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paper, we address the critical drawbacks of crowdsourcing moderation actions in Q&A
communities and demonstrate the ability to automate moderation using the latest
machine learning models. From a technical point, we propose a multi-view approach that
generates three distinct feature groups that examine a question from three different per-
spectives: 1) question-related features extracted using a BERT-based regression model;
2) context-related features extracted using a named-entity-recognition model; and 3) gen-
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Community question answering eral lexical features derived using statistical and analytical methods. As a last step, we train
Multi-view learning a gradient boosting classifier to predict a moderation action. For evaluation purposes, we
Decision support system created a new dataset consisting of 60,000 Stack Overflow questions classified into three
Stack overflow choices of moderation actions. Based on cross-validation on the novel dataset, our

approach reaches 95.6% accuracy as a multiclass task and outperforms all state-of-the-
art and previously-published models. Our results clearly demonstrate the high influence
of our feature generation components on the overall success of the classifier.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Question-answering (Q&A) websites include a variety of user-generated content, ranging from simple documented guides
to highly experienced-based answers. While the content is not presented as step-by-step guidelines, these domain-specific
systems are being considered as primary or auxiliary tools of learning and fault-finding for mid-level and high-level
technicians.

Community Q&A websites must maintain their content quality by editing incomprehensible questions or removing spam
and duplicate content in order to remain a citable source and trustworthy encyclopedia for the target audience. High-quality
content will improve the site’s reputation, attract more visitors, provide a better user experience, encourage experts to
answer questions that challenge their expertise, and finally, boost web result rankings [1]. Maintaining quality standards
is primarily accomplished by keeping questions as clean and clear as possible (e.g., editing posts to fix grammar, adding fac-
tual data, examples, or code samples), closing off-topic/opinion-based/spam content, removing duplicate questions, and pro-
tecting high-quality questions from community changes.

Abbreviations: Q&A, Question and answering; NER, Named-Entity Recognition; SoftNER, Software-related named entity recognition.
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Popular Q&A websites, such as the Stack Exchange' family of websites and Quora?, currently depend on crowdsourcing as a
practical way to ensure their quality policies, which in turn is dependent on the engagement of users in moderation tasks. The
overall success of these websites has been attributed to various community features such as voting and commenting [2], and a
well-designed system of badges and reputation points [3]. The questions are continuously monitored by users and will be
flagged, edited, or closed in the event they do not comply with the quality criteria. While this is a practical and feasible
approach, depending on community feedback to maintain content quality has serious drawbacks. First, fixing a problem will
take time, as it has to be noted by the community, flagged by readers, and voted on by experienced users for a final decision.
Valid feedback will cost the time of several users in the process of decision-making, and incorrect feedback (mostly to gain gam-
ification rewards of badges) will result in wasting more time and energy from experienced users. In addition, the subjectivity of
decisions by those who flag the questions and those who vote for a final decision can result in disputes and a re-voting process.

With the popularity of text mining and natural language processing methods in recent years, some researchers have uti-
lized the latest machine learning (ML) models to tackle this problem. However, previous research suffers from a few impor-
tant issues that make them less applicable or helpful in real environments. First, they use community feedback, such as
votes, comments, or answers, to predict the quality of a post and suggest moderation actions. Such models cannot be applied
to new questions (especially as a recommender system before initial publication), as they depend on community feedback
for an accurate recommendation. In addition, the majority of previous works include user-specific features such as previous
questions and votes. Similarly, while they would positively affect the accuracy of the recommender system, these features
are not applicable to new users who require the highest level of editing and guidance. In fact, such features are suitable for
decision support systems that help to pinpoint possible weak posts rather than decide a moderation action based on new
content. Furthermore, the high volatility of the question subjects should be considered in creating a fast-adaptable model
by reducing the training time [4]. Finally, the proposed approaches should consider the context of the website, instead of
solely relying on general textual features and ML models. For example, asking opinion-based questions or questions with
examples may be prohibited, allowed, or encouraged based on the user rules of a given website.

In this paper, we aim to build a classifier to separate the given questions based on their quality in the context of the target
Q&A platform (case study of Stack Overflow?). The classifier only acts upon the textual data on the question itself (title and
body) and does not include features from user profiles (such as previous questions) or any community feedback (replies,
upvotes, comments, or edit history). Thus, it can be used as an accurate autonomous moderator or a recommender system
for new questions and new users, in addition to any other purpose. The proposed multi-view method utilizes BERT sentence
embedding, a software-related named-entity-recognition (Soft NER) model, and general text-mining methods in order to extract
the question’s subjective features, software-related features, and lexical features, respectively. As a final step, the extracted fea-
tures of sub-modules will be fed to a state-of-the-art gradient boosting classifier to determine the necessity of an action.

The target has three classes in accordance with the required moderation action: 1) high-quality questions that should be
kept as-is, 2) low-quality questions that can be fixed by editing, and 3) low-quality questions that should be closed. While
the targets could be fine-grained to include the exact reason for editing or deletion, it is more essential to quickly categorize
new posts and notify the author or content moderators as the first step. The process is similar to the manual classification of
new content that is currently performed in the Triage Review Queue® of some Stack Exchange Q&A websites.

We summarize our contributions as follows:

e We propose a novel approach to predict required high-level moderation action for questions in Q&A websites. The
approach does not depend on user profiles or community feedback.

e The proposed multi-view approach utilizes state-of-the-art machine learning models to extract three distinct feature
groups that examine a question from three different perspectives.

e We introduce an original dataset for the task of question quality classification. The dataset contains 60 k Stack Overflow
questions and is equally separated into three classes of moderation actions.

e We evaluate our approach and compare its performance with that of state-of-the-art models using the cross-validation
method. We also discuss the impact of each model component on the overall success of the method.

The structure of this article is as follows: Section 2 reviews past work on the task of text quality classification with a focus
on Stack Overflow. Section 3 elaborates on methodology and data collection. Section 4 presents our experimental results, and
Section 5 is the concluding remarks.

2. Background

Previous research concentrated on automating a single moderation task in a specific context. Recent examples include
fixing tags [5,6], finding high-quality [7,8] and duplicate questions [9,10] in community question-answering websites, pre-
venting the spread of false content across online social networks [11,12], and detecting spam/ad in online encyclopedias
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[13,14]. The majority of these cases use a supervised text classification model to separate unacceptable content or behavior
from the rest.

To determine the impact of various user-related and textual features on the quality of questions, earlier works mostly
relied on surveys and correlation analysis [15,16]. According to [16], the quality of a question affects the quality of answers
and the overall community attention to that question. In [17], researchers reached a similar conclusion and stated that more
users would be engaged in answers in a short period of time if the question was well-written.

Lezina and Kuznetsov [18] used data from the 2012 Kaggle competition to suggest whether a Stack Overflow question
should be closed. They applied Random Forest and Support Vector Machine classifiers to the extracted features, which
included the asker’s user profile features (such as age, location, reputation, number of up/down votes, number of previous closed
questions, and number of answers to previous questions). One of the most important features was PostScore, which represented
the number of upvotes for the question. Their best combination of features achieved the lowest multiclass log loss in the
competition.

Ravi et al. [1] clarified the distinction between the popularity of a question and the quality of its content. By applying
topic models to the extracted n-grams of question body and title, they were able to score 72% accuracy in separating “good”
questions from “bad” ones. With the same notion of classifying Stack Overflow questions into two classes of “good” and
“bad”, Arora et al. [ 19] considered questions with a negative score as “bad” questions, which do not contribute to the system.
Their proposed method that included applying the BM25 model on n-grams reached 73.6% accuracy, a 2.8% improvement.
Baltadzhieva and Chrupata [20] used the Ridge regression model and a few statistical methods to determine the importance
of various textual and user-related variables. They also investigated words or terms that most frequently exist in high-
quality and low-quality questions.

With recent advances in NLP, researchers applied and evaluated state-of-the-art methods in tasks related to finding high
quality questions and answers [7,8] and modeling computer code [21,22]. Li et al. [23] utilized a combination of Decision
Making Trial and Evaluation Laboratory (DEMATEL) and Analytic Network Process (ANP) to evaluate the effectiveness of
23 indicators of answer quality. Based on their results, subjective features (such as novelty, effectiveness, and understandabil-
ity) were among the most important indicators. Sha et al. [24] pursued a similar goal of ranking 15 question-quality related
features (including social activities of the questioner) according to their impact on page views. Their results, based on the
Grey Relational Grade method, ranked features based on user feedback (such as the count of followers, comments, and
answers) at the top of the list. Ho et al. [25] proposed a two-stage hierarchical attention network (HAN) to classify questions
into three classes based on their content quality. Their macro average of the evaluation results for the three classes report an
F1-score of 37.15%.

More recently, Mousavi et al. [26] used a classification algorithm to evaluate the impact of the first answer on the quality
of the subsequent answers in the Yahoo! Answers Health section. The results suggested that 17.13 percent of the best
answers were not professional answers.

Tabassum et al. [27] investigated the unique challenges of named entity recognition in the computer programming
domain and proposed a software-related named entity recognizer (SoftNER). The proposed method, which is based on an
annotated corpus of Stack Overflow, extracts 20 software-related named entity types (such as, CLASS, VARIABLE, XML
TAG) and utilizes an attention network to combine the local sentence-level context with corpus-level information extracted
from the code snippets.

Sen et al. [28] used the BERT language model to assess the quality of questions and answers pairs from the Microsoft
Developer Network (MSDN). They trained on a two-class dataset with 100 k instances, and were able to achieve 57% and
69% F1-scores in two separate settings. They confirm that while the goodness of community-based CQAs is not well defined,
it is possible to use artificial intelligence to automate expert-validated rules for quality control.

Our case study, Stack Overflow, is a major and well-known Q&A system, specifically designed for programmers. Since its
launch in 2008, more than 60 k users contributed to more than 21 million questions®, including 524 k monthly comments,
24 k monthly edits, and 20 k monthly closed questions [29]. Engagement in activities, such as voting, commenting, and answer-
ing questions, earns user reputation, which is an indicator of the user’s value to the website [30].

Finally, the proposed method can be considered a multi-view approach because of its use of distinct groups of features.
The multi-view approach has been utilized for various goals in conjunction with recent data collection and feature engineer-
ing techniques (such as [31-35]). In this work, we extract all feature groups from the same data source (question title and
body), contrary to some works that use separate data sources for every view. In this context, Dalip et al. [36] proposed a
multi-view framework for quality assessment of collaborative content that uses user profile and edit history alongside tex-
tual content to extract features.

3. Data and methods

This section focuses on the proposed methodology using the seven steps of machine learning laid out in [37]. The third
step, which describes the model, will be explained thoroughly in several parts. The experimental results and performance
discussions will be reported in Section 4.

5 https://data.stackexchange.com.
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3.1. Data collection

The Stack Exchange family of Q&A websites enables researchers to perform SQL queries on the majority of the database
tables to view or download requested information®. We used the query tool to provide up-to-date general statistics in the pre-
vious sections. We also utilized this method with the goal of creating a novel dataset for the task of question quality classifi-
cation. The collected dataset consists of 60,000 Stack Overflow questions from 2016 to 2020, classified into three categories:

e HQ: High quality questions that require no moderation action. They are considered high quality, as they have not been
edited at all, even though they received enough attention from the community (views, answers and upvotes).

e LQ_EDIT: Low-quality questions that require community edits. The original question is considered a low-quality question
that can be fixed through editing since it remained open regarding having syntactic and semantic problems.

e LQ_CLOSE: Low-quality questions that were closed by the community without a single edit. These questions are either
incomprehensible, spam, or off-topic for the target community.

We did not include closed duplicate questions in this dataset since detecting them is a completely different task that can-
not be performed solely based on the content of a given new question and requires the complete questions dataset. Each
question in the dataset has a title, body, tags, creation date, and quality category. The question body is in HTML format
and contains all parts of the text (such as URLs and code). The dataset is publicly available on our official GitHub repository.”

3.2. Data preparation

The question body, as described in the preceding part, is in HTML format and may contain code samples, URLs, and graph-
ics. As the first step in data preparation, we used an HTML parser to extract question content from the given question body.
We also corrected a mishmash of line-break characters. We produce three binary columns to represent each class of the tar-
get value (quality categories), as we aim to report results and analyze the complexity of prediction for each class separately.
Therefore, in technical terms, we have three binary classifiers rather than one multiclass classifier.

To find important links between simple textual features and the targets, we calculated the Pearson correlation coefficient
for all selected features in the training part of the dataset. All coefficients are in the [-0.1 to +0.1] range, indicating that there
is no meaningful association between the selected features. However, it should be noted that we develop various new fea-
tures in the next steps, some of which have larger coefficient values.

3.3. Model

As shown in Fig. 1, our proposed model takes the question title and body as input, generates various types of indicators,
and then makes a decision based on the engineered features. The question body and text are fed into a model to generate
subjective indicators of the question (such as readability and clarity) using BERT sentence embedding [38]. The question
body is fed into the Soft NER model to generate domain-specific features based on word entity types, and simple methods
are used to extract statistical, lexical, and syntactic indicators. Three statistical formulas are used to transform the extracted
features into a larger set of features. We removed elements with insignificant relationships with the targets using correlation
analysis. Finally, the remaining features were fed into an XGBoost classifier model.

Our proposed model is made up of three internal models that must be trained separately: (1) a BERT-based regression
model that generates subjective features, (2) a NER-based model that predicts the entity type of each word, and (3) a final
classifier that makes the final decision on the question. The model has six components (Component 1 to 6). In the following
subsections, each component of the proposed model will be explained in accordance with the numbers in Fig. 1.

3.3.1. Extracting subjective indicators

The “clearness,” “intent,” and “interestingness” of a question are among the subjective properties of a question. Even
though these properties hold an important key in determining the quality of a question, building a model or even a fair data-
set for subjective features of questions is not an easy task.

The Crowdsource team at Google Research, a group focused on NLP and other types of ML science via crowdsourcing
(https://crowdsource.google.com/), has collected data on a number of quality aspects of questions and answers from Q&A
websites in 2019. The data is relatively small, consisting only of 6079 rows, and all aspects have been represented by numer-
ical values in the range of [0,1]. These subjective features and their short descriptions are available in Table 1.

In a recent work [39], we proposed a regression model to predict these subjective aspects of questions. Our proposed
method has two main parts: 1) An input embedding layer (1.A) that extracts contextualized embedding from the BERT-
base model for each word in the input sentence. 2) A neural network model that predicts the targets using the word repre-

6 One way is to use https://data.stackexchange.com.
7 https://github.com/Moradnejad/StackOverflow-Questions-Quality-Dataset/.
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Fig. 1. Architecture of the proposed model.

Name

Description
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Clear intent
Conversational
Expects short answer
Fact seeking

Has accepted answer
Interestingness others
Interestingness self
Multi intent

Not a question
Opinion seeking
Type-choice
Type-compare
Type-consequence
Type-definition
Type-entity
Type-instructions
Type-procedure
Type-reason explanation
Type-spelling

Well written

Is the questioner’s intent clear?

Is the question conversational?

Does the question expect a short answer?

Is the question asking for facts?

Does the question have a commonly accepted answer?

Does the question look interesting to others?

Does the question look interesting to the asker?

Is the question intended to have multiple meanings (multiple questions within one)?
Is the text informative, without having a clear question?

Does the question ask for opinion-based answers?

Is the question a multi-choice question?

Is the question asking for a comparison between alternatives?

Is the question looking for the consequence of a possible action?
Is the question looking to define something?

Is the question related to an entity?

Is the question looking for instructions?

Is the question require explaining a procedure?

Is the question looking for an explanation of the reason?

Is the question about spelling?

Is the question well written?

148



I. Annamoradnejad, ]. Habibi and M. Fazli Information Sciences 600 (2022) 144-154

sentations from the previous layer. We used this model to predict the values of subjective features for all 60 k questions of
this research.

3.3.2. SoftNER model

Named Entity Recognition and Classification (NERC) aims at identifying references to entities in text and is one of the
important sub-tasks of Information Extraction (IE). In general domains of text, it looks for names of people, organizations,
locations, time, date, currency and other numerical expressions [40].

The extraction of software-related named entities (SoftNER) can contribute to a wide range of downstream applications,
such as finding similar questions [41], and imposes significant challenges as it requires resolving a large number of unseen
tokens, inherent polysemy, and salient reliance on context [27]. Because the goal of this study is to determine the quality of
Stack Overflow questions, which may contain code-samples and programming-related terms, we decided that the level of
involvement of software-related entities is critical in determining the quality of a question.

In this part, we utilized a recent SoftNER model [27] to extract features related to programming and software engineering.
BERTOverflow has three main elements and uses an attention network to combine the local sentence-level context with
corpus-level information extracted from the code snippets. We feed the tokenized body of questions as input, and the model
detects tokens that represent software-related entities. If a token is not determined as a reference to an entity, it will be
replaced by ‘O’, otherwise the output will show the type of software entity (such as VARIABLE, DATABASE, or ALGORITHM).

3.3.3. Statistical analysis

In this part, we extract some numerical features from the existing data. First, we extract simple lexical indicators from the
question title and body, which contain information on the involved letters, words, and sentences. The main features of this
component are letter and word count, code percentage of the body, sentiment analysis, and the type of title as a sentence (inter-
rogative or not). We also attached great importance to a few lexical features in the first and last sentences of the body, as well
as the average value for all sentences. Word count, type of sentence, and sentiment analysis are among the features.

Furthermore, we use the output of the SoftNER model to extract software-related features. These features include a count
and percentage of tokens, separated by the types of software entities. Similar to the lexical features, we extract these features
regarding the full title and body of the question, the first sentence, the last sentence, and the average values for all sentences.

3.3.4. Extracted feature groups

In this part, we will look at the extracted feature groups in more detail. In Component 1, we predicted 20 subjective fea-
tures for the entire question’s body. Despite the fact that there was no direct feature extraction in Component 2, we used the
output of this part to extract 20 software-related features in Component 3. Using general text-related lexical and statistical
methods, we extracted 54 additional attributes in addition to these features in Component 3.

We categorize these features based on their perspective on the input, which includes subjective question features, software-
related features, and general statistical-lexical features. Subjective characteristics are associated with questions in general, and
its trained model is applicable to any question-related task on any subject. Software-related features, on the other hand, are
domain-specific and can be used in other context-related prediction tasks, whether on questions or normal texts. General
statistical-lexical features treat the input as text and can be applied to any text-related task, whether related to questions
and software or not.

3.3.5. Feature engineering

In this part, a few minor steps are taken to positively influence the performance of the final classifier.

First, with the overall goal of generating more useful features in mind, we use three numerical functions to transform the
extracted ones from the preceding part. The three transform functions are as follows: 1) log, 2) sqr, and 3) sqrt. As a result, the
number of features increased by threefold. Further to that, because some classifiers, such as kNN-based models, are sensitive
to input values, we normalized all of the dataset’s features to values ranging from 0 to 1. Finally, we included TF-IDF vectors
as a simple additional feature extraction method because they connect a given question to previously existing questions on
the platform and may include valuable information that was missing in our extracted data.

We ran a correlation analysis on all of the features (both extracted and generated) with the target values. This step is used
to identify and remove features that have a negative or insignificant impact on the final output. It is important to note that
this analysis is done on the train portion of the dataset to prevent test data leakage. We removed five features based on the
results of this step that had less than a 0.01 impact on the three targets.

3.3.6. Final classifier

The proposed model’s final component is to classify a given question based on the extracted features of the previous parts.
We chose the XGBoost classifier [42] for this critical role and tuned its hyper-parameters accordingly. XGBoost is the latest
step in the evolution of tree-based algorithms that include decision trees, boosting, random forests, boosting, and gradient
boosting [43]. It is an optimized distributed gradient boosting method that provides fast and accurate results and achieves
state-of-the-art accuracy especially if we are keen on run time [42,44]. Other optimized gradient boosting implementations,
such as Microsoft’s LightGBM, are comparable in performance.
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We approach the multiclass task at hand as three distinct binary classifications, which allows us to better answer which
type of quality is easier or more difficult to determine. In practice, however, converting the task into a multiclass classifica-
tion would increase the overall prediction accuracy. The subtasks are as follows:

Task 1. Predicting if the question is of high quality (requires no action).
Task 2. Predicting if the question requires editing.
Task 3. Predicting if the question should be closed.

3.4. Model training

As thoroughly discussed in the preceding subsection, our proposed method includes three supervised models that require
training. Component 1 predicts subjective question features for all parts of the new dataset. To train the neural network
model, we use the 2019 dataset provided by Google’s Crowdsource team, which includes 6 k hand-labeled questions with
multiple subjective features. After training for two epochs, the neural network’s accuracy did not improve.

Component 2’s goal is to predict software entities based on tokens from a given question. We trained on the BERTOver-
flow NER corpus for this part. Tabassum et al. [27] randomly selected 1237 Stack Overflow question threads and 6501 sen-
tences from GitHub readme files. Four annotators manually tokenized and annotated the text with 20 different types of
entities. For the Stack Overflow questions, at most four answers were included, such as the accepted answer and the most
upvoted answer. For the final classifier, all selected features were extracted and concatenated for the new dataset’s rows.

3.5. Model evaluation

This step delves into the evaluation metrics which will be used to assess the model’s performance. Because the final clas-
sifier’s accuracy is dependent on the accuracy of the two sub-models, we first report on their accuracy.

Component 1 is a regression model that predicts twenty subjective qualities of questions. We chose Mean-Squared-Error
(MSE) to evaluate this component. The MSE metric is defined as:

MSE%i(Yi—?,)z (1)

where N is the number of predictions, Y; is the observed value of target for iy, prediction, and Y; is the predicted value of the
model for iy, prediction. Previously, we trained this part on a separate dataset and achieved a MSE of 0.046 after 2 epochs of
training. The low error rate for this component in predicting subjective features contributes to the good performance of the
overall model.

We report the evaluation results of the original paper for the SoftNER component (Component 2) because we relied on the
trained model of the original authors. The model reportedly achieved 78.4% precision and 79.79% recall.

For the overall performance of the proposed model in the final classifier, we only introduce the metrics and techniques
here, and the results will be reported in Section 4. We use the cross-validation technique to properly evaluate the overall
performance of the proposed model. Cross-validation divides a dataset into multiple equal parts and evaluates it by using
each partition as the validation set and the remaining parts for training. The reported results are averages of calculated met-
rics from multiple runs. As a result, while this procedure takes longer, the outcome is a more accurate estimate of model
prediction performance.

As discussed earlier, we converted the multiclass target into three binary classifications. Because the distribution of
classes is close, we evaluate and report our results using Precision, Recall, and F1 score. These three metrics are commonly
used in classification tasks and incorporate the number of false predictions into their calculations.

- P
PTEClSlOTl = m (2)
P

2 x Precision x Recall
F1 = Precision + Recall )

Where TP, FP, FN represent true positives, false positives and false negatives, respectively.
3.6. Parameter tuning

It is critical to find near-optimal hyper-parameters in order to fine-tune the models and reduce the evaluation log loss.
This was a delicate task, as we needed to avoid over-fitting on the training data, which causes low-quality results on the test
set. For the BERT-based model that extracts subjective qualities of questions, we set 100 as the maximum sequence length
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for BERT tokens. In addition, we chose dropout of 0.2 and sigmoid activation function in neural network configurations. For
the final XGBoost model, we set n_estimators = 1000, learning_rate = 0.07, max_depth = 6 and colsample_tree = 1.

3.7. Make predictions

Based on three trained components of our model, we predicted the subjective qualities of all questions using Component
1, SoftNER entities of all questions using Component 2, and required moderation actions for the test part of the dataset (15 K
questions) using Component 6. Results and evaluation of our predictions will be discussed in Section 4.

4. Results

This section compares our proposed model to a few baseline models that could potentially replace the entire task or the
final classifier component. First, we briefly introduce these selected baselines, and then we will report the performance eval-
uation results. We will discuss the importance of feature groups in the overall success of the model.

4.1. Baselines
The selected baselines for the purposes of evaluation are as follows:

1 XLNet [45] is a generalized pretraining method for language modelling that tries to reduce the problems of previous
autoregressive language models and the BERT bidirectional model. For the task of text classification (and some other
NLP tasks), XLNet outperforms BERT on several benchmark datasets. Unlike our next baselines, XLNet can take a string
input and apply its own embedding to create numerical representations and perform the classification.

2 Convolutional Neural Network (CNN) is a Deep Learning algorithm that uses convolution in place of general matrix mul-
tiplication in at least one of its layers. Its architecture includes ten dense layers, two dropout layers, and one flattener
with learning_rate = 1e-4, Adam optimizer, and relu for activation function. The input for this baseline, as well as the next
ones, are word vectors of the cleaned strings, which perform the best with these models.

3 Random Forest (RF) is a tree-based algorithm that uses a specified number of trees for tasks of classification or regression.
We trained a random forest model by using 500 decision trees and a random selection of features at each node creation.
The input is converted using the TFIDF vectorizer.

4 K-Nearest Neighbor (KNN) uses Euclidean distance to assign class labels based on the classes of K nearest points of train-
ing data in a feature space. For the evaluation purposes, we used K = 5.

5 Logistic Regression (LR) is a traditional baseline for the tasks of multiclass categorization. It uses the sigmoid function on
the output of the Linear Regression model in order to gain a discrete result. The sigmoid function is defined as [46]:

1

sigmoid(x) = Trex

()

4.2. Results

Table 2 represents the evaluation results for the proposed model and the baseline models. The table is separated into
three parts to better reflect the accuracy of the prediction for each class (thus three binary targets). As discussed earlier,
the results are based on the cross-validation approach. Multiple rounds of cross-validation are performed using different par-
titions (K = 4), and the validation results are averaged over the rounds to give an estimate of the model’s predictive
performance.

Our proposed model outperforms the state-of-the-art XLNet model in all three tasks in terms of F1-score. It is important
to note that the overall performance of any binary classification model is best evaluated by the F1-score as it includes the
results of Precision and Recall (thus FN and FP) in its calculations. In general, while CNN and Random Forest algorithms per-
formed admirably according to the Precision criteria, the proposed model surpasses them in Recall and F1 scores. On all three
tasks, LR demonstrated a promising stable performance, whereas the KNN algorithm performed very poorly in comparison to
other tree-based algorithms. Furthermore, the proposed model achieves 95.6% accuracy if it considers the problem as a mul-
ticlass task instead of three binary tasks. This higher accuracy is the result of predicting exactly one class for each case, rather
than independent binary predictions.

According to the overall results, predicting the requirements of a question for editing (Task 2) was the easiest task, and
predicting closure (Task 3) was the most difficult. In the latter, we can see that Recall scores are relatively low for all selected
baselines. In terms of time performance, all experiments were carried out on a computer equipped with 16 GB of RAM and an
Intel (R) Xeon (R) 2.00 GHz CPU, using the Python programming language. The Logistic Regression classifier trains and pre-
dicts much faster than the alternatives (less than a minute), our proposed model takes less than ten minutes to complete,
and the XLNet model, with over 360 million parameters, takes close to an hour for each task.
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Table 2
Performance comparison of the proposed model with the baselines.

Task 1: Predicting if the question requires no action (HQ)

Model Precision Recall F1-Score Time (s)
XLNet 65.6 81.7 72.7 3040
CNN 79.3 52.1 62.8 1354
RF 87.2 56.0 68.2 951
KNN 60.5 65.4 62.8 384
LR 73.8 71.6 72.6 39
Proposed 93.1 90.4 91.7 1514
Task 2: Predicting if the question should be edited
Model Precision Recall F1-Score Time (s)
XLNet 81.2 85.0 83.0 3430
CNN 77.6 733 75.3 871
RF 93.5 51.6 66.5 295
KNN 80.1 73.2 76.4 331
LR 83.8 74.6 78.9 35
Proposed 94.7 90.7 92.6 1495
Task 3: Predicting if the question should be closed
Model Precision Recall F1-Score Time (s)
XLNet 62.3 58.9 60.5 3102
CNN 713 49.2 58.2 871
RF 725 443 54.9 248
KNN 58.3 36.7 45.0 317
LR 69.7 58.3 63.4 44
Proposed 85.8 79.2 823 1532
Table 3
Performance evaluation of the proposed method by excluding subjective features.
Task Precision Recall F1-Score
Task1 84.6 72.2 77.9
Task2 87.9 85.0 84.9
Task3 75.7 59.0 66.3
Table 4
Performance evaluation of the proposed method by excluding software-related
features.
Precision Recall F1-Score
Task1 81.7 73.8 77.5
Task2 84.7 85.5 85.2
Task3 78.0 69.9 70.6

4.2.1. Impact of subjective qualities

To signify the impact of features related to the subjective qualities of questions, we performed the evaluations of the pro-
posed model by disabling the Component 1 of our model and excluded these features from the training and prediction. Based
on the results of this evaluation (Table 3), the final classifier works poorly by ~7.7-16.0% in F1-score, if it does not include
subjective features. The gap is wider in predicting high-quality posts and posts that should be closed.

4.2.2. Impact of Software-related features

Similar to the previous subsection, to better understand the overall impact of using software-related features, we per-
formed the evaluations by omitting them from the training and predictions. Table 4 displays the result of this scenario, which
indicates an F1-score decrease of 7.4-14.2% for the three tasks. This gap is wider for predicting high-quality posts and posts
that should be closed.

5. Conclusion

Popular Q&A websites depend on user feedback for content moderation, which results in slow and subjective handling of
violations. Previous research on automating moderation actions mostly relies on community feedback and user history to
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achieve higher accuracies, which makes their proposed methods less usable for real-world scenarios. Those approaches
neglect new questions and new users, who are more in need of moderation actions or recommendations. To respond to these
major issues, we borrowed from machine learning and text mining literature to construct a classifier to automatically detect
required moderation actions only based on features extracted from the question content. Our proposed method trains a
state-of-the-art gradient boosting classifier on the outputs of three components of feature extraction. These three compo-
nents are proposed to extract text-related, question-related, and context-related features using the latest ML advances.
For evaluation purposes, we published a new benchmark dataset consisting of 60 k Stack Overflow questions with quality
ratings. Our overall approach achieved 95.6% accuracy on the novel dataset and outperforms all state-of-the-art methods.

Our results clearly show the high influence of context-related features on the accuracy of the classifier, which makes them
essential in creating an accurate recommender or moderation system. Removing these features decreased the F1-score by
11.1% on average in our experiments. These features should be selected based on the values, norms, question types, content
patterns, user behavior, and rules of the target system. For example, providing examples or using technical abbreviations can
be common, encouraged, or prohibited based on the target Q&A system.

In addition, question-related features, such as the type of the question (opinion-based, factual, or multi-purpose), contain
valuable information in predicting the overall quality of a question. Some of these subjective features deal with the quality of
the question (e.g. being well-written, asking a question with “clear intent”, and not having multiple intents in one question)
and can be considered as consistent rules for asking questions on all Q&A websites. On the other hand, the impact of some
features (e.g. opinion-based answers or using external links) can be related to specific rules of the target system and thus
emphasizes our previous note on attention to context.

Future work should consider the high volatility of subjects in Q&A websites and the need for fast adaptability of proposed
systems with less need for new training. For example, a moderation system for a health-related Q&A website should be able
to adapt quickly and without much training to deal with countless new questions about a new disease. Just as we showcased
in this work, Transfer Learning should be considered as a great solution for fast adaptation of trained prediction models on
Q&A websites. This approach allows improving or adapting existing trained models to a new situation, with the least amount
of training.

While the proposed approach can be taken as-is to develop a recommender or moderation system for questions on Q&A
websites, our model structure and findings with regard to fast adaptability and the importance of feature-extraction com-
ponents would assist similar computer-aided tools for online communities.
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