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Abstract 
 

Majority based recoloring processes over graphs are used to model the spread of fault in distributed computing and communication networks. 

We consider two of the most common variations: the reversible process and the irreversible process.  The reversible majority based recoloring 

process starts on a graph whose vertices are initially colored black and white and at each round, each vertex recolors itself with the color of the 

majority of its neighbors. The irreversible process is similar to the reversible process except that it forbids white vertices from becoming black.  

If the process eventually reaches an all-white global state, the set of initially white vertices is called a dynamic monopoly (or a perfect target 

set). 

In this paper, we study the reversible and the irreversible majority based recoloring processes over 3-regular (cubic) graphs and derive upper 

and lower bounds for the minimum size of a dynamic monopoly for both of these processes.  

Keywords: Recoloring Processes, Dynamic Monopolies, Cubic Graphs. 

 

 

 

1. Introduction 
 
Consider a graph 𝐺(𝑉, 𝐸) . Let 𝑁(𝑣)  denotes the set of 

neighbors of node 𝑣  and deg(𝑣) = |𝑁(𝑣)| . A 0/1 initial 

assignment is a function 𝑓0: 𝑉(𝐺) → {0,1} which specifies the 

color of node 𝑣 at round 0 (0 for black and 1 for white). For 

any 0/1 initial assignment𝑓0, let 𝑓𝜏: 𝑉(𝐺) → {0.1} be the state 

of nodes at round 𝜏. For each node𝑣, define 𝑡(𝑣) = ⌈
deg(𝑣)+1

2
⌉ 

to be the threshold of node 𝑣. 

 

In the reversible majority based recoloring process: 

𝑓𝜏(𝑣) =  

{
 
 

 
 0 𝑖𝑓 ∑ 𝑓𝜏−1(𝑢) < 𝑡(𝑣)

𝑢∈𝑁(𝑣)

1 𝑖𝑓 ∑ 𝑓𝜏−1(𝑢) ≥ 𝑡(𝑣)

𝑢∈𝑁(𝑣)

. 

 

In the irreversible majority based recoloring process: 

𝑓𝜏(𝑣) =  

{
 
 

 
 0 𝑖𝑓 𝑓𝜏−1(𝑣) = 0 𝑎𝑛𝑑 ∑ 𝑓𝜏−1(𝑢) < 𝑡(𝑣)

𝑢∈𝑁(𝑣)

1 𝑖𝑓 𝑓𝜏−1(𝑣) = 1 𝑜𝑟 ∑ 𝑓𝜏−1(𝑢) ≥ 𝑡(𝑣)

𝑢∈𝑁(𝑣)

 

 

Informally speaking, in the reversible majority based 

recoloring process, at each round, each node recolors itself 

with the color of the majority of its neighbors.  In the 

irreversible majority based recoloring process, black vertices 

change their color with the same update rule, but white 

vertices never change their color. These two processes are 

widely used to model the spread of fault in distributed 

computing and communication networks [1]. We study these 

two processes on cubic graphs where for each node 𝑣 , 

deg(𝑣) = 3 and thus 𝑡(𝑣) = 2. 

A 0/1 initial assignment 𝑓0 is called a dynamic monopoly (or 

perfect target set), if for a finite 𝜏, 𝑓𝜏(𝑣) = 1 for all 𝑣 ∈ 𝑉(𝐺), 
i.e., the dynamics will converge to a steady state of all-white.  

The cost of a dynamic monopoly 𝑓0, denoted by 𝑐𝑜𝑠𝑡(𝑓0), is 

the number of nodes 𝑣  with 𝑓0(𝑣) = 1 . The cost of this 

minimum dynamic monopoly is denoted by 𝐼𝐷𝑀(𝐺)  and 

𝑅𝐷𝑀(𝐺)  respectively for the irreversible and reversible 
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majority based recoloring processes. In this paper, we want to 

work on the problem proposed by [2],  which asks how small 

a dynamic monopoly can be. This problem is also called target 

set selection (See e.g. [3]) . 

There has been a great interest in studying the irreversible 

majority based recoloring process, thus many bounds for 

𝐼𝐷𝑀(𝐺) are known for general and special types of graphs 

such as torus, hypercube, butterfly, chordal ring and triangular 

grid (See e.g.  [4,5,6,7,8,9,10,3,1}). Best bounds for the 

irreversible majority based recoloring process in general 

graphs are due to Chang and Lyu. They first showed that for a 

directed graph𝐺 ,𝐼𝐷𝑀(𝐺) ≤
23

27
|𝑉(𝐺)|  [10]. They improved 

their upper bound to 
2

3
|𝑉(𝐺)| for directed graphs and 

|𝑉(𝐺)|

2
 for 

undirected graphs [9].  In [11], it is shown that, the upper 

bound for directed graphs with no vertex of in-degree zero 

(such as strongly connected graphs) can be improved to 
|𝑉(𝐺)|

2
. 

In this paper, we show that this upper bound can be improved 

to 
3|𝑉(𝐺)|+2

8
 for cubic graphs. For this group of graphs, we 

prove the lower bound of 
|𝑉(𝐺)|

4
. We also show that both of 

these bounds are tight. 

The best lower bound for 𝑅𝐷𝑀(𝐺) is due to Fazli et al. [12]. 

They proved that 𝑅𝐷𝑀(𝐺) ≥
2|𝑉(𝐺)|

Δ(𝐺)+1
 where Δ(𝐺)  is the 

maximum degree of 𝐺. They also found tight examples for this 

lower bound. Applying their result directly for cubic graphs, 

leads to the lower bound of 
|𝑉(𝐺)|

2
. In this paper, we construct 

3-regular graphs for which this bound is tight. To the best of 

our knowledge, there exists no tight upper bound for 

𝑅𝐷𝑀(𝐺).  In [12], it is shown that 𝑅𝐷𝑀(𝐺) ≤
𝑛Δ(𝐺)(𝛿(𝐺)+2)

4Δ(𝐺)+(Δ(𝐺)+1)(𝛿(𝐺)−2)
, where 𝛿(𝐺) is the minimum degree of 

vertices in 𝐺. In this paper, we show that 𝑅𝐷𝑀(𝐺) ≤
3|𝑉(𝐺)|

4
+

2 for cubic graphs.  We also construct 3-regular graphs with 

(𝐺) =
2𝑉(𝐺)

3
 . 

Finally, it must be mentioned that the size of dynamic 

monopolies in majority based recoloring processes is very 

sensitive to the tie breaking laws. Tie breaking laws are used 

when for a node, the number of its black neighbors and its 

white neighbors are the same. In [7], four different tie breaking 

laws are proposed: Prefer-White, Prefer-Black, Prefer-Current 

and Prefer-Flip. Each of these laws chooses a different action 

for a vertex in the case of a tie (For example, our general 

model is Prefer-Black, since vertices become black in case of 

tie). 

Very different observations are carried out for other types of 

tie breaking laws. For example in [13] the authors found 

examples for Prefer-Current case with dynamic monopoly of 

constant size for the reversible majority based recoloring 

process.  Consider that, in this paper ties never happen, 

because the degrees of all vertices in cubic graphs are odd. 

However, since our general model is Prefer-Black, only 

bounds for the processes with this tie breaking law are cited to 

make the comparison of the results easier.  

 

2. Bounds for 𝑰𝑫𝑴(𝑮) 
 

In this section, we derive an upper bound and a lower bound 

for 𝐼𝐷𝑀(𝐺) for every cubic graph 𝐺. We prove that for a 

cubic graph 𝐺, 
|𝑉(𝐺)|

4
< 𝐼𝐷𝑀(𝐺) ≤

3|𝑉(𝐺)|+2

8
. Toward this 

end, we first show that for a given graph 𝐺, 𝐼𝐷𝑀(𝐺) is equal 

to 𝐺′s decycling number. 

 

Definition: For a graph 𝐺  and 𝑆 ⊂ 𝑉(𝐺), if 𝐺[𝑉(𝐺) ∖ 𝑆] is 

acyclic, then 𝑆 is said to be a decycling set of 𝐺. (𝐺[𝐴] where 

𝐴 ⊆ 𝑉(𝐺), denotes the induced subgraph of 𝐺 by 𝐴). The size 

of a smallest decycling set of 𝐺 is called the decycling number 

of 𝐺 and is denoted by 𝜙(𝐺). 
 

Let 𝑓0 be a 0/1 initial assignment. Define 𝑊(𝑓, 𝜏) and 𝐵(𝑓, 𝜏) 
as follows: 

𝑊(𝑓, 𝜏)  =  {𝑣 ∈  𝑉(𝐺)|𝑓𝜏(𝑣)  =  1} 
𝐵(𝑓, 𝜏)  =  {𝑣 ∈  𝑉(𝐺)|𝑓𝜏(𝑣)  =  0} 

where 𝑓𝜏  is calculated according to the irreversible majority 

based recoloring process recursively from 𝑓0. 
 

Lemma 1: If 𝑓0 is a dynamic monopoly, then 𝐺[𝐵(𝑓, 0)] is 

acyclic.  

Proof: Assume that 𝐺[𝐵(𝑓, 0)] has a cycle 𝐶. Each vertex in 

𝐶 has two adjacent black vertices, therefore they will never 

become white. Thus it contradicts the fact that 𝑓0 is a dynamic 

monopoly. 

 

Assume that 𝑆 ⊆  𝑉(𝐺) , define 0/1 initial assignment 

𝑓0
𝑆: 𝑉(𝐺) →  {0,1} as follows: 

𝑓0
𝑆(𝑣) = {

0 𝑖𝑓 𝑣 ∉ 𝑆
1 𝑖𝑓 𝑣 ∈ 𝑆

 

 

Lemma 2: If 𝐺[𝑆] is acyclic, then 𝑓0
𝑆̅ is a dynamic monopoly 

where 𝑆̅ =  𝑉(𝐺) ∖  𝑆. 

Proof: We use induction to prove that 𝐺[𝐵(𝑓 𝑆̅, 𝜏)] for all 𝜏 ≥

 0 is acyclic. Assume that at a given time 𝜏, 𝐺[𝐵(𝑓 𝑆̅, 𝜏)] has 

no cycle. Therefore, there must be at least two vertices 𝑢, 𝑣 ∈
 𝐵(𝑓𝑠̅, 𝜏)  which have at least two adjacent vertices in 

𝑊(𝑓𝑠̅, 𝜏). Thus, in time 𝜏 + 1 these vertices become white. 

We know that in the irreversible process none of the white 

vertices becomes black again. Therefore, 𝐺[𝐵(𝑓 𝑠̅, 𝜏 + 1)] 
remains acyclic. From the previous discussion we know that 

at each step at least two black vertices join 𝑊(𝑓 𝑠̅, 𝜏). Thus, all 

vertices will eventually become white in at most 
|𝑉(𝐺)|

2
 rounds.  

 

Theorem 1: For a cubic graph 𝐺, 𝐼𝐷𝑀(𝐺) = 𝜙(𝐺). 
Proof: Let 𝑓0

∗  be a dynamic monopoly with 𝑐𝑜𝑠𝑡(𝑓0
∗)  =

 𝐼𝐷𝑀(𝐺). From Lemma 1, we know 𝐺[𝐵(𝑓∗, 0)] is acyclic. 

Thus 𝐷 = 𝑊(𝑓∗, 0) is a decycling set. Assume that 𝐷∗  is a 

decycling set with the minimum size. From Lemma 2, we 

know 𝑓0
𝐷∗ is a dynamic monopoly. We have: 

|𝐷∗| ≤  |𝐷| =  𝑐𝑜𝑠𝑡(𝑓∗) ≤  𝑐𝑜𝑠𝑡(𝑓𝐷
∗
)  =  |𝐷∗|. 

Thus 𝐷∗  =  𝑐𝑜𝑠𝑡(𝑓∗). 
 

From [14], we know that for every connected graph 𝐺 with 

Δ(𝐺) ≤  3, if 𝐺 ≠  𝐾4 then its decycling number 𝜙(𝐺) is less 

than or equal to 
 |𝐸(𝐺)|+1

4
. 

Therefore by using Theorem 1, we can conclude the following 

theorem. 

 

Theorem 2: For a given cubic graph 𝐺 ≠ 𝐾4: 

𝐼𝐷𝑀(𝐺) ≤
3|𝑉(𝐺)| + 2

8
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Figure 1. A sample for ℱ(𝑡, 𝑘). This family of graphs are 

tight examples for the proved upper bound of 𝐼𝐷𝑀(𝐺) 

 

In the work done by Alon et al. [15], a family of graphs with 

Δ(𝐺) ≤ 3  and 𝑎(𝐺) ≤ |𝑉(𝐺)| −
|𝐸(𝐺)|

4
−
1

4
 is constructed. 

𝑎(𝐺) denotes the maximum size of a subset that induces a 

forest. If we exclude the vertices of this forest, remaining 

vertices form a decycling set of 𝐺. Thus in these graphs we 

have 𝜙(𝐺) ≥
|𝐸(𝐺)|

4
+
1

4
. 

These graphs are shown by ℱ(𝑡, 𝑘) and consist of 𝑡 disjoint 

triangles and 𝑘  disjoint copies of 𝐾4̇  (a graph with five 

vertices obtained from 𝐾4 by subdividing an edge) such that 

the multigraph obtained by contracting each triangle and each 

copy of 𝐾4̇ to a single vertex is a tree of order 𝑡 + 𝑘. In Fig. 1, 

ℱ(2,4)  is shown. Infinitely many of these graphs are 3-

regular, thus their decycling number is greater than or equal to 
3|𝑉(𝐺)|+2

8
. Therefore the upper bound of 

3|𝑉(𝐺)|+2

8
 for 𝐼𝐷𝑀(𝐺) 

is tight. 

 

Theorem 3: For infinitely many 𝑛 ∈ ℕ there exists a cubic 

graph 𝐺 of order 𝑛 for which 𝐼𝐷𝑀(𝐺) =
3𝑛+2

8
. 

 

The next theorem proves the lower bound of 
|𝑉(𝐺)|

4
 for 

𝐼𝐷𝑀(𝐺). This result can also be used as a lower bound for the 

decycling number of cubic graphs.  

 

Theorem 4: For every cubic graph 𝐺, we have 𝐼𝐷𝑀(𝐺) >
|𝑉(𝐺)|

4
 

Proof: Let 𝑓0
∗ be a minimum cost dynamic monopoly of 𝐺. 

From Lemma 1, we know the graph 𝐺[𝐵(𝑓∗, 0)] is acyclic, so 

the number of its edges is at most |𝐵(𝑓∗, 0)| − 1. Therefore,  

|𝐸𝐺[𝐵(𝑓
∗, 0),𝑊(𝑓∗, 0)]| =  3|𝐵(𝑓∗, 0)|  −  2 |𝐸𝐺[𝐵(𝑓

∗, 0)]|  
 =  3|𝑊(𝑓∗, 0)|  −  2 |𝐸𝐺[𝑊(𝑓

∗, 0)]| 
where 𝐸𝐺[𝐴, 𝐵]  denotes the number of 𝐺 ’s edges between 

𝐴 ⊆  𝑉(𝐺)  and 𝐵 ⊆  𝑉(𝐺)  and 𝐸𝐺[𝐴]  shows the number of 

edges in $G[A]$. Then by replacing |𝐸𝐺[𝐵(𝑓
∗, 0)]|  with 

|𝐵(𝑓∗, 0)| − 1, we have the following chain of inequalities: 

3|𝐵(𝑓∗, 0)| −  2 (|𝐵(𝑓∗, 0)| − 1)
≤   3|𝑊(𝑓∗, 0)|  −  2|𝐸𝐺[𝑊(𝑓

∗, 0)]|
           
⇒   

|𝐵(𝑓∗, 0)| +  2 ≤  3|𝑊(𝑓∗, 0)|  
            
⇒    

|𝐵(𝑓∗, 0)| +  |𝑊(𝑓∗, 0)| +  2 ≤  4|𝑊(𝑓∗, 0)|  
            
⇒    

|𝑉(𝐺)| +  2 ≤  4|𝑊(𝑓∗, 0)|  
            
⇒    

|𝑉(𝐺)|

4
 +
1

2
≤  |𝑊(𝑓∗, 0)|

            
⇒    

|𝑉(𝐺)|

4
 <  |𝑊(𝑓∗, 0)|.  

 

Along with the upper bound, the lower bound is also tight.  

 

Figure 2. The 𝐺𝑘 graph. This graph is a tight example for 

the proved lower bound of  𝐼𝐷𝑀(𝐺) 

Theorem 5: For infinite number of 𝑛 ∈ ℕ there exists a 

cubic graph 𝐺 of order 𝑛 in which 𝐼𝐷𝑀(𝐺) ≤
𝑛

4
 + 1. 

Proof: Consider a graph 𝐺𝑘  of order 𝑛 =  4𝑘  in which 

𝑉(𝐺𝑘) =  {𝑣1, 𝑣2, . . . , 𝑣3𝑘} ∪  {𝑢1, . . . , 𝑢𝑘} . Let 𝑉 =
{𝑣1, 𝑣2, … , 𝑣3𝑘}  and 𝑈 =  {𝑢1, 𝑢2, … , 𝑢𝑘} . 𝐺[𝑉]  is a cycle. 

Each vertex 𝑢𝑖 ∈  𝑈 is connected to 𝑣3𝑖−2, 𝑣3𝑖−1 and 𝑣3𝑖. The 

graph is depicted in Fig. 2. One can see that 𝑓0
𝑈∪{𝑣1}  is a 

dynamic monopoly of 𝐺𝑘. Thus 𝐼𝐷𝑀(𝐺) ≤  𝑘 + 1 =
𝑛

4
 +  1.  

 

3. Bounds for 𝑹𝑫𝑴(𝑮) 
 

In this section, for each cubic graph 𝐺, we derive an upper and 

a lower bound for 𝑅𝐷𝑀(𝐺). We prove that for a cubic graph 

𝐺, 
|𝑉(𝐺)|

2
≤  𝑅𝐷𝑀(𝐺) ≤

3|𝑉(𝐺)|

4
+ 2.  

 

Let 𝑓0 be a 0/1 initial assignment and 𝑓𝜏 defined according to 

the reversible majority based recoloring process. We define 

𝑊(𝑓, 𝜏) , 𝐵(𝑓, 𝜏)  and 𝑓0
𝑆  like Section 2. The following 

theorem provides a lower bound for 𝑅𝐷𝑀(𝐺)  in general 

graphs. The proof of this theorem can be found in Theorem 1 

of [12]. 

 

Theorem 6: (Fazli et al. [12]) For every graph, 𝑅𝐷𝑀(𝐺) ≥
2|𝑉(𝐺)|

Δ(𝐺)+1
. 

 

This theorem results in a lower bound for cubic graphs which 

is provided in the following theorem. 

 

Theorem 7: For every cubic graph 𝐺, 𝑅𝐷𝑀(𝐺) ≥
|𝑉(𝐺)|

2
. 
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Figure 3. The 𝐻𝑘 graph. This graph is a tight example for the 

proved lower bound of  𝑅𝐷𝑀(𝐺) 

The following theorem shows that the lower bound for 

𝑅𝐷𝑀(𝐺) is tight. 

 

Theorem 8: For infinite number of 𝑛 ∈  ℕ, there exists a 3-

regular graph 𝐺 of order 𝑛 in which 𝑅𝐷𝑀(𝐺) =
𝑛

2
. 

Proof: For an integer 𝑘 ≥  2 , consider the graph 𝐻𝑘  

constructed by two cycles 𝑢1, 𝑢2, . . . , 𝑢2𝑘−1  and 

𝑣1, 𝑣2, . . . , 𝑣2𝑘−1  where we join each vertex 𝑣𝑖  to a 

corresponding vertex 𝑢𝑖. This graph is shown in Fig. 3. Define 

𝑆 =  {𝑣1, 𝑣2, . . . , 𝑣2𝑘−1 }∪ {𝑢1} . One can see that 𝑓0
𝑆  is a 

dynamic monopoly. Thus 𝑅𝐷𝑀(𝐺) ≤
𝑛

2
 +  1. 

 

Finally, it remains to prove the upper-bound of 
3|𝑉(𝐺)|

4
+ 2 for 

𝑅𝐷𝑀(𝐺) . In [12], authors show that if 𝛼 |𝑉(𝐻)| ≤
 𝑅𝐷𝑀(𝐻) ≤ 𝛽 |𝑉(𝐻)|  $ for every bipartite graph 𝐻 , then 

𝛼 |𝑉(𝐺)| ≤  𝑅𝐷𝑀(𝐺) ≤ 𝛽 |𝑉(𝐺)| $ for every graph 𝐺 . 

Therefore it is enough to prove the theorem only for bipartite 

graphs. So from now on, we assume that the input graph is 

bipartite.  

 

Lemma 3: Assume that each vertex 𝑣 with 𝑓0(𝑣) = 1, has at 

most one adjacent vertex 𝑢 with 𝑓0(𝑢) = 0. If 𝐺[𝐵(𝑓, 0)] is 

acyclic, then 𝑓0 is a dynamic monopoly. 

Proof: We prove the lemma by induction on 𝜏. We show that 

at each step at least one black vertex becomes white, all white 

vertices will remain white and the induced subgraph by black 

vertices remains acyclic.  

The assertion is trivial at time 𝜏 = 0 . Suppose that the 

assertion is true at time 𝜏 >  0 . Therefore the induced 

subgraph by 𝐵(𝑓, 𝜏)  is acyclic, so there exists at least one 

vertex in 𝐵(𝑓, 𝜏) for which the number of its adjacent white 

vertices is at least two. This vertex will become white at time 

𝜏 + 1. By induction hypothesis, at time 𝜏 there is no white 

vertex with more than one black neighbor, so all white vertices 

keep their color. Finally, all white vertices at time 𝜏 + 1 have 

at most one neighbor in 𝐺[𝐵(𝑓, 𝜏)], therefore there is no white 

vertex at time 𝜏 + 1 with more than one black adjacent vertex. 

Therefore, 𝐺[𝐵(𝑓, 𝜏 + 1)] remains acyclic. 

 

The following algorithm can provide a dynamic monopoly 

which satisfies Lemma 3 with low cost. 

 

Let 𝑀 = ∅  and 𝑖 =  0 . Do the following procedure while 

𝑀 ≠  𝑉(𝐺): 
1. If 𝑀 ≠ ∅  then select a vertex 𝑣  from 𝑁(𝑀) 

otherwise select an arbitrary vertex 𝑣 from 𝑉(𝐺) (𝑁(𝑀) is the 

set of vertices in 𝑉(𝐺) ∖  𝑀 which has one neighbor in 𝑀). 

2. Increase 𝑖 by one and set 𝑇𝑖 = {𝑣}. 
3. While there is a vertex 𝑢 in 𝑁(𝑇𝑖) ∖  𝑀, if |𝑁(𝑢)  ∩

 𝑁(𝑇𝑖)|  =  0 and if adding 𝑢 to 𝑇_𝑖 doesn't create a cycle in 

𝐺[𝑇𝑖], then add 𝑢 to 𝑇𝑖  and set 𝑓0(𝑢)  =  0 otherwise add 𝑢 to 

𝑀 and set 𝑓0(𝑢)  =  1. 

4. For all vertices 𝑢 ∈  𝑉(𝐺) ∖  𝑇𝑖  from which there 

exists a path of length at most 2 to a vertex in 𝑇𝑖 , set 𝑓0(𝑢) to 

1 and add 𝑢 to 𝑀. 

In the 𝑖 'th iteration of the above algorithm, some of the 

vertices are chosen to be added to 𝑇𝑖  and the value of 𝑓0 for 

these vertices are set to be 0. The value of 𝑓0 for all vertices 

with a distance of at most two from the vertices of 𝑇𝑖 , are set 

to be 1. All of these vertices are marked by adding them to 𝑀. 

The vertices added to 𝑀  will not be considered in further 

iterations of the algorithm. The algorithm terminates when the 

value of 𝑓0 is computed for all vertices of 𝐺 i.e. when 𝑀 =
 𝑉(𝐺). 
 

Lemma 4: In the first iteration of the algorithm, when 𝑀 =
∅, we add at most 4|𝑇1| + 2 vertices to 𝑀. 

Proof: Define 𝑄 to be the set of vertices whose distance to 

𝑇1 's vertices is 2. We show that |𝑄| + |𝑇1| + |𝑁(𝑇1)| ≤
 4|𝑇1| + 2 . Consider that after the first iteration of the 

algorithm, 𝑀 ⊆ 𝑇1 \𝑐𝑢𝑝 𝑁(𝑇1) ∪  𝑄. Assume that |𝑇1| = 𝑘. 

𝐺[𝑇1] is a tree and 𝐺 is 3-regular, so |𝑁(𝑇1)|  =  3𝑘 − 2(𝑘 −
1) = 𝑘 + 2 . Furthermore, we know from step 3 that each 

vertex 𝑣 ∈  𝑁(𝑇1) is in 𝑀 and since it is not added to 𝑇1, then 

1) adding 𝑣  to 𝑇1  creates a cycle in 𝑇1  or 2) |𝑁(𝑣) ∩
 𝑁(𝑇1)| ≠  0$. In case 1, 𝑣 has at least 2 neighboring edges to 

vertices of 𝑇1  and in case 2, it has at least one neighboring 

edge to 𝑁(𝑇1) and another to 𝑇1. Thus each vertex 𝑣 ∈  𝑁(𝑇1) 
has at most one neighbor in 𝑄. Since each vertex in 𝑄 has at 

least one neighbor in 𝑁(𝑇1), |𝑄| ≤  |𝑁(𝑇1)|  =  𝑘 + 2. This 

leads to |𝑄| + |𝑇1| + |𝑁(𝑇1)| ≤  𝑘 + (𝑘 + 2)  + (𝑘 + 2)  =
 3𝑘 + 4. If 𝑘 >  1, there is nothing left to prove because in 

this case, 4|𝑇1| +  2 =  4𝑘 + 2 ≥  3𝑘 + 4. We prove 𝑘 >  1. 

𝐺 is bipartite. So the first and the second vertices verified by 

the algorithm are in different parts of the graph, therefore they 

have no shared neighboring vertex. This implies that both of 

them must be added in step 3 of the first iteration of the 

algorithm and so 𝑘 ≥  2. 

 

Lemma 5: In the 𝑖'th iteration of the algorithm where 𝑖 ≥  2, 

we add at most 4|𝑇𝑖| vertices to 𝑀. 

Proof: The proof is very similar to Lemma 4. Again define 

𝑘 = |𝑇𝑖| and 𝑄  to be the vertices with distance 2 from 𝑇𝑖 's 

vertices. The difference is that this iteration starts when  ≠ ∅. 

Therefore at least one vertex in 𝑇𝑖  must have one neighboring 

edge to the vertices whose 𝑓0  value is determined until the 

(𝑖 − 1) 'th iteration of the algorithm. Therefore |𝑁(𝑇𝑖)| ≤
 3𝑘 − 2(𝑘 − 1) − 1 = 𝑘 + 1 . Thus |𝑄| ≤  𝑘 + 1  and |𝑇𝑖| +
𝑁(𝑇𝑖) + |𝑄| ≤  3𝑘 + 2 . If 𝑘 >  1 , we have 4|𝑇𝑖| =  4𝑘 ≥
 3𝑘 + 2 and the proof is complete. Assume that 𝑘 =  1 and 𝑣 

is the only member of 𝑇𝑖 . All of 𝑣's neighbors must be in 𝑀 at 
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the start of the 𝑖'th iteration. Otherwise assume that one of 𝑣's 

neighbors say 𝑢 was not in 𝑀 at the start of the 𝑖'th iteration. 

𝐺 is bipartite and 𝑢 and 𝑣 are in different parts of this graph. 

This implies that they never have a shared neighboring vertex. 

Therefore 𝑢  must be added to 𝑇𝑖  and this contradicts our 

assumption that |𝑇𝑖|  =  𝑘 =  1. The number of vertices in 𝑄 

is at most |𝑁(𝑇𝑖)| . Thus |𝑄| ≤  3 . Then when |𝑇𝑖|  =  1  at 

most |𝑄| + |𝑇𝑖| ≤  4 =  4|𝑇𝑖| vertices are added to 𝑀 . This 

completes the proof. 

 

Theorem 9: For every 3-regular graph 𝐺 , 𝑅𝐷𝑀(𝐺) ≤
3|𝑉(𝐺)|

4
 + 2. 

Proof: We use Lemma 3 to prove that 𝑓0  is a dynamic 

monopoly. First, consider that we do not add a vertex to 𝑇𝑖  if 
it forms a cycle with 𝑇𝑖 's vertices. Furthermore, because of 

step 4 it is guaranteed that the minimum distance between the 

vertices in 𝑇𝑖  and 𝑇𝑗  for every 𝑖 ≠  𝑗  is at least 2. Thus the 

graph induced by vertices 𝑣  with 𝑓0(𝑣)  =  0 , which is 

𝐺[⋃ 𝑇𝑖𝑖>0 ] is acyclic. 

Now, we use contradiction to prove that no vertex 𝑣 ∈  𝑉(𝐺), 
with 𝑓0(𝑣)  =  1 exists which has two adjacent vertices say 

𝑢, 𝑧 ∈  𝑉(𝐺)  with 𝑓0(𝑢)  =  𝑓0(𝑧)  =  0 . Suppose that such 

vertex exists. WLOG assume that 𝑢  becomes black first in 

iteration 𝑖. So 𝑣 ∈  𝑇𝑖 . Since 𝑣 ∈  𝑁(𝑢) ∩  𝑁(𝑧) and in step 3 

we do not add vertices to 𝑇𝑖  which have a common adjacent 

vertex with 𝑇𝑖 's vertices, 𝑧 is not added to 𝑇𝑖  in this step. In 

step 4 of this iteration, we add 𝑧 to 𝑀, since its distance to 𝑢 ∈
 𝑇𝑖  is at most 2 and set 𝑓0(𝑧)  =  1. Therefore, the algorithm 

will not select 𝑧 in further iterations to set 𝑓0(𝑧) to 0 and it 

contradicts our assumption. Thus, 𝑓0 is a dynamic monopoly.  

It remains to prove 𝑐𝑜𝑠𝑡(𝑓0) ≤
3|𝑉(𝐺)|

4
 + 2 . We know 

𝑓0(𝑣)  =  1 if and only if 𝑣 ∉ ⋃ 𝑇𝑖𝑖≥1 . Thus we have: 

𝑐𝑜𝑠𝑡(𝑓0)  =  ∑ 𝑓0(𝑣) = |𝑉(𝐺)| − |⋃𝑇𝑖
𝑖≥1

|

𝑣∈𝑉(𝐺)

 

Assume that 𝑀𝑖 is the set of vertices added to 𝑀 at the end of 

𝑖'th iteration. So ⋃ 𝑀𝑖𝑖≥1  =  𝑉(𝐺). From Lemma 4 we know 

that 𝑀1 ≤  4|𝑇1|  +  2. From Lemma 5, we know that for 𝑖 ≥
 2, 𝑀𝑖 ≤  4|𝑇𝑖|. Therefore we have: 

𝑐𝑜𝑠𝑡(𝑓0) =  ∑|𝑀𝑖|

𝑖≥1

−∑|𝑇𝑖|

𝑖≥1

≤  2 +∑
3|𝑀𝑖|

4
𝑖≥1

≤  2 +
3|𝑉(𝐺)|

4
 

 

We couldn't find tight examples for Theorem 9. The maximum 

value of 𝑅𝐷𝑀(𝐺) for which we found tight examples is 
2|𝑉(𝐺)|

3
  

which is introduced in Theorem 10.  

 

Theorem 10: For infinite number of 𝑛 ∈ ℕ, there exists a 3-

regular graph 𝐺 with 𝑛 vertices such that 𝑅𝐷𝑀(𝐺) =
2𝑛

3
. 

Proof: Consider the graph 𝐻 shown in Fig. 4 and an integer 𝑛 

divisible by 6. Join 
𝑛

6
 copies of H to form a cycle. In every 

dynamic monopoly of this graph, there exist at least 4 initially 

white vertices in each copy of 𝐻 (for each cycle of even length 

in 𝐻 , there must be at least two initially white vertices). 

Therefore, at least 
2𝑛

3
 vertices are needed to be initially white.  

 

 

Figure 4. The graph used in Theorem 10.  

 

Table 1. The Maximum Value of 𝑅𝐷𝑀(𝐺) for Connected 3-

regular Graphs 

𝒏 Number of Connected 3-

regular Graphs 
𝑴𝒂𝒙{𝑹𝑫𝑴(𝑮)} 

4 1 3 

6 2 4 

8 5 6 

10 19 6 

12 85 8 

14 509 8 

16 4060 10 

18 41301 12 

 
The maximum value of 𝑅𝐷𝑀(𝐺) for all connected 3-regular 

graphs with at most 20 vertices is calculated and shown in 

Table 1. Our experiments show that the size of 𝑅𝐷𝑀(𝐺) for 

none of these graphs is greater than two third of the number of 

their vertices. Also, Theorem 10 shows that there are infinitely 

many 𝑛 for which there is at least one 3-regular graph of order 

𝑛  with this proportion of 𝑅𝐷𝑀(𝐺)  to number of vertices, 

admitting that this bound is tight. So, we infer that the 

following conjecture is true. 

 

Conjecture 1: For every 3-regular graph 𝐺 , 𝑅𝐷𝑀(𝐺) ≤
 2|𝑉(𝐺)|/3. 
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