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Abstract 
 

Scoring rules are common methods for incentivizing experts to present the opinions consistent with their beliefs.  Information markets such as 

prediction markets and decision markets use scoring rules for eliciting the most accurate predictions experts can make. In these markets, experts 

are invited to buy and sell contracts, according to which they will be paid if their prediction about a future uncertain event is true. The final 

trading prices can be interpreted as an aggregation of their prediction for an uncertain future event. 

In this paper, we propose new mechanisms (prediction oriented and decision oriented) for predicting the value of uncertain continuous variables 

in the future. These mechanisms in their basic form, are scoring rules with a new paradigm. This paper also includes the results of performing 

a case study (a prediction oriented mechanism) for predicting the outcome of the 11th presidential election of Iran in 2013 to analyze the 

performance of our model. Besides the fact that the mechanism's average absolute error in predicting nominees' percentages was low, about 

6.53%, it also predicted the final outcome order of all nominees correctly. 
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1 Introduction 
One of the important aspects of the decision making process 

in many contexts is to predict the future. Future prediction is 

a difficult task especially when human participants are 

involved, as the number of affecting parameters in these 

environments is very high. A common approach to confront 

this issue is to extract the relevant information from 

environment experts and then aggregate this information in 

order to provide a collective prediction. 

In such contexts, a general approach is to invite a set of 

opinionators in order to capture their predictions about the 

future and aggregate these opinions into a final prediction. 

Hanson [1], did a comprehensive study on all information 

elicitation and aggregation mechanisms which were proposed 

before, and classified them into two broad categories: 

"Scoring Rules" and "Information Markets" (or "Prediction 

Markets"). He also introduced a new category "Market 

Scoring Rule" that is a combination of scoring rules and 

information markets. In Section 2, we will explain these 

mechanisms with details. 

 

Hanson [2] introduced a manipulated version of information 

markets which he called "Decision Markets" in order to 

directly predict the consequences of decision makers' taken 

decisions. Hanson's seminal paper initiated the idea of using 

prediction mechanisms in decision making where opinions are 

conditional predictions if different decisions are made. 

All studies in this area including different scoring rules, 

information markets and market scoring rules, are centered 

around predicting occurrence probabilities for a set of discrete 

outcomes [1-12]. In this paper new models are introduced to 

predict the expected value of a continuous variable in future 

such as net value profit, based on the models and methods used 

in the literature. The predictions of experts are elicited in 

templates like "the net profit value will be x", in which x is an 

amount in the acceptable range of the net profit value. In this 

paper, both prediction and decision mechanisms are 

discussed.  

One may say that since this prediction task can be interpreted 

as predicting the occurrence probability of infinite number of 

outcomes, previous methods can be applied. The difference is, 

there is an order between outcomes when we are predicting 

the value of a future continuous variable. For example if 
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someone predicts that the net profit value of the project will 

be 100, her benefit should differ when the observed value 

becomes 120 or 200. In our model this property is modeled by 

the "Validity" feature. 

We prove that trivial scoring rules such as negative absolute 

error can be applied for such predictions as a truthful and valid 

mechanism. As a case study we ran a game base on these 

trivial scoring functions to predict the results of Islamic 

Republic of Iran's 11th presidential election. This game 

predicted the outcome order of nominees correctly and its 

average absolute error for nominees' vote shares was low 

about 6.5%. We also show that trivial scoring functions are 

not truthful in decision contexts. Finally, we derive some 

properties of truthful scoring functions which can be used in 

decision contexts and propose a truthful scoring rule for such 

contexts . 

This paper is organized as follows. In Section 2, "Scoring 

Rules", "Information Markets" and "Market Scoring Rule" 

mechanisms are formally described and their related literature 

is reviewed. In Section 3, our theoretical and experimental 

results are expressed. 

 

2 Notation & Background 
In this section, we will explain mechanisms used for gathering 

true information from our team of opinionators. These 

mechanisms are categorized into three main classes "Scoring 

Rules", "Information Markets" and "Market Scoring Rules". 

Each of these mechanisms can be used in prediction or 

decision contexts. Table 1 consists of an overview of the 

seminal works in these areas. 

Table 1: Different methods used for prediction and decision 

Decision Prediction  

Method Used in 

[7] 

Square Score Function 

[13], Logarithmic 

Score Function [10] 

Scoring 

Rules 

Decision Market 

[2] 

Prediction Markets & 

Conditional Prediction 

Markets 

[4],[14],[15],[16] 

Information 

Markets 

Decision Market 

Scoring Rule [1] 

Prediction Market 

Scoring Rule [1] 

Market 

Scoring 

Rules 

 

2.1 Scoring Rule 

The purpose of scoring rule based mechanisms is to predict 

the probability of occurrence for a set of outcomes 𝑂 =
{𝑜1, 𝑜2, . . . , 𝑜𝑛} , which are finite, mutually exclusive and 

covering i.e. these outcomes divide event space into n 

partitions. More formally, 

∀𝑖,𝑗∈{1,2,…,𝑛},𝑖≠𝑗: 𝑝(𝑜𝑖⋀𝑜𝑗) = 0 

𝑝(𝑜1 ∨ 𝑜2 ∨ … ∨ 𝑜𝑛) = 1, 
When 𝑝(𝑥 ∧ 𝑦) is the probability of occurring both x and y, 

and 𝑝(𝑥 ∨ 𝑦) is the probability of that at least one of them will 

occur. One of these outcomes will occur and we will name it 

𝑜∗. 

These mechanisms are used in many contexts such as 

economics [17], weather [18], risk analysis [19], and 

intelligent computer systems engineering [20] for prediction 

tasks. 

Let Δ(𝑂) be the set of all possible probability distributions on 

members of O. For instance < 𝑝1 , 𝑝2, … , 𝑝𝑛 >  can be a 

member of Δ(𝑂) , if ∑ 𝑝𝑖𝑖 = 1  and ∀𝑖: 𝑝𝑖 > 0 . Each 

participant has a prediction P consistent with her belief which 

is a vector with n components. The participant believes that 

the probability of occurrence of 𝑜𝑖  is 𝑃𝑖 . Assume that she 

reports her belief with another n-components vector r which is 

not necessarily equal to P. 

Scoring rules are devised to incentivize participants to report 

truthful predictions. A scoring rule 𝑠: 𝑂 × Δ(𝑂) →  ℝ  is a 

function of 𝑜∗ and r which maps them to a real number. So 

each participant's score can be calculated after observing the 

future. 

The participant's expectation of her score by reporting r is 

denoted by U(r) which is 

𝑈(𝑟) =  ∑ 𝑃𝑖 × 𝑠(𝑜𝑖 , 𝑟)
𝑛

𝑖=1
 

Regularity and properness of scoring functions show their 

correctness and truthfulness [6], [7]. A scoring function is 

regular if it maps a participant's report to −∞  only if she 

reports the occurrence probability of observed outcome 𝑜𝑖  to 

zero, that is, 

𝑠(𝑜𝑖 , 𝑟) =  −∞ ⇒ 𝑟𝑖 = 0 

A proper scoring function won't incentivize a participant to 

report a prediction inconsistent with her belief. In other words, 

a scoring function is proper if there is no report which gets 

more expected score than the participant's true prediction. So 

if s is proper, we have, 

∀𝑟∈Δ(𝑂)𝑈(𝑃) ≥ 𝑈(𝑟). 

A scoring function is strictly proper if it incentivizes 

participants to report a prediction consistent with their belief. 

In other words, using a strictly proper scoring rule, the 

participant's expected score has the maximum value only if the 

reported value is declared truthfully. s is strictly proper, if the 

inequality stated in the above condition is strict unless P=r. 

Two basic classes of scoring rules are square and logarithmic 

scores. Square scoring rules are defined in [13]: 

𝑠(𝑜𝑖 , 𝑟) = 𝑎𝑖 + 𝑏(2𝑟𝑖 − ∑ 𝑟𝑖
2) 

Good [10] introduced logarithmic scoring rules: 

𝑠(𝑜𝑖 , 𝑟) = 𝑎𝑖 + 𝑏 log (𝑟𝑖) 

Binary predictions are prediction tasks in which the set of 

outcomes O, has only two members such as success and 

failure. In a scoring rule mechanism for binary prediction 

tasks, participants need to predict the probability of just one 

outcome, for example success. 

As Winkler [11], [12] defined, binary prediction scoring rule 

mechanisms consist of two functions 𝑓, 𝑔: (0,1) →  ℝ$ for 

which 𝑓(𝑝) and 𝑔(𝑝) show the participant's score if success 

or failure happen respectively. 

Logarithmic and square scoring rule can be used in binary 

predictions. For example in below equations, the first is a 

binary form of logarithmic scoring rule and the second is a 

binary form of square scoring rule. 

𝑓(𝑝) = 1 − (1 − 𝑝)2  , 𝑔(𝑝) = 1 − 𝑝2 
𝑓(𝑝) = 𝑙𝑜𝑔(𝑝)  , 𝑔(𝑝) = 𝑙𝑜𝑔(1 − 𝑝)  

After eliciting all participants' predictions, their reported 

values should be aggregated into one final prediction. 

Averaging is the most common and easiest way, but Hanson 

[1] expressed its deficiencies and counted the problem of 

finding a good aggregation method as the flaw of scoring rule 

mechanisms. 
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In decision contexts, we have a set of actions 𝐴 =
{𝑎1, 𝑎2, . . . 𝑎𝑚 } $ the goal is to predict the probability of 

different outcomes if each of these actions are taken. So each 

participant has a belief 𝑃 ∈ Δ(𝑂)𝑚 and expresses a report 𝑟 ∈

Δ(𝑂)𝑚 . 𝑃𝑖
𝑗

 and 𝑟𝑖
𝑗

 represent occurrence probabilities of 𝑜𝑖  

with the precondition of choosing 𝑎𝑗, in the participant's belief 

and report respectively. 
After gathering all reports they will be aggregated to one final 

prediction 𝐵 ∈ Δ(𝑂)𝑚 . Using B, we will choose one of the 

actions to take. "Decision Rule" is a function which shows 

how to choose an action using B. Decision rules can be divided 

in two types, deterministic decision rules and stochastic ones. 

Deterministic decision rules map B to exactly one of the 

actions, but stochastic ones (which are also called randomized 

decision rules) determine a probability distribution on the 

action set, so we choose an action randomly according to that 

probability distribution. 

A deterministic decision rule 𝐷: Δ(𝑂)𝑚 →  𝐴 is a function that 

maps the aggregated report to one of the possible actions. 

Deterministic rules are a specific type of stochastic rules. 

Othman [7] explained that a decision context prediction 

mechanism is Independent of Irrelevant Alternatives (IIA) if 

the expected score depends only on the prediction of the 

chosen action. More formally in an IIA mechanism, for all 

𝑞, 𝑟 ∈ Δ(𝑂)𝑚 , if 𝐷(𝑞) = 𝐷(𝑟) = 𝑎𝑖  and 𝑞𝑖  =  𝑟𝑖 , we have 

𝑈(𝑞)  =  𝑈(𝑟). 

Since a truthful mechanism with a deterministic decision rule 

has to be IIA [7], in such mechanisms the scoring function  

𝑆: 𝑂 × Δ(𝑂) → ℝ   (which is also called "Decision Score 

Function") maps observed outcome and the reported 

prediction on the condition of choosing the selected action 𝑎_𝑠 

to a real number. 

Binary mechanisms are also studied in the decision context. 

For example Chen [21] proposed the following pair of strictly 

proper scoring and stochastic decision rules: 

𝑓(𝑎𝑠, 𝑟, 𝑑) = ∑ 2𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑗

 −  𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑗 2

𝑗 , 

𝑔(𝑎𝑠, 𝑟, 𝑑) =  − ∑ 𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑗 2

𝑗

 

𝐷𝑖(𝐵) =
𝐵𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑖

∑ 𝐵𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑗

𝑗

 

Othman and Sandholm [7] focused on the Max decision rule 

in binary decision mechanisms. Max chooses the action with 

the maximum predicted success probability. They showed that 

symmetric scoring rules can't fulfill truthfulness besides the 

Max decision rule. Symmetric scoring rules are a pair of 

functions f and g in which: 

𝑓(𝑝) = 𝑔(1 − 𝑝). 

It is shown that logarithmic and square scoring rules are 

symmetric [12]. 

Another category of binary scoring rules is the category of 

asymmetric rules which are proposed by Winkler [12]. 

Othman and Sandholm [7] proposed an asymmetric scoring 

rule which fulfills truthfulness when used with the Max 

decision rule. 

2.2 Information Markets 

Prediction markets are quantitative and normative 

mechanisms to aggregate experts' opinions [22]. In this 

approach a market is designed in which participants are 

invited to buy and sell contracts, according to which they will 

be paid if their prediction about a future uncertain event is true. 

Finally, the market's trading prices can be interpreted as a 

collective prediction for that event  . 

A prediction market can be held with three kinds of contracts 

"Winner Takes all", "Index" and "Spread" [3] whose details 

can be found in Table 2. 

Table 2: Different types of prediction markets 

 Contract Form What Market Predicts 

Winner 

Takes 

All 

Pays 1$ if o occurs 

The final trading prices 

of contracts predict the 

occurrence probability 

of o 

Index 

Pays x$ if the 

actual value of 

variable o becomes 

x ( 0 ≤ 𝑥 ≤ 1) 

The final trading prices 

of contracts predict the 

mean value of o 

Spread 
Pays 2$ if 𝑜 ≥ 𝑥. 

Contract prices are 

fixed to 1$. 

The amount of x predicts 

the median value for x. 

 

Markets with "Winner Takes All" contract are studied more 

than other markets in the literature. The main goal of these 

markets is to predict the probability distribution of a future 

event. For example in a football match market participants 

express three probabilities for the three possible outcomes of 

the match (win, lose or draw). Prediction markets are proved 

to be efficient mechanisms for predicting results of elections 

[4], sport matches [5] and total gross of Hollywood movies 

[23]. 

There are a couple of studies on the truthfulness of these 

markets and their applications [3], [4], [6], [7], [8], [14], [24]. 

Plott [16] showed that these markets can elicit information 

distributed between experts and then showed that they can also 

be used in situations in which we need to elicit and gather 

information from specific experts. Hanson [15] introduced the 

use of these markets in politics and elections. He then 

introduced new ways in which these markets can be useful. 

Hanson [2] proposed a new kind of information market which 

he called "Decision Markets" in order to directly predict the 

consequences of decision makers' taken decisions. Hanson's 

idea was to define these markets as a set of conditional 

prediction markets, one for each possible decision. Othman 

and Sandholm [7] further represent the difference of a 

conditional prediction market with a decision market by two 

words, "Camera" and "Engine". A conditional prediction 

market is just an effort to predict the occurrence probability of 

a set of outcomes on condition of the occurrence of one 

member of a set of events. So it's just like a camera with no 

effect on the future events, although it tries to predict the 

future. But a mechanism in decision context is like an engine. 

The prediction which resulted in this approach will affect 

which event will occur (which decision to be take) . 

Berg and Rietz [24] proved the ability of information markets 

to be used as decision support systems. They discuss this 

ability with a famous prediction market which was held 1996 

by Iowa Electronic Market (IEM).  

2.3 Market Scoring Rule 

Hanson [1] introduced a new category "Market Scoring Rule" 

that is a combination of scoring rules and information markets. 
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Chen [6] modeled market scoring rules as a sequential game 

with definite number of turns . 

According to his model, each turn one of the participants 

reports her prediction and changes the aggregated prediction 

by her reported opinion. After observing the actual outcome 

she gets the difference she made in the score of aggregated 

prediction. She will earn up if she enhances the score of 

aggregated prediction and she will incur losses otherwise. 

Hanson [1] reformed this game to a market by proposing 

"Pricing Rule" which is the inverse of a score function. In this 

market all participants will buy contracts from market 

organizers and sell contracts to them. The price of each trade 

will be specified by pricing rules. 

Othman and Sandholm [7] showed that market scoring rule 

mechanisms in a decision context with deterministic decision 

rules cannot be truthful. They showed that for any 

deterministic decision rule and any scoring rule, there can be 

states that a participant gets higher expected scores by telling 

a lie, and after these misinforming reports, no one will be 

incentivized to repair the market's aggregated report. 

In some studies like [8], [9], [21] outside cost or benefit was 

analyzed, such as a payoff from outside the prediction 

mechanism to practitioners to make them report untruthfully. 

In this paper, we assume that there is no outside cost or benefit. 

 

3 Results 

3.1 Theoretical Results 

Assume that X is the target random variable which can take 

continuous bounded values. X has a probability distribution.  

Without loss of generality we can assume that 𝑋 ∈  [0,1] 
which is shown by 𝑅∗ throughout this paper. Each participant 

has a notion about the PDF1 of X and her goal is to predict its 

outcome of X by reporting its expected value. Let 𝑋𝑝 be the 

notion of the participant about X and 𝑓𝑋𝑝
(𝑡) be its probability 

distribution. Define 𝑟 ∈  𝑅∗  to be the reported value of this 

participant. If r is truthful, we should have 𝑟 = 𝐸{𝑋𝑝}. 

The score of all reports will be calculated after game finished 

and the real value of X is observed. We define 𝑜 ∈  𝑅∗ to be 

observed value of X. Here we have a score function 𝑠: 𝑅∗ ×
 𝑅∗ → ℝ for calculating scores from o and r. Each participant 

has an expectation of her score which is: 

𝑈(𝑟) = ∫ 𝑓𝑋𝑝
(𝑡)𝑠(𝑡, 𝑟)𝑑𝑡

𝑅∗
 

We define a new feature, validity, for score functions. Validity 

refers to the fact that our outcomes are ordered. For instance 

if one had a closer prediction to the observed value than 

another’s prediction, her report should gain a higher score. A 

score function is valid if it is strictly descending in $|r-o|$. For 

a valid scoring function $s$, we have: 

∀𝑟1,𝑟2∈𝑅∗  ∶  |𝑟1 − 𝑜| >  |𝑟2 − 𝑜| ⇒  𝑠(𝑜, 𝑟1)  <  𝑠(𝑜, 𝑟2) 

The score function s is proper, if it does not incentivize 

participants to present a false report on the expected value. It 

is strictly proper, if it incentivize them to report 𝐸{𝑋𝑝} . 

Formally our score function is proper, if for all 𝑟 ∈  𝑅∗: 

𝑈(𝐸{𝑋𝑝}) ≥  𝑈(𝑟) 

or 

                                                 
1 Probability Distribution Function 

∫ 𝑓𝑋𝑝
(𝑡)𝑠(𝑡, 𝐸{𝑋𝑝})𝑑𝑡 ≥ ∫ 𝑓𝑋𝑝

(𝑡)𝑠(𝑡, 𝑟)𝑑𝑡  

and if the equality happens only for 𝑟 = 𝐸{𝑋𝑝} , the score 

function is strictly proper. 

First, we consider simple observations about the validity and 

properness of two trivial and common scoring functions 

"Negative Absolute Error" and "Square". Negative absolute 

error is defined as follows: 

𝑠(𝑜, 𝑟) =  −|𝑟 − 𝑜|. 
Observation 1: Negative absolute error is a valid and strictly 

proper score function. 

Proof: We have: 

|𝑟1 − 𝑜| > |𝑟2 − 𝑜| ⇒  −|𝑟1 − 𝑜| < −|𝑟2 − 𝑜|, 
So, negative absolute error score function is valid. 

The expected score for a participant is: 

𝑈(𝑟) = ∫ 𝑓𝑋𝑝
(𝑡)𝑠(𝑡, 𝑟)𝑑𝑡

𝑅∗
 

=  ∫ 𝑓𝑋𝑝
(𝑡)(−|𝑟 − 𝑜|)𝑑𝑡

𝑅∗
 

=  −(∫ 𝑓𝑋𝑝
(𝑡)|𝑟 − 𝑜|𝑑𝑡

𝑅∗
) 

Since the result of the final integral is equal or greater than 

zero, 𝑚𝑎𝑥𝑈(𝑟) is zero. 𝑈(𝑟) has its biggest value when |𝑟 −

𝑜| = 0 or 𝑟 = 𝑜. □ 

Square scoring function is defined as: 

𝑠(𝑜, 𝑟) = −(𝑜 − 𝑟)2. 
Observation 2: Square score function is a valid and strictly 

proper score function. 

For proving validity, we have: 

|𝑟1 − 𝑜| > |𝑟2 − 0| ⇒  (𝑟1 − 𝑜)2 > (𝑟2 − 𝑜)2 ⇒ 

 −(𝑟1 − 𝑜)2 < −(𝑟2 − 𝑜)2. 
So it is valid. To discuss being strictly proper, we should 

calculate 𝑈(𝑟): 

𝑈(𝑟) = ∫ 𝑓𝑋𝑝
(𝑡)(−(𝑡 − 𝑟)2)𝑑𝑡

=  −(∫ {𝑡2 𝑓𝑋𝑝
(𝑡)𝑑𝑡}   +  𝑟^2 

− 2𝑟𝐸{𝑋𝑝}). 

Thus, we have: 
𝑑

𝑑𝑟
𝑈(𝑟) = −2𝑟 − 𝑟𝐸{𝑋𝑝} = 0 ⇒  𝑟 = 𝐸{𝑋𝑝}. 

Since 𝑈(𝑟) is concave, the participant will have her higher 

expected score only when she reports the truth. 

We will show the performance of trivial scoring functions in 

predicting a continuous future variable by running a case study 

(See Subsection 3.2 for more details). Now let’s switch to 

decision contexts. In decision contexts, proper and strictly 

proper refers to a pair of a score function and a decision rule. 

Consider the set of possible actions 𝐴 =  {𝑎1, 𝑎2, . . . , 𝑎𝑚}. We 

represent the variable X in the case of choosing 𝑎𝑖 by 𝑋𝑖. Each 

participant has a belief about X which is shown by 𝑋𝑃 . 𝑋𝑃
𝑖  

means the belief of the participant about X in case of choosing 

𝑎𝑖 . In other word each participant estimates m PDFs 

like𝑓
𝑋𝑃

𝑖 (𝑡). They will report 𝑟 ∈  𝑅∗𝑚
 and it is truthful when: 

∀1≤ 𝑖≤ 𝑚 𝑟𝑖 = 𝐸{𝑋𝑃
𝑖 } 

After information gathering finishes, we will aggregate 

participants’ reports to a final report 𝑏 ∈  𝑅∗𝑚
. Decision rules 
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will choose one of actions from b. Decision rules can be 

deterministic (𝐷: 𝑅∗𝑚 →  𝐴) or stochastic (𝐷: 𝑅∗𝑚 → Δ(𝐴)) . 

Let 𝑎𝑠  be the selected action. The score of a report will be 

calculated after observing the actual value of X which we 

show by 𝑜 ∈  𝑅∗. So the scoring function 𝑆: 𝑅∗ ×  𝑅∗ →  ℝ$ is 

a function of o and 𝑟𝑠. The participant expected score can be 

computed as the following: 

𝑈(𝑟) = ∫ 𝑓
𝑋𝑃

𝐷(𝑟)(𝑡) 𝑆(𝑡, 𝑟𝐷(𝑟)) 𝑑𝑡
𝑅∗

. 

Othman and Sandholm [7] proved that in predicting the 

occurrence probabilities of a set of discrete outcomes, there is 

no strictly proper scoring rules for a mechanism with a 

deterministic decision rule. Theorem 1 proves a similar result 

for mechanisms for predicting continuous variables. 

 

Theorem 1: There is no strictly proper scoring rule for a 

mechanism for predicting continuous variables with a 

deterministic decision rule. 

Proof: Suppose r1, r2 ∈  R∗  are two different reports such 

that: 

D(r1) = D(r2) = as, r1
s = r2

s  

The expected score for these reports are 

𝑈(𝑟1) = ∫ 𝑓𝑋𝑃
𝑠 (𝑡) 𝑆(𝑡, 𝑟1

𝑠) 𝑑𝑡
𝑅∗

  

and 

𝑈(𝑟2) = ∫ 𝑓𝑋𝑃
𝑠 (𝑡) 𝑆(𝑡, 𝑟2

𝑠) 𝑑𝑡
𝑅∗

  

One can see that since 𝑟1
𝑠  =  𝑟2

𝑠 , for each 𝑡 ∈  𝑅∗, we have 

𝑆(𝑡, 𝑟1
𝑠)  =  𝑆(𝑡, 𝑟2

𝑠). Thus 𝑈(𝑟1)  =  𝑈(𝑟2), so we may have 

two different reports (and one of them is necessarily a false 

one) that have equal expected score. □ 

Othman and Sandholm defined another feature named quasi-

strictly proper. <D, S> is quasi-strictly proper if the most 

expected score is for the case that a participant has reported 

truthfully for the action which will be selected based on her 

report, and she doesn't misreport in a way that the selected 

action changes. In our formalism, if <D, S> is quasi-strictly 

proper, U is the expected score based on S and 𝑟∗ ∈  𝑅∗ is a 

truthful report, we have: 

∀𝑟∈𝑅∗  𝑈(𝑟∗) ≥  𝑈(𝑟) 
And the equality happens only when 

𝐷(𝑟) = 𝐷(𝑟∗) = 𝑎𝑠 

And  

𝑟𝑠 = 𝑟∗𝑠
 

Our next result (Theorem 2) is about deriving sufficient 

conditions for the possibility of designing quasi-strictly 

mechanisms with one of the most important deterministic 

decision rules which is called the max rule. Max rule (𝐷𝑀𝐴𝑋) 

can be defined formally as follows: 

𝑑𝑚𝑎𝑥(𝑏)  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝑏
𝑖 

𝐷𝑀𝐴𝑋(𝑏)  =  𝑎𝑑𝑚𝑎𝑥(𝑏) 

This rule is a common one. As an example consider a case 

when we choose an action with maximum benefit. 

  

Theorem 2: Following conditions are sufficient for an IIA 

mechanism <𝐷𝑀𝐴𝑋, S> to be quasi-strictly proper. 

1. U(r) can be written as 𝑓(𝑟𝑑𝑚𝑎𝑥(𝑟)) where f is a 

single variable increasing function. 

2. U(r) has its maximum value when 𝑟𝑑𝑚𝑎𝑥(𝑟)  =

 𝐸{𝑋𝑃
𝑑𝑚𝑎𝑥(𝑟)

} (𝑟𝑑𝑚𝑎𝑥(𝑟) is truthfully reported) 

Proof: Suppose p is a truthful report, r is the stated report and 

𝑠 =  𝑑𝑚𝑎𝑥(𝑟) . Assume that < 𝐷𝑀𝐴𝑋 , S> fulfills the two 

mentioned conditions. By the definition of quasi-strictly 

proper pairs, <S, D> is not quasi-strictly proper if and only if 

one of these situations is met: 

1. 𝑟𝑠 ≠  𝑝𝑠 and 𝑈(𝑟) ≥  𝑈(𝑝) 

2. 𝑟𝑠 = 𝑝𝑠 but reporting p results in choosing 𝑎𝑠′ ≠
 𝑎𝑠 and 𝑈(𝑟) ≥  𝑈(𝑝)  

From truthfulness of p, we know that 𝑝𝑠  =  𝐸{𝑋𝑃
𝑠}. U(r) has 

its maximum value when 𝑟𝑠  =  𝐸{𝑋𝑃
𝑠}, thus we must have 

𝑟𝑠  =  𝑝𝑠. Therefore situation 1 will never be met.  

Now assume that 𝑟𝑠  =  𝑝𝑠 and reporting p results in choosing 

𝑎𝑠′ . Thus 𝑑𝑚𝑎𝑥(𝑝) = 𝑠′ and 𝑝𝑠′
 >  𝑝𝑠. Thus we have: 

𝑈(𝑟)  =  𝑓(𝑟𝑠)  =  𝑓(𝑝𝑠). 

Since f is increasing, 

𝑈(𝑝)  =  𝑓(𝑝𝑠′
)  >  𝑓(𝑝𝑠)  =  𝑓(𝑟𝑠)  =  𝑈(𝑟)$$. 

Thus U(p) > U(r) and situation 2 will never be met. □ 

After proving the last theorem, we introduce a valid scoring 

function which makes a quasi-strictly proper pair with max 

decision rule. We call it "Polynomial" scoring function. 

𝑆𝑃𝑜𝑙𝑦(𝑜, 𝑟𝑠) = 𝑟𝑠  (2𝑜 −  𝑟𝑠) 

Observation3: 𝑆𝑃𝑜𝑙𝑦  is valid and  <𝐷𝑀𝐴𝑋 , 𝑆𝑃𝑜𝑙𝑦> is a quasi-

strictly proper mechanism. 

Proof: Since validity of polynomial score function is 

straightforward, we just need to prove that <𝐷𝑀𝐴𝑋, 𝑆𝑃𝑜𝑙𝑦> is 

quasi-strictly proper. For this we should prove that 𝑆𝑃𝑜𝑙𝑦  

meets the two conditions considered in Theorem 2. Assuming 

that 𝑠 =  𝑑max(𝑟), we have: 

𝑈(𝑟) =  ∫ 𝑓𝑋𝑃
𝑠 (𝑡)𝑆𝑃𝑜𝑙𝑦(𝑡, 𝑟𝑠)𝑑𝑡

𝑅∗
 

= 2𝑟𝑠  ∫ 𝑡 𝑓𝑋𝑃
𝑠 (𝑡)𝑑𝑡

𝑅∗
  −  𝑟𝑠2  ∫ 𝑓𝑋𝑃

𝑠 (𝑡)𝑑𝑡
𝑅∗

 

= 2𝑟𝑠 𝐸{𝑋𝑃
𝑠}  −  𝑟𝑠2 

To prove condition 2, it should be proved that the most 

expected score will be reached when 𝑟𝑠 is reported truthfully. 
∂ U(r)

∂ rs =  2E{XP
s } − 2rs = 0 ⇒  rs  =  E{XP

s }. 

To prove the first condition, it is enough to replace E{XP
s } with 

rs in  

U(r) = 2rs E{XP
s } −  rs2, 

We will have 𝑈(𝑟)  =  𝑟𝑠2
 which is a strictly increasing 

function.  □ 

3.2 Case Study 

Based on the absolute error score function, a scoring rule 

mechanism was designed to predict the result of 11th Iranian 

Presidential Election. This mechanism was tested in an online 

web site. The project tended to predict election results, using 

expert predictions. The mechanism elicited participants' 

opinions and aggregated them with a simple average 

aggregation.  

Based on "Presidential Election Law" of Iran, after exclaiming 

accredited nominees by the guardian council the election 

competition starts. The ministry of interior is in charge of 

holding election and declares the results. In 11th Iranian 

Presidential Election 8 people were exclaimed as accredited 

nominees. Mr. Gholamali Haddad-E-Adel and Mr. 

Mohammad Reza Aref withdrew from running 3 days and 2 
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days respectively before the election, so the final set of 

nominees in the election had 6 candidates. 

Our contest was held in 10 games - each day a game, in a 10 

days interval followed by the election. In each game, each 

participant could expose his/her prediction about the vote 

share of nominees and spoilt votes. Literally they predicted the 

percentages which would be exclaimed by Ministry of Interior 

of Islamic Republic of Iran after the election . 

It was declared that after exclaiming the results, all prediction 

would be scored using negative absolute error score function. 

Although Schreiber [23] showed that virtual scores can play 

the role of real money in these mechanisms without any 

remarkable decrease in accuracy, we declared that the most 

accurate prediction will be paid a constant payoff. 

The project was held between 4/6/2013 and 13/6/2013. 

Average number of participants in a game was 66. Number of 

participants of each game is shown in Table 3. Figure 1 shows 

the prediction trend on 10 games, which is also the prediction 

changes over a 10-days interval before the election. 

Table 3: Number of participants in each game 

Game 
Number 

1 2 3 4 5 6 7 8 9 10 

Number of 

Participants 
21 26 77 65 78 86 78 75 79 76 

 

The last predictions which was declared on 13/6/2013 at 23:59 

is assumed as the final prediction of this project. The final 

prediction, actual exclaimed percentages and their absolute 

differences are showed in Table 4. 

Table 4: Final Predictions resulted from this project, actual 

values and absolute errors of predictions 

Prediction Variable 
Predicted 

Value 
Actual Value 

Absolute 
Error 

Vote Percentage of Mr. 

Rouhani 
28.2 50.7 22.5 

Vote Percentage of Mr. 
Ghalibaf 

24.5 16.5 7.9 

Vote Percentage of Mr. 

Jalili 
17.2 11.4 5.9 

Vote Percentage of Mr. 

Rezaei 
13.7 10.6 3.1 

Vote Percentage of Mr. 

Velayati 
10.2 6.2 4 

Vote Percentage of Mr. 

Gharazi 
3.2 1.2 1.9 

Vote Percentage of Spoilt 

Votes 
3 3.4 0.4 

 

Eventually the project predicted the value of these 7 variables 

with average absolute error of 6.35%.  

The predictions became more accurate as we got closer to the 

Election Day. The trend of prediction errors is depicted in 

Figure 2.  

 

 

Figure 2: Average absolute error in each game 

Comparing Results with Other Works 

All other predictions that were taken were based on election 

polls. A comparative evaluation for this project and other 

predictions on the presidential election results is done with 

two error functions: average absolute error and sum of ranking 

absolute errors (abbreviated with "Ranking Error"). Ranking 

error shows the sum of ranking absolute errors for each of 6 

nominees. Suppose that 𝜋𝐴𝑐𝑡𝑢𝑎𝑙  is a permutation which shows 

the actual ranking of nominees i.e. 𝜋𝑖
𝐴𝑐𝑡𝑢𝑎𝑙  is the rank of the 

Figure 1: Prediction trends in 10 games 
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ith nominee. Similarly 𝜋𝑃𝑟𝑒𝑑𝑑𝑖𝑐𝑡𝑒𝑑  shows the predicted 

prediction. Ranking error is formally defined as: 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐸𝑟𝑟𝑜𝑟(𝜋𝐴𝑐𝑡𝑢𝑎𝑙 , 𝜋𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  ) = ∑ |𝜋𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝜋𝑖

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|𝑖 . 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 = 0 shows that the ranking of all nominees 

are predicted correctly. Table 5 shows studied polls and their 

errors. 

Table 5: Presidential election polls’ details 

Poll 
Poll 
Type 

Holding 
Data 

# of 

Participan

ts 

Average 

Absolute 

Error 

Ranking 
Error 

IPOS Phone 13/6/2013 1067 4.8 2 

INN Field 11/6/2013 12500 3.7 4 

Entekhab

E Shoma 
Online 13/6/2013 15023 7.3 2 

Nazar E 
Akhar 

Online 14/6/2013 30989 8.4 2 

Asr Iran Online 12/6/2013 313345 7.6 2 

Entekhab Online 14/6/2013 57020 8.9 0 

Yek Ray Online 14/6/2013 59480 10.7 8 

Entekhab
at 92 

Online 13/6/2013 93418 8.5 3 

Khabarpu Online 14/6/2013 170139 2.5 4 

 

Since some of the predictions just predicted the vote share of 

nominees (not spoiled votes) we only focus on the variables 

showing each nominees' vote share. Figures 3 and 4 show the 

rating of all predictions on the election including this project, 

which is demonstrated by "Scoring Rule". The ratings are 

based on average absolute error and ranking error. 

 

 

Figure 3: Comparing our method with other predictions 

based on average absolute error 

 

Figure 4: Comparing our method with other predictions 

based on ranking error 

 

 

4 Conclusion 
In this paper, a study on prediction mechanisms based on the 

Hanson category of information gathering methods was 

presented and a new model for predicting the value of a 

variable and deciding based on that was proposed. This model 

was defined in a simple prediction context and a decision one. 

"Validity" as a new feature was defined for score functions. 

Applicability and truthfulness of trivial scoring rules 

"Negative Absolute Error" and "Square" in a simple prediction 

context were proved. It was shown that these trivial scoring 

rules cannot fulfill truthfulness in decision contexts, and the 

"Polynomial" score function was defined as an applicable and 

truthful score function which makes a quasi-strictly pair with 

"Max" decision rule. 

Also a case study was performed to predict Iran's 11th 

presidential election results. This case study was a scoring rule 

mechanism using "Negative Absolute Error" score function 

and average aggregation rule. This project resulted in a 

prediction with average absolute error of 6.53% in predicting 

vote percentage of nominees and spoilt votes. It also predicted 

the ranking of nominees correctly. 
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