Effect of the prediction profile size on the SSE of the best team for the next three prediction tasks

Table 1 Average of difference between the SSE of the best team and the SSE of the heuristics’ solutions
for teams of size 2–10

Algorithm Normal1 Normal2 Normal3 Exponential

RandomRounding 10.348 128.937 17.702 1,102.74

Max-Weights 2.153 38.329 4.831 121.021

Min-Effect 4.26 84.39 7.84 297.97

Tabu Search 0.145 2.186 0.18 14.833

BestPairs 1.788 8.507 2.26 178.273

RemoveLW 1.897 38.895 4.188 105.951

Table 2 Comparison of the
heuristics’ average of the
execution time for finding best
team of 8 experts amog 15
experts in case of Normal2

Name of algorithm Average Exe.
Time

BestTeam 27.3742

RemoveLW 0.0461

Tabu Ssearch 0.0345

Min-Effect 0.0036

Max-Weights 0.0035

RandomRounding 0.0013

BestPairs 0.0009

4.3 Other experiments

The effect of the team size As the number of hired experts determines the cost incurred,
we would like to know the effect of the team size on the accuracy of the aggregated
opinion of its members. Therefore, in our simulations we capture the accuracy for
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different team sizes and depict the results in Fig. 5. This figure shows the optimal
solution for different sizes of E . The results show that increasing the number of
experts first reduces but then increases SSE again. Therefor, we can conclude that
large values for m is neither cost effective nor efficient.
The effect of the prediction profile size It is apparent that having more information about
the experts’ past predictions, improve the quality of the final result. The question here
is how much would be enough. We observe that for large values of the size of the
experts’ prediction profile, the decrease in SSE will finally stop. Therefore, the first
point with minimum value would be the optimal number of past records. The results
of this experiment can be seen in Fig. 6.

5 Conclusion

In this paper, we addressed the Team Selection problem in which we wanted to form a
team of experts with minimum error for performing a prediction task. To simplify the
problem, we first studied the relaxed version of the problem (the Weight Assignment
problem) in which our goal was to find the best weights for linear opinion pooling.
We proved that this problem can be solved with a simple quadratic programming in
polynomial time. Then we proved that the Team Selection problem is NP-hard. In the
rest of the paper, we proposed a tabu search algorithm for solving the problem. Our
experiments show the superior accuracy of this algorithm compared to other proposed
algorithms. It is also shown that the accuracy of this algorithm is comparable to the
best possible algorithm.
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