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Abstract Assume that we are given a set of points some of which are black and the
rest are white. The goal is to find a set of convex polygons with maximum total area
that cover all white points and exclude all black points. We study the problem on three
different settings (based on overlapping between different convex polygons): (1) In
case convex polygons are permitted to have common area, we present a polynomial
algorithm. (2) In case convex polygons are not allowed to have common area but
are allowed to have common vertices, we prove the NP-hardness of the problem and

propose an algorithm whose output is at least
(

O PT
log(2n/O PT )+2log(n)

)1/4
. (3) Finally, in

case convex polygons are not allowed to have common area or common vertices, also
we prove the NP-hardness of the problem and propose an algorithm whose output is

at least 3
√

3
4.π

(
O PT

log(2n/O PT )+2log(n)

)1/4
.
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Fig. 1 Three types of different
problems

(a) (b)

(c)

1 Introduction

Assume that we are given a set of n points, some are black and the others are white. A
convex polygon is defined as a white convex polygon (WCP) if and only if its vertices
are white points and it is free from black points (it only cover white points). The
problem of finding the maximum area WCP has been studied by Fischer (1993) where
he proposed a dynamic O(n4log(n)) time algorithm for this problem. In this paper,
we take one step forward and consider the problem of covering all white points with
a set of WCPs whose union has the maximum area.

Based on whether to allow WCPs to share a white point as a vertex or to allow them
to overlap, three different problems can be defined. Differences between these problem
is depicted in Fig. 1. Please consider that a single point or two points connected via a
segment as a convex hull of area 0. Under such a assumption, it is always possible to
cover all white points with convex hulls.

Definition 1 Three different problems of finding WCPs are defined as follows:

– Totally disjoint convex covering (TDCC) In this problem WCPs are not allowed
to have common vertices and common area (Fig. 1a)

– Non-overlapping convex covering (NOCC) In this problem WCPs are not allowed
to have common area but are allowed to have common vertices (Fig. 1b).

– Convex covering with no restriction (CCR) In this problems WCPs are allowed to
have common vertices and common area (Fig. 1c)

As an application, consider a classical problem in communication and wireless
networks that is called “Finding White Space Regions” (See Ehsani et al. 2011). We
became familiar with this problem in the context of “Cognitive Radio”. This concept
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was conceived based on the FCC Task Force report in 2004 on the under-utilization
of the wireless radio environment. According to the report primary users did not use
their licensed spectrum from 15 to 85 % time. Therefore, these silence ranges in time
and frequency can be exploited by unlicensed users. The only point these users should
keep in mind is not to cause any kind of interference to primary users. Now consider a
primary network with fixed base stations that communicate occasionally in a licensed
band along with spatially random distributed spectrum sensing base stations of the
cognitive radio networks distributed in a large region. The goal is to find the largest
area in which no primary user transmission is detected. We call this area the white
space region or WSR for short. Then the cognitive radio users residing in the WSR
exploit the opportunity to transmit to their neighboring cognitive radio users. It is vital
for the cognitive radio that the total area which is covered by WSRs be as much as
possible because it would allow better transmission and better communication.

Among the three problems defined in Definition 1, CCR has the most straight
forward solution. In the following theorem, we prove that the CCR problem can be
solved in polynomial time via a trivial polynomial algorithm.

Theorem 1 CCR can be solved in polynomial time.

Proof It is enough to consider all the triangles with white vertices and no black point
residing in them and output their union. This union is the maximum area convex
covering. Since the number of possible triangles is polynomial

(≤(n
3

))
the total time

will be polynomial. ��
For the other two problems, a trivial approach is to greedily select the maximum area

WCP in each iteration (by Fischer 1993) and remove it. In this paper, we experimentally
show that the performance of this greedy algorithm is high i.e. the ratio of optimal
solution to the output of this algorithm is low (less than 2). We also construct instances
for which this ratio can be more than any large number that shows the low performance
of this algorithm in theory.

We prove the NP-hardness of NOCC and TDCC problems and finally, we propose

algorithms to find WCPs with total area of at least
(

O PT
2log(2n/O PT )+2log(n)

)1/4
and

3
√

3
4.π

(
O PT

log(2n/O PT )+2log(n)

)1/4
in NOCC and TDCC respectively (OPT is the area of

the optimal answer).

2 Non-overlapping convex covering (NOCC)

2.1 Studying the greedy method

In this subsection, we propose a greedy algorithm that leverages the result of Fischer
(1993) (finding the maximum area WCP). The algorithm chooses the WCP with the
maximum area in each iteration. The area of this WCP must not overlap with convex
polygons which will be chosen in successor iterations.

Assume that the convex polygon chosen in current iteration is C . We should elim-
inate the white points inside C and add some dummy black points to prevent next
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convex polygons to overlap C . Suppose that two white points A and B are outside or
on the boundary of C . Consider the segment connecting A and B. If this segment is
going through the interior of C then it can not be an edge of next iterations’ convex
polygons. We add a dummy black point on the AB segment inside C . At the end of this
iteration to prevent choosing C again, we add another dummy black point inside it.
This scenario adds only O(n2) points, so the number of the points remains polynomial.
Algorithm 1 describe the process in detail.

This greedy algorithm is not optimal since we prove the NP-hardness of the problem
(See Sect. 2.2). This algorithm performs very bad in worst case by a factor ofΩ(n) i.e.
there are instances in which the output of GreedyNOCC is at most O

( O PT
n

)
but by

experimental evaluations, we show the good performance of this algorithm in practice.

Algorithm 1 GreedyNOCC
Input: P: A set of white and black points.
Output: A set of non-overlapping WCPs.

1: C = maximum convex polygon of white points of P by the Fischer algorithm in Fischer (1993)
2: while The area of C is greater than 0 do
3: Remove all the white points inside C
4: for each pair (A, B) of white points which coincide on the outside or boundary of C do
5: if segment AB has intersection with C then
6: Add a dummy black point on AB which resides inside C .
7: end if
8: end for
9: Add a dummy black point inside C .
10: C = maximum convex polygon of white points of P .
11: end while
12: return all selected convex polygons

Theorem 2 There is an instance L of n points such that

O PT (L)

GreedyN OCC(L)
∈ Ω(n),

where GreedyN OCC(L) is the total area of output WCPs from our greedy algorithm
on the instance L and O PT (L) is the area of optimal answer.

Proof Consider a n-regular polygon C whose area is S and whose vertices are white.
Suppose that the vertices of C are a1, a2, . . . an . For each edge ai ai+1 of C consider
a segment di ei which is

– parallel with ai ai+1 and very close to it.
– inside C .
– shorter than ai ai+1.

Establish a triangle bi di ei with area of S − ε (See Fig. 2) . bi must be located outside
C for which none of the segments bi a j for 1 ≤ j ≤ n intersects di ei . Call the triangle
formed by vertices ai , bi and bi−1, Δi . We must insert some black points in the
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Fig. 2 Worst case example of GreedyNOCC

plane to prevent formation of the convex polygons which include vertices of different
triangles. For each triple (A, B,Δ) such that A, B ∈ {a1, . . . , an, b1, . . . , bn} and
Δ ∈ {Δ1, . . . , Δn}, if the segment AB intersects Δ we put a black point on AB and
inside Δ. We put a black point on each of the segments ai bi and ai+1bi for each i .

The GreedyNOCC algorithm picks C as the first convex polygon and then it can
not find any other convex polygon with area more than 0. Therefore the area of the
output of GreedyNOCC is S. However the optimal answer picks all the n triangles, so
O PT = n.(S − ε). Therefore

O PT (L)

GreedyN OCC(L)
= n.(S − ε)

S
∈ Ω(n).

��
We empirically experiment GreedyNOCC algorithm on seven different random

distributions of the points R AN1, R AN2, . . . , R AN7. The area of the optimal covering
is obtained via a simple backtrack algorithm. The results are shown in Table 1. The
first and second entries of row i contain the number of white and black points of R ANi

and the third entry shows the quotient of the output of GreedyNOCC divided by the
optimal solution of the NOCC problem for the input R ANi . All these ratios are more
than 0.5 which shows the good performance of this greedy algorithm dealing with
random inputs.

2.2 NP-hardness

In this subsection, we prove the NP-hardness of NOCC.
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Table 1 The output of
GreedyNOCC for 7 random test
data

Test data #White points #Black points GreedyNOCC/optimal

R AN1 10 3 0.54

R AN2 12 12 0.81

R AN3 16 10 0.78

R AN4 14 20 0.65

R AN5 15 16 0.51

R AN6 20 40 0.76

R AN7 20 20 0.81

Definition 2 Suppose that we are given a family of sets F = {S1, S2, . . . Sn}. An
Intersection Graph of these sets is a graph which has a vertex vi for each Si . There
is an edge between vi and v j if and only if Si

⋂
S j �= ∅. If Si s are line segments, the

intersection graph of these sets is called a Segment Intersection Graph.

The maximum independent set problem in the triangle-free planar graphs is NP-hard
(Madhavan 1984). We are reducing this NP-hard problem to NOCC. De Castro et
al. (2002) proved that every triangle-free planar graph has an equivalent intersection
graph. Their proof is constructive and their proposed construction process can be run
in polynomial time.

Lemma 1 (See De Castro et al. 2002) Every triangle-free planar graph is the inter-
section graph of a set of segments in three directions.

Finally in Theorem 3, we prove the NP-hardness of NOCC.

Theorem 3 NOCC is NP-hard.

Proof Suppose that we are given a triangle-free planar graph G whose maximum
independent set is I . By Lemma 1, we have an equivalent segment intersection graph,
H . Suppose that the segments contributed in building H are {s1, . . . , sn}.

We can w.l.o.g. assume no two segments have intersection at their endpoints, oth-
erwise we can make these segments a little longer.

Our approach forms a list of triangles whose intersection graph is as same as G. We
claim that there is an ε > 0 for which we can change each si to a triangle ti with area
ε such that for each j �= i , si intersects s j if and only if ti intersects t j . This approach
is depicted in Fig. 3.

To prove this claim, it is enough to consider all pair of points (A, B) where A
and B belong to different non-intersecting segments from {s1, . . . , sn}. Call the set
consisting all these pairs, P . Suppose that dmin = min(A,B)∈P {dA,B} where dA,B is
equal to the distance between A and B. Also suppose that lmin = min{|si |} where |si |
is equal to the length of segment si . Set ε0 = lmin .dmin

4 . Our claim is true for ε0, since it
is enough to put a point with distance 2ε0|si | from si and form a triangle with this newly
added point and endpoints of si .

The intersection graph of these triangles is G. Assume for reductio ad absurdum
reasoning, we have a polynomial time algorithm ALG N OCC for solving the NOCC
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Fig. 3 Forming an intersection graph of equal area triangles from an initial graph: a the initial graph G b
the segment intersection graph H constructed from G c the triangle intersection graph constructed from H

problem. Like the idea of Theorem 2, we can insert polynomial number of black points
to prevent ALG N OCC from choosing other convex polygons than our constructed
triangles (for each triple (A, B,Δ) in which A and B are two vertices of different
triangles and Δ is an area which is not included in any of the triangles, put a black
point on the segment AB and insideΔ). Now run ALG N OCC . Since we have assumed
that no two segments intersect at their endpoints, no two triangles would have common
vertices. Since we have inserted enough black points no convex polygon other than
ti s would be selected. Therefore since the area of all triangles are equal to ε0 and
ALG N OCC will choose maximum number of non-overlapping triangles, the output of
ALG N OCC will be |I |.ε0. So we can compute the size of the maximum independent
set of G in polynomial time which is a contradiction. ��

2.3 Approximation algorithm

As we proved, the NOCC problem is NP-hard and no polynomial time algorithm exists
for it unless P = N P . We propose an algorithm with an approximation for the optimal
answer as output.

Similarly, we use the idea of intersection graphs. First notice that w.l.o.g. we can
assume the answer of the NOCC problem is a set of triangles, because every polygon
can be triangulated. The triangles which contribute in the triangulation of a polygon
have common vertices and common edges. In our intersection graph, we connect
two triangles via an edge if and only if they have common area (in this setting two
triangles with common edge or common vertices but no common area are considered
independent) There are at most

(n
3

)
of these triangles not containing any black point.

As described above, construct the intersection graph of these triangles and call it G
. For each vertex of G define a weight equal to the area of its associated triangle. In
this model, the optimal answer of the NOCC problem will be the maximum weighted
independent set of G.

Agarwal and Mustafa (2006) proposed an approximation algorithm for finding an

independent set of size at least
(

α
2log(2n/α)

)1/3
in the intersection graph of a set of

convex polygons (α is the size of maximum independent set). In this paper, we use
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their method to develop an approximation algorithm for the NOCC problem. There is
a big difference between our problem and theirs; In our setting polygons (triangles)
are weighted, but in theirs polygons are not weighted.

Lemma 2 w.l.o.g. we can assume all the triangles have an area more than one.

Proof Since we can use a homothety from a random center point and scale every thing
up until the area of all the triangles is more than one. It doesn’t violate anything but
helps us in developing our algorithm. ��
Lemma 3 Given a set I of weighted objects with weights greaters than 1 (i.e. for each
x ∈ I we have w(x) ≥ 1) and a partially ordering 
 over the members of I . Define
S = ∑

x∈I w(x). Then a chain or an antichain of the I ’s members with total weight
greater than

√
S exists.

Proof Suppose that the maximum cardinality antichain has less than
√

S members.
From the Dilworth’s theorem (Dilworth 1950) the maximum number of chains which
partition I is less than

√
S. This means one of these anti chains has total weight greater

than S√
S

= √
S. ��

Give a vertical line l, some of the triangles intersect with l. Others reside wholly in
the left or in the right of that line. Suppose that the number of these triangles is le f t (l)
and right (l) respectively. First we must find a line L for which |le f t (L)− right (L)| is
minimized. Name the set of triangles which intersect L ,ΔL . Also suppose O PT (ΔL)

is the total area of the triangles of maximum weighted independent set of ΔL . For a
si ∈ ΔL define r(si ) (resp. l(si )) to be the smallest (largest) x-coordinate of all the
points p ∈ si . Also define c(si ) to be the maximum y-coordinate of the intersection
of si with the L . The following lemma is extracted with minor changes from Agarwal
and Mustafa (2006).

Lemma 4 There exists a sequence I =< si1, si2 , ..., sim > of the members of ΔL

where
∑m

j=1w(si j ) ≥ ∣∣∑
x∈ΔL

w(x)
∣∣1/4

such that w(x) is the area of the triangle x
and I has one of the following structures:

(C1) r(si j ) < r(si j+1) and c(si j ) < c(si j+1).
(C2) r(si j ) < r(si j+1) and c(si j ) > c(si j+1).
(C3) r(si j ) > r(si j+1).

Proof We apply Lemma 3 two times one for the partially order defined by C1 and one
for C2. The first proves the existence of a sequence of length at least

∣∣∑
x∈ΔL

w(x)
∣∣1/2.

The second proves the existence of a sequence of length at least
∣∣∑

x∈ΔL
w(x)

∣∣1/4

among the members of the first sequence. ��
For each Ci , 1 ≤ i ≤ 3, we should compute the sequence with maximum total

area which satisfies Ci . This can be done by a dynamic programming technique. For
example we construct a dynamic algorithm for computing the answer for structure C3.
Suppose that members of ΔL are s1, . . . , sp. First sort these members with respect to
c(si ). Then we have c(s1) ≤ c(s2) ≤ . . . ≤ c(sp). Consider i, j such that si ∩ s j = ∅
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Algorithm 2 ApproxNOCC
Input: Δ: a set of triangles
Output: An approximation for NOCC

1: Find the line L which divides Δ into two almost equal cardinality sets.
2: ΔL = all the triangles intersect L .
3: Δle f t = all the triangles wholly reside in the left of L .
4: Δright = all the triangles wholly reside in the right of L .
5: Compute ζ(O PT (ΔL )) via the dynamic programming algorithm.
6: return max{Approx N OCC(Δle f t )+ Approx N OCC(Δright ), ζ(O PT (ΔL )}.

and i ≤ j , define φ(i, j) to be the size of the maximum total area sequence from the
set {si , si+1, . . . , s j } which satisfies C3. Then φ(i, j) is

max i≤k≤ j
sk∩si =∅
sk∩s j =∅

φ(i, k − 1)+ φ(k + 1, j)+ w(sk).

We do the same computations for the structures C1 and C2. Call the answers ϕ(i, j)
and ψ(i, j). The computation of the return value (ζ(O PT (ΔL))) will be completed
by setting

ζ(O PT (ΔL)) = max {φ(1, p), ϕ(1, p), ψ(1, p)} ≥
∣∣∣∣∣∣
∑

x∈ΔL

w(x)

∣∣∣∣∣∣

1/4

≥ O PT (ΔL)
1/4.

Now, we can continue with the recursive algorithm proposed by Agarwal and
Mustafa (2006). This algorithm computes ζ(O PT (ΔL)), then recursively finds the
maximum weighted independent set of triangles which wholly reside on the left or
right side of L returning the maximum of these two answers. Algorithm 2 explains
the details.

Suppose that the output of the ApproxNOCC algorithm is μ(t, O PT ) (t is the
number of triangles and OPT is the optimal answer of the NOCC problem). From the
structure of our algorithm, we know

μ(t, O PT ) ≥ max{μ(tL , O PTL)+ μ(tR, O PTR), ζ(O PT (ΔL))},

where tL = |Δle f t |, tR = |Δright | and O PTL and O PTR are the optimal answer for
the triangles in Δle f t and Δright . This recursive relation has been solved by Agarwal
and Mustafa (2006) and a lower bound has been computed for μ(t, O PT ) that is

μ(t, O PT ) ≥ ζ

(
O PT

2log(2t/O PT )

)
.

So we have
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μ(t, O PT ) ≥
∣∣∣∣

O PT

2log(2t/O PT )

∣∣∣∣
1/4

≥
∣∣∣∣

O PT

2log(2n/O PT )+ 2log(n)

∣∣∣∣
1/4

.

The last inequality is resulted from t ≤ (n
3

)
.

Theorem 4 For a given set of n black and white points, if the optimal answer of the
NOCC problem is O PT , there is an approximation algorithm whose output is at least∣∣∣ O PT

2log(2n/O PT )+2log(n)

∣∣∣
1/4

.

3 Totally disjoint convex covering (TDCC)

3.1 Greedy method

Similar to the GreedyNOCC Algorithm 2.1, we can propose a greedy method for
solving the TDCC problem. The details of the algorithm GreedyTDCC is shown in
Algorithm 3. The minor difference between these two algorithms is Line 4 in which
we change the color of the selected polygon in order to prevent future convex polygons
to have any intersection with its boundaries.

Algorithm 3 GreedyTDCC
Input: P: A set of white and black points.
Output: A set of non-overlapping WCPs.

1: C = maximum convex polygon of white points of P by the Fischer algorithm in Fischer (1993)
2: while The area of C is greater than 0 do
3: Remove all the white points inside C
4: Change the color of C’s vertices from white to black
5: for each pair (A, B) of points which coincide on the outside or boundary of C do
6: if segment AB has intersection with C then
7: Add a dummy black point on AB which resides inside C .
8: end if
9: end for
10: Add a dummy black point inside C .
11: C = maximum convex polygon of white points of P .
12: end while
13: return all selected convex polygons

Like GreedyNOCC, GreedyTDCC works well in practice but there are instances
for which the ratio of this algorithm’s output to the optimal answer is lower than any
small number. Theorem 5 explains this fact.

Theorem 5 There exists an instance L of n points such that

O PT (L)

GreedyT DCC(L)
∈ Ω(n),

where GreedyT DCC(L) is the total area of output WCPs from our greedy algorithm
on the instance L and O PT (L) is the area of optimal answer.
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Fig. 4 Worst case example of GreedyTDCC

Proof The proof is very similar to the proof of Theorem 2. Figure 4 illustrates an
instance of TDCC. Since bi can not see any of a j s other than ai and ai+1, the only
probable convex polygons are triangles with area of S − ε and n-regular polygon with
area of S. The GreedyTDCC algorithm chooses C as the first convex polygon and
stops since no more convex polygon with area more than 0 exists. Therefore the area
of the output of GreedyTDCC is S, however the optimal answer is n

2 disjoint triangles
chosen from n perimeter triangles i.e. O PT = n

2 (S − ε). Hence:

O PT (L)

GreedyT DCC(L)
=

n
2 · (S − ε)

S
∈ Ω(n).

��
Table 2 illustrates the results of an empirical experiment of GreedyTDCC on 7

different random test cases R AN1 . . . R AN7. The first and second entries of the i th
row are the number of white and black points of R ANi . The third column contains the
ratio of GreedyTDCC’s output’s area to the area of the optimal answer for each test
case.

3.2 NP hardness

Like the NOCC problem, the TDCC problem is NP-hard. The proof is similar to the
proof of Theorem 3.

Theorem 6 The TDCC problem is NP-hard.
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Table 2 The output of
GreedyTDCC for 7 random test
data

Test data #White points #Black points GreedyTDCC/optimal

R AN1 10 3 0.60

R AN2 12 12 0.96

R AN3 16 10 0.97

R AN4 14 20 0.70

R AN5 15 16 0.52

R AN6 20 40 0.73

R AN7 20 20 0.52

3.3 Approximation algorithm

Similar to Algorithm 2, we take all t ≤ (n
3

)
triangles containing no black point and

make the intersection graph out of these triangles. However, unlike the ApproxNOCC
problem, for this problem we assume two triangles with a common vertex are con-
nected. Again we find a set of totally-disjoint triangles with maximum total sum and
show that this action does not seriously affect the output of ApproxNOCC. Theorem 7
states this idea formally:

Theorem 7 For a given set of n black and white points, if the optimal answer of the
TDCC problem is O PT , there is an approximation algorithm whose output’s area is

at least 3
√

3
4π

∣∣∣ O PT
2log(2n/O PT )+2log(n)

∣∣∣
1/4

.

Proof Let B be a compact convex body in the plane and Bk be a largest area k-gon
inscribed in B. From Sas (1941) it is known that area(Bk) ≥ area(B) · k

2π sin 2π
k ,

where equality holds if and only if B is an ellipse. Assuming k = 3, we can deduce
that every convex polygon B has an inscribed triangle with the area greater than or

equal to 3
√

3
4π area(B).

Consider the optimal convex polygons for the TDCC problem. If we replace each
of the convex polygons in this solution with its maximum inscribed triangle, we have

another convex covering with area more than 3
√

3
4π .O PT only consists of triangles as

depicted in Figure 5. With this perspective, like the ApproxNOCC algorithm, we can
find the maximum weighted independent set of the intersection graph formed by the
black point free triangles and be determined that its answer will have area more than
3
√

3
4π

∣∣∣ O PT
2log(2n/O PT )+2log(n)

∣∣∣
1/4

. ��

4 Conclusion and further works

A good motivation to continue our work is to find better approximation algorithms
or inapproximability results for the independent set of intersection graphs of convex
shapes with maximum area, specially for the triangles. These results will help us
to propose better approximation algorithms for the problems of this paper. Moreover,
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Fig. 5 Optmial convex covering
for the TDCC problem and
replacing each convex polygon
with its maximum inscribed
triangle

another types of problems can be proposed in this context. For example we can consider
the weighted version of this problem in which black points have weights. We want to
find a convex covering which maximizes the sum of the areas and the total weight of
the black points covered by one convex is less than a given number W .
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