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Portfolio optimization is one of the essential fields of focus in finance. There has been an increasing demand 
for novel computational methods in this area to compute portfolios with better returns and lower risks in recent 
years. We present a novel computational method called Representation Portfolio Selection by redefining the 
distance matrix of financial assets using Representation Learning and Clustering algorithms for portfolio selection 
to increase diversification. RPS proposes a heuristic for getting closer to the optimal subset of assets. Using 
empirical results in this paper, we demonstrate that widely used portfolio optimization algorithms, such as 
Mean-Variance Optimization, Critical Line Algorithm, and Hierarchical Risk Parity can benefit from our asset 
subset selection.
1. Introduction

Deciding how and where to invest money is one of the main chal-

lenges that anyone with savings faces. The complexity of finding an 
answer to this challenge has increased as the options for investment 
have grown over time, expanding from traditional assets like gold and 
land to a myriad of financial instruments such as stocks, currencies, 
and cryptocurrencies. Moreover, investing money becomes even more 
crucial when dealing with substantial amounts, as is the case for finan-

cial institutions. Any wrong decision or fluctuation in the price of the 
invested asset can result in considerable losses. In this situation, indi-

viduals make investment decisions based on various parameters such as 
their knowledge, beliefs, and future predictions.

Two crucial concepts help investors diversify their assets. The first is 
constructing an initial portfolio, which is a collection of financial assets 
held by an individual. The second is managing the portfolio afterward. 
While these two concepts are interlinked, the dynamics of assets and 
trading constraints in markets introduce more complexities than the 
former, making them two different problems to solve. This paper will 
focus on the first problem, portfolio construction, and defer the analysis 
of the complexities of portfolio management to future studies.

Studies on the portfolio optimization problem have a long history. 
One of the earliest and most famous theories that studied portfolio con-

struction was Markowitz’s Portfolio Theory (Markowitz, 1952, 1959, 
1987), which laid the foundation for modern portfolio theory. In their 
study, they used the covariance matrix of financial assets to define the 
problem as a quadratic programming problem. The success of Markow-
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itz’s theory led to the development of many other methods in this field, 
each with its own unique ideas. However, most portfolio construction 
and optimization methods have retained the core idea of Markowitz’s 
theory: the lower the correlation among a portfolio’s assets, the lower 
the risk. Naturally, many papers began to study the shortcomings of 
Markowitz’s methods and proposed solutions to address these shortcom-

ings (Elton et al., 1995, King, 1993, Konno & Yamazaki, 1991, Mills, 
1997, Mitra et al., 2003, Rockafellar et al., 2000).

One of the Markowitz issues that we mitigate in this paper is the 
cardinality constraint problem. Markowitz’s method outputs the frac-

tion of money to invest on each asset, with the assets and price history 
as the input. There are thousands of various assets available for in-

vestment, which can lead to hardships since managing such portfolios 
can be complicated. Moreover, it can be shown that limiting assets to 
a maximum count is a form of the Knapsack problem, which is com-

putationally NP-hard (Garey & Johnson, 1979). Different methods use 
different types of heuristics to solve this issue. For example, Crama and 
Schyns (2003) and Maringer (2005) used simulated annealing, while 
others use clustering methods like k-means and hierarchical clustering 
(Lemieux et al., 2014, Raffinot, 2017, León et al., 2017). A whole fam-

ily of other solutions formed based on Mantegna’s Minimum Spanning 
Tree method (Mantegna & Stanley, 1993, Mantegna, 1999). Some other 
methods try to reformulate the problem and solve it mathematically, 
such as Cesarone et al. (2013).

With the growing influence of computational and machine learning 
methods on financial markets, portfolio construction can be seen as an 
intermediary field from another perspective. A variety of computational 
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methods have started to rise. A core characteristic of the asset markets, 
in general, is their complexity. Having a robust way to deal with this 
complexity will be useful to solve the portfolio optimization problem. 
One of the machine learning-based methods that can be used to do so 
is Representation learning, which is a learning method that embeds the 
entities in the problem in a low-dimensional feature space. By reducing 
the dimensionality of the data while preserving its essential character-

istics, representation learning simplifies the computation. A family of 
representation learning methods is based on generating graph represen-

tation vectors for the data, a paradigm known as graph representation 
learning. Graph representation learning focuses on transforming nodes 
and edges in a graph into meaningful numerical representations, re-

ferred to as embeddings. These embeddings encode both the intrinsic 
properties of individual nodes and the relational information they share 
within the graph’s context. By capturing such structural and semantic 
knowledge, graph representation learning facilitates more efficient and 
effective analysis of complex data.

In this paper, we propose a new portfolio construction method with 
the aim of diversification based on Node2Vec Grover and Leskovec 
(2016), a graph representation learning algorithm. We create a graph, 
which acts as a representation of our data, based on similarity of the 
given assets using the correlation matrix of assets. Then, we leverage 
these representations in a two-phased portfolio optimization setting. 
First, we select a subset of assets and then weigh the obtained assets. 
While many portfolio optimization methods do not select the assets ex-

plicitly before weighing them, we focus on portfolio selection in this 
paper. We will indicate that better portfolios with higher returns and 
less risk can be achieved by separating the portfolio asset selection 
phase from the portfolio weighting phase. Furthermore, we state that 
doing so would help us to overcome multiple issues. Firstly, it eliminates 
the covariance estimation inaccuracy which exists in previous portfo-

lio optimization methods. Secondly, it resolves portfolio optimization 
algorithms such as Mean-Variance Optimization (MVO) (Erlich et al., 
2010), which would have convergence problems if given an extensive 
benchmark of assets by pre-selecting a heuristically optimal subset of 
assets.

The paper is organized in the following structure. Section 2 provides 
an in-depth description of the proposed method. Section 3 discusses the 
baseline methods, metrics, and the datasets that are used for. The results 
and discussion are provided in section 4. Lastly, section 5 concludes the 
paper.

1.1. Related works and approaches

After the initial widespread success of Markowitz’s technique, lots of 
other approaches emerged in this area to enhance portfolio construction 
by modifying elements of the Markowitz technique or utilizing different 
strategies. Some attempts tried to improve the covariance estimation 
mechanism (Ledoit & Wolf, 2004, Wong et al., 2003). Other methods 
have considered higher-order moments to capture the relationships be-

tween assets better (Maringer & Parpas, 2009, Khan et al., 2020).

Instead of improving portfolio optimization methods directly, some 
methods approached the problem by first selecting a subset of assets 
and then weighting them to construct the portfolio. Mantegna (1999)

was one of the works that did so by using graphs to suggest a subset 
of assets. By finding an MST of the weighted graph, the method could 
find the hierarchical structure between stocks. Moreover, other combi-

natorial optimization methods on graphs are used to identify portfolios, 
as in Boginski et al. (2014b), in which finding relaxed cliques in the 
network helps identify similar stocks. Marti et al. (2021) has a trough 
review of the optimization methods using network structure in financial 
markets.

Clustering techniques have also found their way into financial stud-

ies. In De Prado (2016), authors use a hierarchical clustering approach 
2

to cluster stocks based on distances of their corresponding rows in the 
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covariance matrix. Also, Kumari et al. (2019) uses a k-means clustering 
approach to identify stock groups with the same characteristics.

Recently, machine learning methods have found their ways in finan-

cial market studies (Henrique et al., 2019). Portfolio optimization was 
not an exception for this trend. Some methods first predict each asset 
changes in the future and use the results for portfolio construction (Ta 
et al., 2018, Chen et al., 2021, Ma et al., 2021). Other methods have 
also been used to directly construct the portfolios by training on histor-

ical data, such as Reinforcement Learning (Yu et al., 2019), and Deep 
Learning (Zhang et al., 2020).

Some methods in this area leverage optimization methods to over-

come computational and estimation problems of portfolio optimization 
methods. Still and Kondor (2010) uses a regularization method to con-

struct weights that are stable and robust to fluctuations. Perrin and 
Roncalli (2020) investigates optimization methods to find a method that 
could be practically used for real-world problems with lots of assets. 
Some other studies use prediction models first to predict each asset’s 
future dynamics and then use the predictions to find optimal assets. Ta 
et al. (2018), Chen et al. (2021), Ma et al. (2021) investigate a range of 
machine learning methods from simpler methods (Linear Regression & 
Support Vector Regression) to more complex methods (XGBoost & Long 
Short-Term Memory). Reinforcement Learning (RL) methods have also 
been studied, in which an agent learns how to construct appropriate 
portfolios by behaving in the environment (Yu et al., 2019).

Due to the recent advances in deep learning methods, methods that 
try to use deep embeddings for stocks are also developed. For instance, 
Du and Tanaka-Ishii (2020) uses text data like news articles related to 
each stock to design an embedding for stocks, then using clustering in 
the embedding space, the method can identify groups of stocks that had 
similar price behavior as well as similar news. On the other hand, Hu 
et al. (2018) uses candlestick images and image neural network archi-

tectures to reach a proper representation for each stock. While these 
representation learning methods use text and image data, to the best 
of our knowledge, no previous method uses the graph of relationships 
between stocks to derive embeddings for stocks.

We use two recent surveys that cover different modeling and tech-

niques to position our work in the broad range of methods in the 
financial market domain. The first one is Marti et al. (2021), which 
reviews the uses of machine learning methods in different areas of 
asset management, like price forecasting and portfolio management. 
Among more than twenty portfolio management papers that the au-

thors review, only three use graph modeling of asset prediction. All 
three papers use the Hierarchical Risk Parity (HRP) method, which we 
use as a baseline and show our method’s superiority. The second sur-

vey, Saha et al. (2022), focuses on graph-based approaches in stock 
market analysis. The survey discusses five main types of stock market 
graph clustering methods: hierarchical clustering, role-based clustering, 
infomap, directed bubble hierarchical tree (DBHT), and spectral cluster-

ing. However, representation-learning-based methods do not place in 
either of these types showing the novelty of our approach.

Table 1 serves as a comprehensive overview of the related literature 
and methodologies employing graph learning for portfolio selection. 
Among the recent works in this domain, Rezaee et al. (2023) employ 
community detection on the graph to construct portfolios. Notably, our 
approach distinguishes itself by transforming the graph into a continu-

ous representation space before conducting community detection, intro-

ducing a novel perspective. Furthermore, the weighting scheme within 
the graph structures differs in our method, contributing to its unique-

ness. Another notable method, Li et al. (2022), utilizes the hypergraph 
attention mechanism to identify group-wise similarities among stocks 
to alter the portfolio over time. While their technique is commend-

able, our approach stands apart as it leverages historical data to suggest 
portfolios, emphasizing a static decision-making process focused on op-

timizing return-risk combinations of the portfolio’s future performance. 

These distinctions highlight the diversity of strategies within the field 
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Table 1

Related Literature on Portfolio Selection.

Citation Description Review Paper Uses Graph Representation Learning

Saha et al. (2022) Survey of different graph-based approaches in stock market analysis ✓ ✓ ✓

Gunjan and Bhattacharyya (2023) Overview of different methods ✓ ✗ ✗

Erlich et al. (2010) Mean-Variance Optimization approach ✗ ✗ ✗

Mantegna (1999) Uses minimum spanning trees and hierarchies to find the basket ✗ ✓ ✗

Mantegna (1999) Uses minimum spanning trees and hierarchies to find the basket ✗ ✓ ✗

Pfitzinger et al. (2019) Uses hierarchical risk parity method ✗ ✗ ✗

Li et al. (2022) Portfolio selection based on hypergraph embeddings ✗ ✓ ✓

Rezaee et al. (2023) Performs community detection to select nodes ✗ ✓ ✗

This paper Graph embedding and clustering to find uncorrelated baskets ✗ ✓ ✓

Fig. 1. Stages of RPS algorithm.
and underscore the distinctive contributions of our proposed methodol-

ogy.

2. Proposed methodology

This paper aims to present a novel utilization of representation 
learning as a diversification heuristic for a portfolio. The main idea is 
to choose uncorrelated assets for a portfolio to minimize the portfolio 
variance, which means less risk for the portfolio. To elaborate, take 𝑁
assets in a portfolio which are pairwise uncorrelated, i.e., ∀𝑖 ≠ 𝑗, 𝜌𝑖𝑗 = 0. 
Then the variance for this portfolio would be

Var (𝑃 ) =
𝑁∑
𝑖=1

(
𝑤𝑖

)2
𝜎2
𝑖

And with the simplifying assumption of equal weights for the assets, 
i.e., 𝑖, 𝑤𝑖 = 1∕𝑁 , we will have

Var (𝑃 ) = 1
𝑁2

𝑁∑
𝑖=1
𝜎2
𝑖
≤
𝜎2
𝑀

𝑁

where

𝜎𝑀 =max
[
𝜎𝑖 ∶ 𝑖 = 1,… ,𝑁

]
As 𝑁 grows to infinity, Var (𝑃 ) will lean towards 0. This illustrates 

that as we increase the number of assets in our portfolio that are uncor-

related with each other, the overall risk of the portfolio decreases. While 
3

it’s challenging to find completely uncorrelated assets in real-world sce-
narios, we can apply this concept by selecting assets with relatively low 
correlation to construct a well-diversified, low-risk portfolio.

In this paper, we propose the RPS method, a machine-learning-based 
approach that selects a diversified subset of assets based on the corre-

lation of assets. An overview of this method can be seen in Fig. 1. RPS 
first builds an augmented graph based on the pairwise correlation of all 
assets to quantify their similarity. Then by applying a representation-

learning method on the resultant graph, it reaches a new distance 
representation for the assets. Finally, a subset of uncorrelated assets 
is selected based on the distance representation to fulfill the core idea 
of having diversified assets. The mentioned steps are further explained 
below in detail.

To use machine learning and deep learning methods on graph-

structured data, we must first embed the graph or its nodes in a vector 
space. There are different types of methods being used for this pur-

pose. Some of them use discrete metrics to define the similarity between 
nodes like the number of common neighbors Ahmed et al. (2013), Cao 
et al. (2015). Others use random walks, and the probability of “walk-

ing” from one node to another as the similarity of the two nodes Perozzi 
et al. (2014), Grover and Leskovec (2016). Both approaches are unsu-

pervised and do not require any labels on data. However, if we have 
some labeled data, we can employ other methods that utilize the labels 
to find better representations. These methods have been improved by 
using other properties of graphs Kipf and Welling (2016), Hamilton et 
al. (2017). Since our data is unlabeled and our initial metric (correla-

tion) is not discrete, we choose to use Node2Vec. Node2Vec is a graph 
representation learning algorithm that maps the nodes in a graph to an 

embedding space. This algorithm employs a flexible random walk strat-
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Table 2

Datasets Information.

Index Asset Count Train Range Test Range

S&P 500 465 2019-04-01 to 2019-08-01 2019-08-02 to 2019-09-01

Nikkei 225 225 0 to 200 201 to 290

S&P 100 98 0 to 200 201 to 290
egy that can balance between breadth-first and depth-first exploration 
of the graph, allowing it to capture both local and global graph patterns 
effectively. We apply Node2Vec on the correlation graph of the stocks 
that we constructed to reach an embedding for our data, acting as a 
new similarity metric for the assets, so that ultimately we can select a 
set of stocks which gives us a diversified portfolio. The resultant embed-

ding spaces are essentially vectors of features that represent the original 
nodes in the original graph. We used hyperparameters 𝑤𝑎𝑙𝑘𝑙𝑒𝑛𝑔𝑡ℎ = 2, 
𝑛𝑢𝑚𝑏𝑒𝑟𝑤𝑎𝑙𝑘𝑠 = 50, 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 7, and 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = 64 to run Node2Vec.

To build the described graph, we first need to set weights for the 
edges. We chose Pearson correlation as the basis of the pairwise sim-

ilarity measure for the assets. We then augment the basic Pearson 
Correlation such that the more correlated the two assets are, the less 
the weight of their intermediate edge will be and vice versa. This aug-

mentation is done so that when Node2Vec is applied to the graph, there 
is more probability of walking towards less correlated assets rather than 
correlated pairs. In a random walk conducted by Node2Vec at a given 
node, it will iterate through the edge 𝑗 with a probability of 𝑤𝑗∑𝑛

𝑖=1𝑤𝑖
, 

where 𝑛 is the number of edges at the starting node. Thus, when the 
weight of an edge between to assets are smaller, there is smaller chance 
of a random walk passing through their corresponding edge. Further-

more, to ensure that we will not be visiting highly correlated assets for 
a starting node in a Node2Vec with a walk length of greater than 1, we 
should also consider these properties in our augmentation function:

• As the corresponding correlation of an edge approaches 0, the 
edge’s weight should approach infinity.

• As the corresponding correlation of an edge approaches 1, the 
edge’s weight should approach 0.

To this end, we used hyperbolic cotangent for our weight adjust-

ment function as it supports all of the mentioned properties. Thus, the 
augmented redefinition of pairwise similarity between assets, which is 
also used as the weight of the edges in our graph, is calculated this way:

𝑤𝑖𝑗 =∣ coth(𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑖, 𝑗)) ∣ −coth(1) (1)

As our graph is built, the next step is to run Node2Vec on our 
graph. For each node, multiple random walks are executed based on 
the weights of its edges. That is, in each step, the algorithm visits the 
neighbor 𝑗 of a starting node with a probability of 𝑤𝑗∑𝑛

𝑖=1𝑤𝑖
, where 𝑤𝑗 is 

the weight of the edge between the starting node and neighbor 𝑗, and 
the algorithm iterates over the graph in this manner 𝑙 times for each ex-

ecution, where 𝑙 is the walk-length of the algorithm. In the end, a new 
pair-wise distance representation is created based on the nodes visited 
during the execution of the algorithm for each starting node. Since we 
built the graph so that the edges with corresponding uncorrelated nodes 
to have greater weight than correlated ones, we will visit uncorrelated 
nodes for each node after this algorithm.

After embedding the nodes of the graph, we are able to use different 
clustering algorithms to reach our final portfolios. We use two different 
clustering methods. The first clustering algorithms is k-means, and the 
second is the fuzzy c-means algorithm, which allows each node to be 
present in more than one subset. Our initial belief was that this relax-

ation might allow the procedure to achieve better performance. Since 
our representation of the graph is produced so that the uncorrelated 
4

assets are closer to each other, we will reach clusters of relatively un-
correlated assets, which can be interpreted as selected assets for our 
diversified portfolio.

The last step in the method is to input the resultant portfolios into 
a portfolio optimization method to calculate the fraction of wealth to 
be invest in each of them. In this paper, we made use of three differ-

ent optimization methods: MVO Erlich et al. (2010), Hierarchical Risk 
Parity (HRP) Pfitzinger et al. (2019), and Critical Line Algorithm (CLA) 
Niedermayer and Niedermayer (2010).

3. Evaluation

3.1. Datasets

To test our method in an empirical experiment, we chose three 
datasets from three different stock market indices in different time-

frames. Descriptions of the datasets that we used can be observed in 
Table 2. The S&P 500 data is available in daily resolution The Nikkei 
225 and S&P 100 datasets were obtained from Indextrack datasets 
Beasley et al. (2003). The prices in this dataset are indexed from 0 
to 291, which are the weekly prices between March 1992 to September 
1997, and the train and test ranges are expressed as an index value in 
Table 2.

3.2. Metrics

We used two approaches to evaluate the performance of the algo-

rithms used in our paper. We measured the future performances of their 
output portfolios using several financial metrics and assessed their sta-

bility both in time and against noise via computational methods.

The financial ratios which we used to evaluate the future perfor-

mance of portfolios were as following:

• Correlation: Since our method’s primary focus was to minimize the 
correlation between different assets’ price values, we must evaluate 
how minimization of correlation in train data relates to the corre-

lation of portfolios in the test data. All of the other measures are a 
byproduct of this value.

• Return: The return of the portfolios was evaluated in the test range.

• Risk: The risk of the portfolios is defined as the standard deviation 
of the asset returns in a given time range.

• Sharpe Ratio:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑟𝑓
𝜎𝑝

(2)

Where 𝑅𝑝 is the return of the portfolio, 𝑟𝑓 is the risk-free rate of 
return, and 𝜎𝑝 is the standard deviation of the portfolio.

• Information Ratio:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 −𝑅𝑏
𝜎𝑅𝑝−𝑟𝑏

(3)

Where 𝑅𝑝 is return of the portfolio, 𝑅𝑏 is return of the benchmark, 
and 𝜎𝑅𝑝−𝑟𝑏 is the standard deviation of the excess return.

• M2 Measure (Modigliani):

𝑀2𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝑆𝑅 ∗ 𝜎𝑏 + 𝑟𝑓 (4)

Where 𝑆𝑅 is the Sharpe Ratio, 𝑟𝑓 is the risk-free rate of return, and 

𝜎𝑏 is the standard deviation of the benchmark.
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To evaluate the stability of the algorithms, we took another ap-

proach.

Definition 1. Suppose that the training phase of an algorithm has resulted 
in 𝑘1 different portfolios, where each is a set of assets. If the model is trained 
again under different circumstances, the result of the train would be 𝑘2 port-

folios. A stability matrix (𝑆𝑀) is defined as a 𝑘1 × 𝑘2 matrix where 𝑆𝑀𝑖𝑗

is the similarity value between portfolio 𝑖 of the first train phase and portfolio 
𝑗 of the second train phase.

The similarity metric we used in this paper was Jaccard Similarity 
measures, which is defined as below between set 𝐴 and set 𝐵:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑖𝑚(𝐴,𝐵) = |𝐴 ∩𝐵|
|𝐴 ∪𝐵| (5)

Where |𝑆| is the size of set 𝑆 . We use a matrix instead of a list be-

cause we cannot determine an injective function between two phases 
of training, and therefore no direct mapping exists between two sets 
of portfolios. After forming the stability matrix, we can extract differ-

ent measures from it. First of all, we calculate the maximum similarity 
value for each portfolio to find a mapping between phases. One problem 
in this process is that the count of portfolios can vary between phases. 
For example, since the Louvain clustering algorithm does not provide 
input for several clusters, the output cluster count might differ in differ-

ent training sets. Furthermore, some of the weighting algorithms might 
not reach a conversion point for a specific portfolio, and therefore the 
subset would not be present in the training process results. As a result 
of this problem, the column-wise maximum of the matrix is not neces-

sarily equal to the row-wise maximum. We combine the row-wise and 
the column-wise maximums before any further inspections to create a 
symmetric measure from the similarity matrix.

After taking the maximums, we use the average of maximums to 
compute the stability of the algorithm. As mentioned before, we also 
use two different stability tests:

• Noise Stability: The stability of the method if a minuscule amount 
of Gaussian noise is applied to the correlation matrix of the assets.

• Time Stability: The method’s stability if the time range of the train-

ing dataset is shifted for a small amount.

Note that these stability functions cannot be applied to Random 
and Simulated Annealing selection methods since they are statistical 
approaches for the optimization problem and unstable. No two consec-

utive runs with similar conditions would result in the same portfolio 
using these methods.

3.3. Benchmark

Minimum spanning tree (MST) and hierarchical clustering. The approach 
described in Mantegna (1999) uses Kruskal’s algorithm to build an MST 
over the complete graph of the market. The edges’ weights are deter-

mined by the relation below.

𝑑𝑖𝑗 =
√

2(1 − 𝜌𝑖𝑗 ) (6)

where 𝜌𝑖𝑗 is the correlation between asset 𝑖 and asset 𝑗. This approach 
relaxes the market graph and makes it easier for further operations. The 
paper itself does not specify a way to reach subsets of assets. We use 
Louvain Clustering Algorithm (Blondel et al., 2008) to extract smaller 
subsets of the market for evaluation. The clusters can be given to a 
weighting method, similar to RPS.

Graph Splex. The Graph Splex (Boginski et al., 2014a) tries to reach a 
diversified portfolio by creating a clique-like substructure of the market 
assets. We implemented this method using the pseudo-code described 
in the body of Boginski et al. (2014a). This subdivision can be weighted 
5

using the weight methods.
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Simulated annealing. Overall, various hill-climbing algorithms can be 
used as the solution for portfolio optimization cardinality problems, 
such as Simulated Annealing and Genetic Algorithms. The method starts 
with a random set of states for a subset of assets and changes the weights 
until a stable state is reached (Crama & Schyns, 2003, Maringer, 2005).

Random subsets. Since our goal is to constraint the cardinality of assets, 
we can use random divisions of the market as a baseline method. In this 
approach, since random subdivision has access to every market subset, 
there is a probability that it can reach some of the best baskets. After 
selecting this subdivision, we can run the optimization methods on the 
portfolios.

4. Results

4.1. Future performance

To evaluate the performance of RPS, we constructed several portfo-

lios using different methods and compared their performances via the 
metrics that we described above. Firstly, we built a set of portfolios with 
a two-phased approach that used RPS for their asset selection in their 
first phase, and then used one of the portfolio optimization methods 
CLA Niedermayer and Niedermayer (2010), MVO Erlich et al. (2010), 
or HRP Pfitzinger et al. (2019). Then we created a set of other portfo-

lios using our benchmark methods. Three out of four of these methods, 
Mantegna (MTN), Random (RND), and Graph Splex (SPX), can be used 
in a two-phased fashion like ours. After computing the subsets, we used 
the same portfolio optimization methods mentioned above. The Simu-

lated Annealing (SA) is the only one-phased benchmark method, and 
does not use an optimization method to set weights for the selected 
assets in a portfolio.

Furthermore, RPS and MTN methods result in multiple portfolios. 
We run RND and SA multiple times to compare all of the benchmarks 
in a fair comparison, but the SPX approach outputs a consistent and 
deterministic result for a given market. Lastly, we could not run the SPX 
method on Nikkei 225 and S&P 500 datasets since it did not converge 
on our systems in a bounded time.

It should be noted that the number of clusters used in the clustering 
phase of RPS was set to 12. This hyperparameter was empirically set to 
this value as it was large enough to provide a good range of portfolios, 
but wasn’t too big to result in some output portfolios having only one 
or a few assets in them.

The top 10 portfolios in the training range of each method were 
then picked, and their performances were evaluated in the test range. 
Portfolios were sorted using Sharpe value to maximize the return while 
minimizing the risk. The risk-return graph depicting the discussed port-

folios can be observed in Fig. 2.

Moreover, the best value of future metrics for each of the methods 
are available in Tables 3, 4, and 5.

The tables reveal that within the S&P 500 and Nikkei 225 indices, 
the RPS method attains the optimal return when compared to other 
methods, concurrently achieving the highest correlation value. Notably, 
the act of selection in each instance results in a decrease in the cor-

relation value from the original correlation of the assets. Nevertheless, 
within the S&P 100 database, diverse outcomes in performance emerge. 
The results on this dataset can be explained by examining the correla-

tion between assets and the total number of assets. The overall average 
correlation among S&P 100 assets is determined to be 0.418337. Addi-

tionally, this dataset encompasses fewer assets in comparison to other 
datasets, providing an advantageous environment for random subsets 
to perform commendably. Two distinctive characteristics contribute to 
the superiority of random selection results in this dataset. Firstly, the 
high correlation among assets makes it challenging for selection algo-

rithms to identify highly uncorrelated subsets, leading most portfolios 
to align with the general trend. Secondly, the reduced number of assets 

results in a smaller pool of possible subsets, allowing random samples to 
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Fig. 2. The efficient-frontier plot for the top 10 portfolios of the training set for RPS+optimization versus benchmark algorithms.
yield instances of high performance. This aligns with the conceptual un-

derstanding that a phase of random selection can yield portfolios with 
relatively high performance due to its capability to traverse any point 
within the portfolio space.

The return of all portfolios in the markets is graphically represented 
in Fig. 3. It can be seen that RPS achieves a higher average return. In 
S&P 100, few of the RND portfolios were able to reach a high return 
value, and also SPX achieved a higher average return, but as can be 
seen in the figure, RPS can obtain a higher average performance. De-

spite RPS’s overall better performance compared to the other baseline 
models, it should be noted that, as RPS is based on the estimation of 
correlations between the assets, it may be prone to instability and de-
6

graded performance when dealing with a limited dataset. An inaccurate 
estimation of the correlation between the assets may lead to the selec-

tion of assets in a portfolio that are not as uncorrelated, and hence the 
selected portfolio may have higher risk.

Moreover, it should be noted that while RPS and other data-driven 
and ML-based techniques undoubtedly offer valuable insights for port-

folio selection, it’s essential to acknowledge potential limitations and 
associated risks in their practical application. The inherent complexity 
of financial markets introduces an element of risk. ML models, depen-

dent on historical data patterns, may encounter challenges in adapting 
to unforeseen market fluctuations, potentially impacting the efficacy of 
portfolio selection strategies. Therefore, a balanced approach, incorpo-
rating risk-aware methodologies and robust privacy measures, is pivotal 
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Table 3

Future Performance Measures for S&P 500 Dataset.

Method Correlation Return Risk Sharpe Ratio Information 
Ratio

M2

Vanilla CLA 0.162075 0.027747 0.114838 0.164118 0.242098 0.027636

RPS+CLA 0.138791 1.110586 0.369897 3.435445 4.721627 0.817560

MTN+CLA 0.196280 1.094718 0.369051 4.948828 4.654215 1.173791

RND+CLA 0.171342 0.267575 0.535209 1.031657 1.140248 0.251739

Vanilla HRP 0.162075 0.011727 0.095295 0.216459 0.103681 0.015811

RPS+HRP 0.008178 0.535214 0.269456 2.153089 2.277263 0.515710

MTN+HRP 0.196280 0.541221 0.270475 3.698830 2.302783 0.879557

RND+HRP 0.191148 0.166312 0.291356 0.773329 0.710050 0.190932

Vanilla MVO 0.162075 0.027747 0.114838 0.164118 0.242098 0.027636

RPS+MVO 0.138791 0.932556 0.285581 4.163090 3.965298 0.988838

MTN+MVO 0.235134 0.557674 0.215301 3.736161 2.372682 0.888345

RND+MVO 0.174462 0.165436 0.262077 0.597288 0.706327 0.149494

SA 0.167465 0.273648 0.210593 1.117717 1.166047 0.271996

Table 4

Future Performance Measures for Nikkei 225 Dataset.

Method Correlation Return Risk Sharpe Ratio Information 
Ratio

M2

Vanilla CLA 0.450845 0.143052 0.436134 0.261482 0.278425 0.142717

RPS+CLA 0.094671 1.991665 0.387936 3.818792 4.599676 1.665158

MTN+CLA 0.210820 0.395800 0.403417 0.790543 0.920129 0.351768

RND+CLA 0.189425 0.962127 0.398781 2.390352 2.225895 1.045625

Vanilla HRP 0.450845 0.042383 0.422741 0.069599 0.081713 0.044518

RPS+HRP 0.176072 0.165529 0.403649 0.385897 0.389200 0.176268

MTN+HRP 0.210820 0.946481 0.354701 2.427145 2.189820 1.061583

RND+HRP 0.265348 -0.411154 0.405019 -1.037120 -0.940445 -0.440912

Vanilla MVO 0.450845 0.143052 0.436134 0.261482 0.278425 0.142717

RPS+MVO 0.094671 1.978367 0.400116 3.826142 4.569014 1.668345

MTN+MVO 0.210820 0.594692 0.352680 1.520505 1.378710 0.668362

RND+MVO 0.105741 -0.315837 0.374047 -0.868171 -0.720674 -0.367636

SA 0.558230 -0.937416 0.420207 -2.070724 -2.153834 -0.889199

Table 5

Future Performance Measures for S&P 100 Dataset.

Method Correlation Return Risk Sharpe Ratio Information 
Ratio

M2

Vanilla CLA 0.418337 1.269428 0.198022 4.348930 4.385291 1.262862

RPS+CLA 0.177503 2.783124 0.481028 4.457300 9.635014 1.294110

MTN+CLA 0.155783 2.630134 0.402634 4.461950 9.104422 1.295450

SPX+CLA 0.870104 2.461136 0.571726 4.289180 8.518312 1.245634

RND+CLA 0.208234 3.696725 0.320223 5.226347 12.803521 1.515855

Vanilla HRP 0.418337 1.278512 0.195795 4.449693 4.416796 1.291916

RPS+HRP 0.255930 1.473516 0.257972 3.724968 5.093098 1.082950

MTN+HRP 0.155783 2.100452 0.298370 4.351074 7.267409 1.263480

SPX+HRP 0.870104 2.585765 0.627108 4.109122 8.950544 1.193717

RND+HRP 0.206733 1.548159 0.252117 4.243590 5.351972 1.232489

Vanilla MVO 0.418337 1.269428 0.198022 4.348930 4.385291 1.262862

RPS+MVO 0.177503 2.790539 0.481578 4.476027 9.660732 1.299509

MTN+MVO 0.339761 1.914374 0.303960 4.823667 6.622061 1.399747

SPX+MVO 0.870104 2.461136 0.571726 4.289180 8.518312 1.245634

RND+MVO 0.043606 1.634323 0.306306 4.889193 5.650800 1.418641

SA 0.217874 1.759462 0.326334 4.851917 6.084802 1.407893
to harnessing the full potential of data-driven and ML methods in port-

folio management.

4.2. Computational complexity of the RPS method

The RPS method not only proves effective in optimizing portfolio 
returns but also significantly reduces the computational complexity, en-
7

hancing solvability in comparison to traditional methods. To illustrate, 
the MVO method necessitates solving a quadratic programming prob-

lem, where each step involves (𝑛3) operations, where 𝑛 is the number 
of assets. This posits a considerable computational burden. The selec-

tion phase in RPS however aids the optimization process by strategically 
reducing the number of assets for subsequent methods.

When considering the correlation matrix as input, the time complex-
ity of the RPS method can be delineated into three distinct steps: finding 
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Fig. 3. Return distribution.
the graph embeddings, clustering, and portfolio optimization. The ini-

tial step of identifying graph embeddings exhibits a highly scalable time 
complexity of O(n log(n)) Pimentel et al. (2018), ensuring efficiency in 
handling datasets of varying sizes. The clustering step employs the k-

means algorithm, where each iteration involves (𝑘𝑛) vector arithmetic 
calculations. Subsequently, the average cluster size becomes 𝑛∕𝑘. This 
effectively diminishes the downstream portfolio optimization complex-

ity, as the subsequent methods only need to contend with 𝑛∕𝑘 assets 
on average. This reduction in computational load streamlines the opti-

mization process, rendering it more easily solvable.

The final step involves portfolio optimization based on the clustered 
subsets. With the reduced set of assets in each cluster, the optimiza-

tion process becomes more computationally efficient, contributing to 
the overall effectiveness of the RPS method. Based on this evaluation, 
the RPS method presents a favorable computational landscape, offer-

ing a scalable and efficient approach to address the challenges posed by 
traditional methods, particularly in scenarios with large datasets.

4.3. Stability

The time and noise stability metrics are shown in Table 6 and Ta-

ble 7. Gaussian noise with 𝜇 = 0 and 𝜎 = 0.01 was applied to the market 
correlation matrix for noise stability. For time stability, the train time 
ranges were shifted to 20 data points for each dataset.

In noise stability metrics, MTN was able to outperform RPS and SPX 
methods. However, the margin of superiority was not significant in the 
8

S&P 100 dataset, resulting from the smaller size of the database and the 
Table 6

Noise Stability.

Method S&P 100 Nikkei 225 S&P 500

Mantegna 0.528711 0.479277 0.427159

RPS 0.460720 0.373794 0.085135

Splex 0.000000 - -

Table 7

Time Stability.

Method S&P 100 Nikkei 225 S&P 500

Mantegna 0.336598 0.360965 0.228190

RPS 0.557390 0.231124 0.119387

Splex 0.400000 - -

lower number of options available in the selection phase. As the size of 
the dataset grows, stability drops for all of the methods.

In order to assess the stability of our proposed method under vary-

ing subsets of the dataset, we conducted an additional stability analysis 
using the S&P500 dataset. The approach involved randomly selecting 
subsets of assets, varying the ratios at 95%, 90%, and 80%. Subse-

quently, we compared the portfolios generated by each method on these 
subsets to those derived from the original data. The clustering method 
was applied to identify 60 clusters, utilizing clusters with non-trivial 

subsets to measure the similarity between portfolios.
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Table 8

Subset Stability on S&P500.

Method 95% 90% 80%

RPS 0.2765 0.2512 0.2049

(0.0098) (0.0108) (0.0120)

Mantegna 0.6866 0.5765 0.4403

(0.0180) (0.0109) (0.0126)

Fig. 4. Risk-Return distribution of RPS on S&P 500 dataset, separated by clus-

tering method.

Table 8 presents the outcomes of this analysis. Each column rep-

resents the similarity of portfolios when selecting a specific ratio of 
assets. Consistent with our previous findings, the MTN method exhibits 
a higher level of stability. However, it is noteworthy that as the sam-

ple size decreases, the similarity measure declines more rapidly for the 
MTN method.

4.4. The effect of the clustering method

Another issue to analyze is whether the clustering method (k-means 
or fuzzy c-means) affects outcoming portfolios or not. Fig. 4 depicts the 
risk-return relation for all different setups of RPS ran in the test range.

As seen in this figure, there are no significant differences between 
the portfolios using these two clustering methods.

5. Conclusion and future work

This paper introduced an novel portfolio selection method, denoted 
as RPS (Representation-based Portfolio Selection), leveraging represen-

tation learning and graph embedding techniques. As evidenced by our 
empirical results, the incorporation of RPS into various portfolio weight 
optimization methods consistently led to enhanced performance com-

pared to the vanilla usage of those methods. Furthermore, our findings 
demonstrated that portfolios constructed using RPS consistently exhib-

ited superior returns when compared to their counterparts.

This study primarily utilizes the correlation matrix of asset prices 
to generate graph embeddings for assets. Future research could explore 
enriching the embeddings of assets by incorporating additional informa-

tion from diverse sources, such as news and social media. Such enhance-

ments might contribute to a more informative embedding of assets and 
improve portfolio selection accuracy. Furthermore, an intriguing av-

enue for future research involves considering ensemble approaches by 
combining RPS with different selection methods. While RPS excels at 
integrating correlation information into embeddings, an ensemble ap-

proach could capitalize on the strengths of various methods. We leave 
9

the exploration of this avenue as a direction for future research.
Intelligent Systems with Applications 22 (2024) 200348

Another future work could involve the extension of RPS into a dy-

namic portfolio management algorithm. The focus will be on enhancing 
the adaptability of RPS by incorporating real-time data analysis, al-

lowing the algorithm to dynamically respond to changes in market 
conditions. This entails developing a framework that continuously an-

alyzes incoming market data to capture evolving trends in changing 
market conditions.

Our results demonstrated that RPS, as a portfolio selection method, 
improves the overall performance when integrated with a portfolio op-

timization method in a 2-step portfolio optimization, compared to when 
the portfolio optimization methods are directly applied to the dataset. 
However, among the tested portfolio optimization methods combined 
with RPS, we could not find a method that outperforms others in all 
cases. A future investigation could involve finding characteristics of the 
dataset that indicate which portfolio optimization method, when com-

bined with RPS, would perform the best.
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