
Heliyon 5 (2019) e02877

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Research article

Parasite cloud service providers: on-demand prices on top of spot prices

Hamid Haghshenas , Jafar Habibi ∗, Mohammad Amin Fazli

Computer Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Keywords:

Computer science

Cloud computing

Spot price

Martingale

Service Level Agreement

Dynamic load

On-demand resource provisioning and elasticity are two of the main characteristics of the cloud computing
paradigm. As a result, the load on a cloud service provider (CSP) is not fixed and almost always a number of its
physical resources are not used, called spare resources. As the CSPs typically don’t want to be overprovisioned
at any time, they procure physical resources in accordance to a pessimistic forecast of their loads and this leads
to a large amount of spare resources most of the time. Some CSPs rent their spare resources with a lower price
called the spot price, which varies over time with respect to the market or the internal state of the CSP. In this
paper, we assume the spot price to be a function of the CSP’s load. We introduce the concept of a parasite CSP,
which rents spare resources from several CSPs simultaneously with spot prices and rents them to its customers
with an on-demand price lower than the host CSPs’ on-demand prices. We propose the overall architecture and
interaction model of the parasite CSP. Mathematical analysis has been made to calculate the amount of spare
resources of the host CSPs, the amount of resources that the parasite CSP can rent (its virtual capacity) as well as
the probability of SLA violations. We evaluate our analysis over pricing data gathered from Amazon EC2 services.
The results show that if the parasite CSP relies on several host CSPs, its virtual capacity can be considerable and
the expected penalty due to SLA violation is acceptably low.
1. Introduction

Rapid growth of the Internet has encouraged the evolution of new
technological concepts and paradigms, cloud computing being among
them. Using this paradigm, enterprises can have access to infrastruc-

tures without much hassle and spending lots of effort and cost on the
management issues. Moreover, computing resources which have be-

come cheaper and more powerful, can be employed without the need to
plan ahead for provisioning. Cloud computing gains benefits from dif-

ferent concepts such as distributed computing, grid computing, and par-

allel computing [1] and has realized many computer scientists’ dream of
using computing resources as a utility. As a result, these resources can
be leased and released in an on-demand fashion and with a usage-based
pricing model through the Internet [2].

Cloud service providers (CSPs) usually argue their capacity to be
unlimited and it’s not their desire to reject a customer’s request due
to lack of resources. Hence, the CSPs typically procure their physical
resources in order to handle the demand in peak conditions. As a result,
a considerable amount of physical resources are unused most of the
time, which are called spare resources. An idea leveraged by a number
of today service providers is to rent the spare resources with a price

* Corresponding author.

E-mail address: jhabibi@sharif.edu (J. Habibi).

lower than the on-demand price. This price is called the spot price and
varies over time regarding to the market and the internal state of the
CSP. Here, we assume the CSP’s spot price to be a function of its load.
A user presents a bid to the CSP and can use the spare resources while
the spot price is less than the bid.

Although the spot price is usually less than the on-demand price,
unavailability of resources due to the spot price exceeding the bid is a
risk. In addition, variability of the spot price makes the long-term costs
unpredictable for the users. Hence, many users prefer to use the always-

available reserved resources with the fixed on-demand price. The goal
of this paper is to let the users use spare resources with high availability
and at a fixed price in order to decrease the mentioned risks for them.

Imagine a user is going to use cloud resources provided by a cloud
service provider. After investigating different price schemes, the user

finds himself in a trade-off between price, availability and predictabil-

ity. If he chooses to use spot prices to reduce the costs, a risk of being
unavailable arises and also the future costs will not be predictable. What
if the user can use the spot prices in a highly available manner and with
a fixed price?

In this paper, we introduce the concept of a parasite CSP, which is
in fact a virtual CSP exposing resources to its customers with an on-
https://doi.org/10.1016/j.heliyon.2019.e02877

Received 12 June 2018; Received in revised form 25 January 2019; Accepted 14 No

2405-8440/© 2019 The Authors. Published by Elsevier Ltd. This is an open access a
vember 2019

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e02877
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e02877&domain=pdf
mailto:jhabibi@sharif.edu
https://doi.org/10.1016/j.heliyon.2019.e02877
http://creativecommons.org/licenses/by/4.0/

H. Haghshenas et al. Heliyon 5 (2019) e02877
demand price lower than that of the normal CSP (called the host CSP).
A parasite CSP has no physical resources by its own, but rents a number
of resources from some host CSPs with their varying spot prices and
rents them to its customers with a fixed on-demand price.

The main contributions of this paper include:

1. Introducing the concept of a parasite CSP which is a new concept
to our best of knowledge

2. Proposing the overall architecture and interaction model of a par-

asite CSP

3. Mathematical analysis on the amount of spare resources in host
CSPs and the virtual capacity of the parasite CSP which relies on
several host CSPs

4. Mathematical analysis on the SLA of the parasite CSP, the proba-

bility of SLA violation and upper bounds for the expected penalty

In section 2 we express the problem context, introduce our basic
idea and propose an overall architecture as well as interaction model.
Mathematical analysis on the host CSPs’ loads, the parasite CSP’s vir-

tual capacity and its SLA is formulated in section 3 and evaluated in
section 4. Section 5 summarizes the previous related research and fi-

nally, section 6 concludes the paper.

2. The proposed model

2.1. Pricing model

A CSP (which we call it the host CSP) owns a large number of physi-

cal resources and a virtualization software installed on them. Customers
request virtual machines (VMs) in an on-demand manner and the CSP
creates and rents VMs to them. Let pr𝑜 be the on-demand price per re-

source per time unit.

However, the demand of the CSP is not constant and varies over
time. On the one hand, the CSP exhibits an infinite capacity to its cus-

tomers and it should not reject the requests due to a lack in its physical
resources. So the amount of available physical resources should not be
less than the total demand most of the time. On the other hand, a consid-

erable amount of physical resources may be free in each time, charging
the CSP for maintenance costs but gaining no profit because they are
not used for hosting customer VMs. These resources are called spare
resources.

The CSP can rent the spare resources by a price different from the
on-demand price, called the spot price. We assume this price to depend
on the current load of the CSP; the lower the load of the CSP, the lower
the spot price of the spare resources. Since dealing with real numbers
(not necessarily integers) are simpler in this context, we assume the
current load of the CSP and the spot price to be real numbers.

Definition 1 (Spot price). A strictly increasing function spot ∶ℝ≥0 →ℝ+

where spot(𝑙) denotes the spot price per resource if the current load of
the CSP is 𝑙. This function is invertible and its inverse is denoted by
spot−1 ∶ℝ+ →ℝ≥0.

Let load(𝑡) denote the total load of the CSP at time 𝑡 ∈ ℤ≥0, which
equals the load for the on-demand requests (load𝑜(𝑡)) plus the load for
the requested spare resources (load𝑠(𝑡)):

load(𝑡) = load𝑜(𝑡) + load𝑠(𝑡)

The spot price per resource in time interval [𝑡1, 𝑡2) equals

𝑡2−1∑
𝑡=𝑡1

spot
(
load𝑜(𝑡) + load𝑠(𝑡)

)
and the CSP’s revenue equals
2

𝑡2−1∑
𝑡=𝑡1

[
pr𝑜 load𝑜(𝑡) + spot

(
load𝑜(𝑡) + load𝑠(𝑡)

)
load𝑠(𝑡)

]
Note that the CSP may violate its SLA occasionally and the paid

penalty should be subtracted from the above amount. However, we ig-

nore it now for simplicity and consider it later in this paper.

In order to use the spare resources, a customer sends a request to
the CSP consisting a demand 𝑣 and a bid 𝜋 which is a price threshold.
The CSP allocates an amount of 𝑣 spare resources (if available) and
keeps these resources available to the customer while the spot price is
no more than 𝜋. If load(𝑡) is the load of the CSP except the load added
by this customer, then the price that the customer pays to the CSP in
time interval [𝑡1, 𝑡2) is

𝑡2−1∑
𝑡=𝑡1

spot(load(𝑡) + 𝑣)𝑣

2.2. The basic idea

In the last subsection, we introduced the concept of spot prices via
which a CSP can rent its spare resources. In this subsection, we will see
how an external player can leverage the spot prices to gain profit.

A parasite CSP is a CSP that owns no physical resource by itself.
It exposes computational resources to its customers by an on-demand
price of pr𝑝 and uses the spare resources of one or several actual CSPs
(the host CSPs) in the back. If an amount of 𝑣 resources are used by the
parasite CSP in time interval [𝑡1, 𝑡2) and only one host CSP exists, the
profit of the parasite CSP will be

(𝑡2 − 𝑡1) pr𝑝 𝑣−
𝑡2−1∑
𝑡=𝑡1

spot(load(𝑡) + 𝑣)𝑣

If the spot price of the host CSP exceeds the bid 𝜋, the parasite CSP
becomes unavailable and may violate its SLA. In fact, the unavailability
of the parasite CSP may be due to the host CSP being unavailable or its
spot price being above 𝜋. If both the host CSP and parasite CSP violate
their SLAs, the host CSP pays some penalty to the parasite CSP and it
pays some penalty to the customer in turn. If the host CSP does not vi-

olate its CSP but the parasite CSP, only the latter will pay some penalty
to the customer. We have ignored these penalties in this subsection’s
formulations and will take them into account later in our mathematical
analysis (subsection 3.4).

2.3. Architecture

Fig. 1 shows a high-level architectural model of the parasite CSP and
its interactions with its customers and the host CSPs. In the figure, solid
lines are interactions used for management commands and dashed lines
are interactions used by the customers to access their VMs directly.

The main components of the parasite CSP are described below:

• user interface (GUI): a web-based component which the cus-

tomers can interact to via their browsers

• Application programming interface (API): an interface for non-

human clients on PCs, smart phones, etc. to interact to the parasite
CSP. The GUI component also sends customer’s requests to this
component

• VM manager: responsible for managing the VMs of the customers.
This component receives VM creation, resizing or deletion requests
from the API and interacts to the host CSPs via appropriate adapters

• Adapter: responsible for communicating to different CSPs via their
own APIs. In fact, exposes a unified interface for the parasite CSP
and encapsulates the individual APIs of the host CSPs

• Account manager: a component that manages customers’ budgets.
Charging the customers’ accounts and updating their budget during
their use of VMs is the main responsibility of this component

H. Haghshenas et al. Heliyon 5 (2019) e02877

Fig. 1. The internal architecture and interaction model of the parasite CSP.
• Database: persists customer-VM assignments as well as the cus-

tomer’s budgets and related information (VM prices, customer pay-

ments, etc.)

The numbers over the interactions demonstrate the order of interac-

tions performed for creating a new VM (return messages are not shown
in the figure):

1. The customer asks the parasite CSP via the GUI to create a new VM

2. The GUI sends an appropriate request to the API

3. The API asks VM manager to create a new VM for the customer

4. The VM manager asks the accounts manager component to ensure
that the customer has enough budget in order to create a new VM

5. The account manager retrieves the customer’s account information
from the database and returns the result to VM manager

6. The VM manager asks the adapter component to retrieve current
spot prices of different CSPs

7. The adapter sends individual requests to the host CSPs and asks
their current spot price. The adapter then gets the responses of the
host CSPs and sends their spot prices back to the VM manager

8. The VM manager examines the spot prices of the host CSPs and
asks the adapter to register a new VM on the host CSP with the
lowest spot price

9. The adapter sends the VM creation request to the specified host
CSP. The host CSP creates the VM for the parasite CSP and sends
the VM’s identifier back to the adapter, which will send it to VM
manager in turn

10. The VM manager stores the customer-VM assignment into the
database. The VM’s identifier is then sent back to the API, the GUI
and the customer in order

3. Mathematical analysis

In this section, we first discuss about resource demands in CSPs and
the need for extra resource provisioning. Then we deal with the parasite
CSP and its (virtual) capacity. Finally, we will take the parasite CSP’s
SLA into account.
3

3.1. Mathematical background

Here we introduce the concept of martingales. They are used to deal
with time-varying values with bounded variations in each time unit. We
will use martingales to analyze the load of the data center.

The below definition and theorems are extracted from [3].

Definition 2 (Martingale). A sequence 𝑋0, ⋯ 𝑋𝑛 of random variables is
a martingale if

𝐸[𝑋𝑖|𝑋0,⋯𝑋𝑖−1] =𝑋𝑖−1

for all 1 ≤ 𝑖 ≤ 𝑛.

The below theorem tells how to create a martingale from a sequence
of random variables. Later, we will assume the load of the data center
in each time as a random variable and leverage this theorem to create
a martingale.

Theorem 1. Let 𝑍0, ⋯ 𝑍𝑛 be a sequence of random variables and

𝑋𝑖 =𝐸[𝑍𝑛|𝑍0,⋯𝑍𝑖]

for all 0 ≤ 𝑖 ≤ 𝑛. The sequence 𝑋0, ⋯ 𝑋𝑛 is a martingale.

The following theorem bounds the long-term variation of a martin-

gale. Later in the paper, we use this theorem to bound load variations
of the data center during the time.

Theorem 2 (Azuma’s inequality). If the sequence 𝑋0, ⋯ 𝑋𝑛 is a martingale
and 𝑠 > 0 is a constant such that

||𝑋𝑖 −𝑋𝑖−1|| ≤ 𝑠
for all 1 ≤ 𝑖 ≤ 𝑛, then

𝑃𝑟[||𝑋𝑖 −𝑋0|| ≥ 𝜆𝑠√𝑖] ≤ 2𝑒−𝜆2∕2

for every 𝜆 > 0 and 0 ≤ 𝑖 ≤ 𝑛.

Chernoff bounds are used to bound the variation of sum of random
variables from its mean. Assuming the unavailability of the CSP in each

H. Haghshenas et al. Heliyon 5 (2019) e02877
time being a random variable and its total unavailability in long-term
being the sum of those random variables, we will use the following
theorem later in the paper to bound the probability of SLA violation
due to lack of availability.

Theorem 3 (Chernoff bound). A Poisson trial is a random variable 𝑋𝑖
whose value is 1 with probability 𝑝𝑖, 0 otherwise. If 𝑋 is the sum of in-

dependent Poisson trials and 𝜇 =𝐸[𝑋], then

𝑃𝑟[𝑋 > (1 + 𝛿)𝜇] <
[

𝑒𝛿

(1 + 𝛿)1+𝛿

]𝜇
for all 𝛿 > 0.

3.2. Extra loads in CSPs

Assume that the CSP has a periodic schedule for buying or retir-

ing servers and let 𝑇 be the length of this period. At the beginning of
each time interval, the CSP knows the current total demand of its cus-

tomers, which is the sum of their individual demands. We assume that
the demand can be represented by a non-negative integer.

At each time unit, the demand may be increased or decreased by
some amount, due to new VMs requested by customers or resizing or
terminating the current VMs. We assume that the variation of the de-

mand in each time unit is bounded by a not so large number. This is
reasonable, since a burst of large requests can be a notion of some avail-

ability attack and the CSP may not accept the whole burst. In addition,
if multiple requests are hired by a customer adding to a large amount
of virtual resources, the customer should have enough patience to wait
for several time units for all his requested VMs to be provisioned. Of
course, this variation limit is not constant and increases as the CSP be-

comes larger. We assume this limit to be 𝑠𝜇 where 𝜇 is the expected
total load of the CSP and 𝑠 is a constant. In section 4.1 we will evaluate
this assumption and investigate a reasonable value for the coefficient 𝑠.

Let 𝐿𝑡 (for 0 ≤ 𝑡 ≤ 𝑇) be a random variable denoting the load of the
CSP at the end of the 𝑡-th time unit (for instance, 𝐿𝑇 is the load at the
end of the time interval) and let 𝑋𝑡 be the expected value of 𝐿𝑇 after
the 𝑡-th time unit:

𝑋𝑡 =𝐸[𝐿𝑇 |𝐿0,⋯𝐿𝑡]

We also define 𝜇 to be the expected value of 𝐿𝑇 at the beginning:

𝜇 =𝑋0 =𝐸[𝐿𝑇 |𝐿0]

Theorem 4. For every 𝜆 > 0 we have

𝑃𝑟[||𝐿𝑇 − 𝜇|| ≥ 𝜆𝑠𝜇√𝑇] ≤ 2𝑒−𝜆2∕2 (1)

Proof. By Theorem 1, the sequence 𝑋0, ⋯ 𝑋𝑇 is a martingale. From the
fact that the deviation of loads in each time unit is at most 𝑠𝜇, we can
apply Theorem 2 and get

𝑃𝑟[||𝑋𝑡 − 𝜇|| ≥ 𝜆𝑠𝜇√𝑡] ≤ 2𝑒−𝜆2∕2

for every 𝜆 ≥ 0 and 0 ≤ 𝑡 ≤ 𝑇 . By setting 𝑡 = 𝑇 and noting that 𝑋𝑇 =
𝐸[𝐿𝑇 |𝐿0, ⋯ 𝐿𝑇] =𝐿𝑇 , inequality (1) results. □

Theorem 4 states that the load of the CSP at the end of the time in-

terval is relatively close to its expectation with high probability. Define
the risk factor of the CSP to be the probability of the CSP being out of
resources at the end of the time interval. More formally, having a risk
factor of 𝜀 > 0, the CSP should procure additional resources that cover
the demand at the end of the time interval with probability at least 1 −𝜀.
The smaller the risk factor of the CSP, the more the additional resources
to be provisioned.
4

Theorem 5. If the risk factor of a CSP is 𝜀, then

𝑃𝑟

[||𝐿𝑇 − 𝜇|| ≥ 𝑠𝜇
√

2𝑇 ln 2
𝜀

]
≤ 𝜀

Proof. Results from (1) by setting the right-hand side to 𝜀. □

We can define the amount of required additional resources as a func-

tion of 𝑠 and 𝜀:

ext(𝑠, 𝜀) = 𝑠𝜇
√

2𝑇 ln 2
𝜀

(2)

So, Theorem 5 states that if the CSP’s risk factor is 𝜀, then it needs to
provision at most ext(𝑠, 𝜀) additional resources.

On the other side, the load of the CSP may become less than 𝜇. In
fact, Theorem 4 states that if the CSP has provisioned ext(𝑠, 𝜀) additional
resources, then the amount of free resources will be at most 2 ext(𝑠, 𝜀)
with probability at least 1 −𝜀. This amount may become relatively large
for small values of 𝜀 and this motivates the concept of spot prices.

3.3. Adding a parasite CSP to the ecosystem

Recall that pr𝑜 and spot(𝑙) are the on-demand and spot price for the
host CSP respectively, where 𝑙 is the current load of the CSP. The fact
that the value of spot(𝑙) is less than pr𝑜 with a high probability is the
main motivation for the concept of a parasite CSP that we introduced
before.

Let 𝑣 be the amount of resources that the parasite CSP has rent from
the host CSP, 𝜋 be its bid, 𝜀𝑜 be the probability of the host CSP being
unavailable and 𝜀𝑝 be the probability of the spot price being above 𝜋.
As discussed before, the parasite CSP becomes unavailable if either the
host CSP becomes unavailable or the spot price exceeds the bid. So, if
𝜀𝑢 is the unavailability probability of the parasite CSP, we can write

𝜀𝑢 ≤ 𝜀𝑜 + 𝜀𝑝

as 𝜀𝑜 is out of our control, we should control 𝜀𝑢 by keeping 𝜀𝑝 suffi-

ciently small.

Choosing a relatively large value for 𝜋 and a small value for 𝜀𝑝, we
want to know how large the value of 𝑣 can be (i.e. how much resources
can the parasite CSP rent). In fact, increasing the value of 𝑣 increases
the probability of the spot price being above 𝜋, so 𝜋 should be increased
in order to keep 𝜀𝑝 small. However, choosing a very large 𝜋 is a risk for
the parasite CSP and is not desired.

In the following theorem, we obtain 𝑣 as a function of 𝜋 and 𝜀𝑝.
Our calculations depend on a proper estimation of 𝑠, which determines
the maximum deviation of load in a time unit. However, as we will see
soon, this value is just a scale factor in our equations.

Theorem 6. If the parasite CSP rents an amount

𝑣(𝜋, 𝜀𝑝) = spot−1(𝜋) − 𝜇 − 𝑠𝜇

√
2𝑇 ln 2

𝜀𝑝
(3)

of resources from the host CSP, then the probability of the spot price being
above 𝜋 is no more than 𝜀𝑝.

Proof. Fix a value for 𝜀𝑝. In fact, if 𝑋 is a random variable denoting
the CSP’s current load (excluding the load added by the parasite CSP),
we should have

𝑃𝑟[spot(𝑋 + 𝑣) > 𝜋] ≤ 𝜀𝑝

Since the spot price is a strictly increasing function, the above means

𝑃𝑟[𝑋 > spot−1(𝜋) − 𝑣] ≤ 𝜀𝑝

Using the result of (2) it suffices to have

H. Haghshenas et al. Heliyon 5 (2019) e02877
spot−1(𝜋) − 𝑣 = 𝜇 + ext(𝑠, 𝜀𝑝) = 𝜇 + 𝑠𝜇

√
2𝑇 ln 2

𝜀𝑝

Rewriting the above with respect to 𝑣 yields (3). □

Note that (3) expresses the virtual capacity of the parasite CSP over
a single host CSP. Assume there exist 𝑘 host CSPs with identical con-

figurations but independent loads. In this case, when the spot price of
a CSP exceeds 𝜋, the parasite CSP can migrate its VMs to another CSP.
So, 𝜀𝑝 becomes the probability that all host CSPs’ spot prices exceed 𝜋.
To this end, it suffices that the probability of each host CSP’s spot price
being above 𝜋 be 𝜀1∕𝑘𝑝 . The following corollary summarizes this result.

Corollary 1. If the parasite CSP relies on 𝑘 independent and identical host
CSPs, then its virtual capacity can be

virtual capacity = 𝑣(𝜋, 𝜀1∕𝑘𝑝) (4)

Note that this setting is suboptimal and assumes that all of the
parasite CSP’s VMs rely on a single host CSP in each time. But this as-

sumption is unnecessary and the possible capacity for the parasite CSP
is much more.

Concluding this subsection, if the parasite CSP chooses a bid 𝜋, then
it can set its (virtual) capacity to 𝑣(𝜋, 𝜀𝑝) and be sure with probability
1 − 𝜀𝑝 that the spot price will not exceed 𝜋. Note that the parasite CSP
does not need to request all these resources at the beginning; it can
request the resources or release them exactly when its customer requests
or releases some (virtual) resources.

3.4. Service Level Agreement (SLA)

Cloud service providers usually expose an SLA as a guarantee for
their quality of service. The SLA is verified in time intervals of length
𝑇 ′ and consists one or more items whose general form is: “If the number
of unavailable time units during the interval is at least 𝑤, the CSP must
pay a penalty of 𝑟𝑞 to the customer, where 𝑞 is the amount paid by the
customer to the CSP”. Here, 𝑇 ′ is the SLA verification period, 𝑤 is the
unavailability threshold and 𝑟 is the penalty coefficient.

It’s reasonable for the parasite CSP to define a number of such SLAs
for its quality of service. Recall that the unavailability of the parasite
CSP’s service can be due to two different events (index 𝑡 represents a
time unit during the interval, 0 ≤ 𝑡 < 𝑇 ′):

• the host CSP’s service is unavailable at time unit 𝑡 (event 𝐸1𝑡). Let
𝑈1𝑡 be a random variable indicating this event (𝑈1𝑡 = 1 if the service
is unavailable, 0 otherwise).

• the spot price of the host CSP is above 𝜋 at time unit 𝑡 (event 𝐸2𝑡).
We can define random variable 𝑈2𝑡 in a similar way as above

Let 𝑍 be a random variable denoting the number of unavailable time
units during the interval. We have

𝑍 ≤

𝑇 ′−1∑
𝑡=0

𝑈1𝑡 +𝑈2𝑡

Recall that we denoted by 𝜀𝑢 the unavailability probability of the
parasite CSP. Here we observe that 𝜀𝑢 = 𝑃𝑟[𝐸1𝑡 ∪ 𝐸2𝑡]. Choosing a suf-

ficiently large value for 𝜋 and assuming a highly available host CSP,
the value of 𝜀𝑢 is very small. But how about 𝑍? Here, we propose a
pessimistic as well as an optimistic upper bound for the penalty of SLA
violation (i.e. having 𝑍 ≥𝑤).

Theorem 7 (Pessimistic penalty upper bound). The expected penalty of the
parasite CSP is at most

𝑟𝜀𝑢𝑇
′

(5)

𝑤

5

Proof. Let 𝜇𝑍 = 𝜀𝑢𝑇 ′ be the expectation of 𝑍. Suppose we have moni-

tored the parasite CSP’s unavailability for 𝑛 intervals and let 𝑍𝑖 be the
number of unavailable time units in the 𝑖-th interval.

We know

𝜇𝑍 =
∑𝑛

𝑖=1𝑍𝑖

𝑛

Consider the worst case, in which exactly 𝑘 of 𝑍𝑖s are equal to 𝑤 and
all the others are zero. Hence

𝜇𝑍 = 𝑘𝑤

𝑛

and we have

𝑘

𝑛
=
𝜇𝑍

𝑤

The expected penalty in this case is 𝑟𝑘∕𝑛 (𝑘 penalties during 𝑛 periods)
and

𝑟𝑘

𝑛
=
𝑟𝜇𝑍

𝑤
=
𝑟𝜀𝑢𝑇

′

𝑤

Since this is the worst case, an upper bound is obtained for the expected
penalty:

expected penalty ≤
𝑟𝜀𝑢𝑇

′

𝑤

as desired. □

Of course, the above analysis is too pessimistic. If we assume the
unavailability of the parasite CSP to be independent in different time
units, we can obtain a better upper bound.

Theorem 8 (Optimistic penalty upper bound). If events 𝑃𝑟[𝐸1𝑡 ∪ 𝐸2𝑡] are
independent for different 𝑡, then the expected penalty will be at most

expected penalty ≤
𝑟𝑒𝑤−𝜇𝑍

(𝑤∕𝜇𝑍)𝑤

=
(
𝜀𝑢𝑇

′

𝑤

)𝑤
𝑟𝑒𝑤−𝜀𝑢𝑇

′
(6)

Proof. Since events 𝑃𝑟[𝐸1𝑡 ∪ 𝐸2𝑡] are independent, they are indepen-

dent Poisson trials and by Theorem 3 we have

𝑃𝑟[𝑍 > (1 + 𝛿)𝜇𝑍] <
[

𝑒𝛿

(1 + 𝛿)1+𝛿

]𝜇𝑍
for all 𝛿 > 0. By setting 𝛿 = (𝑤∕𝜇𝑍) − 1 and multiplying by 𝑟 the upper
bound (6) results. □

The upper bound in (6) is much less than (5) for typical values of 𝜀𝑢,
𝑇 ′ and 𝑤, as we will see in subsection 4.5.

4. Evaluation

Our evaluation is performed on Amazon’s EC2 services. This CSP
rents its resources in an on-demand manner with a fixed price and rents
its spare resources with a varying spot price.

In this section, we fix the values of our parameters as follows:

• We use minutes as time units, i.e. the variation of the host CSP’s
load in each minute is bounded by 𝑠𝜇, the spot price is calculated
after each minute and the availability of the CSP is checked in each
minute (for SLA)

• 𝑇 = 1440 is the number of minutes in a day, i.e. the host CSP has a
daily schedule for buying or retiring its physical resources

• 𝑇 ′ = 43200 is the number of minutes in a month, i.e. the SLA of the
CSPs is verified monthly

• We deal with CPU cores as computational resources

H. Haghshenas et al. Heliyon 5 (2019) e02877

Fig. 2. Number of additional resources for 𝑠 = 0.002 and different 𝜀.
4.1. Load variations in clouds

In section 3.2 we assumed that load variations of a cloud service
provider can be bound by a not so large amount of 𝑠𝜇. Here, we evaluate
this assumption using real data.

As we couldn’t find any appropriate dataset for workloads in Ama-

zon’s EC2 services, we used another dataset for a distributed datacenter
from BitBrains [4]. This dataset consists of different metrics of a number
of VMs running on the datacenter. Metrics are measured in 5 minutes
intervals in a one-month period and are presented in a set of CSV files,
each row representing a single VM’s metrics at a time. Here, we used
the number of CPU cores of the VMs to observe the variations in the
total workload of the datacenter. The number of CPU cores of a single
VM may be zero at the beginning, indicating that the VM was not ex-

isted from the beginning and is created in the middle of the month. In
contrast, most VMs have a positive number of CPU cores at the begin-

ning which means that the VM was created at some time in the past.
Similarly, some VMs have a positive number and some have a zero num-

ber of CPU cores at the end which indicates that the VMs are not yet
removed or have been removed during the month, respectively. In ad-

dition, the number of CPU cores may be changed due to a resize.

Using the above dataset, we calculated the total load of the data-

center for each 5 minutes time interval, which is the sum of CPU cores
for all VMs in that time interval. We observed that the maximum vari-

ation of load is 48 CPU cores in 5 minutes. It should be noted that the
BitBrains data center is relatively small compared to Amazon’s.

Also we analyzed a similar dataset for Microsoft Azure [5]. The data
consists of creation and destroy time of a subset of Azure VMs as well as
their sizes. The number of CPU cores of these VMs sums to about 3 ×105
which can be identified as a sufficiently large data center. We observed
that the maximum deviation of work load in this dataset is 3521 CPU
cores in five minutes, which is also very small compared to data center
size.

Although we couldn’t find a formula for calculating 𝑠, setting its
value to 0.002 seems to be reasonable regarding to the above two
datasets. That is, we can assume that the change of load in each minute
is at most 0.002𝜇 in each minute, where 𝜇 is the average load of the
data center. This value is used in calculations in later subsections.

4.2. More resources, less risk

In this subsection, we try to show the relation between the amount
of additional resources procured by the CSP and the risk to be overpro-

visioned.
6

Recall from subsection 3.2 that we defined the risk factor of the CSP
to be the probability of being overloaded at the end of the day. Also
recall from (2) that if the risk factor of the CSP is 𝜀 and the maximum
deviation of its load in each minute is bounded by 𝑠𝜇, then it needs to
procure an amount

ext(𝑠, 𝜀) = 𝑠𝜇
√

2𝑇 ln 2
𝜀

of additional resources. Fig. 2 shows this value for different values of 𝜀
and setting 𝑠 = 0.002, 𝜇 = 3 × 105 (Same as Azure dataset). Note that 𝑠
is just a coefficient and the shape of the resulting curve is identical for
different values of 𝑠.

For example, ext(0.002, 0.0001) ∼ 101331 is the number of additional
resources for 𝜀 = 0.0001. If the resources are CPU cores and each server
has 32 CPU cores, this means that the CSP needs to buy 3167 addi-

tional servers in order to assure with probability 99.99% that it will not
be overloaded at the end of the day. It can be seen that this value is
relatively small and it’s reasonable for a large CSP to procure this num-

ber of servers. Of course, many of these servers are in low-power mode
most of the time and hence, the power consumption of the CSP is not
proportionally increased.

4.3. Spot price by load

In this subsection, we try to investigate the spot price function of
Amazon EC2 services. We retrieved the two-month trends (April and
May, 2016) of spot price for its m3.2xlarge VMs each having 8 CPU
cores and 32 GB of RAM [6]. We divided each price by 8 to obtain a
price for each CPU core.

As we assumed the spot price to be a function of load, we need to
estimate the current load of the data center. Let 𝐿 be a random variable
whose value is the current load. If we set 𝑠 = 0.002 (we will discuss
about it at the end of this subsection) and 𝜀 = 0.03 in (2), we have
ext(0.002, 0.03) ∼ 95545 and hence

𝑃𝑟[|𝐿− 𝜇| > 95545] ≤ 0.03 (7)

From another viewpoint, the load of the data center is the sum of
demands for the individual customers. If these demands have indepen-

dent identical distributions, their sum can be estimated by a normal
distribution 𝑁(𝜇, 𝜎𝑛). So the current load of the data center can be
estimated by a random variable 𝐿𝑛 having a normal distribution. By
definition, the probability of having 𝜇 − 3𝜎𝑛 ≤ 𝐿𝑛 ≤ 𝜇 + 3𝜎𝑛 equals to
erf(3∕

√
2) ∼ 99.97%. So

𝑃𝑟[||𝐿𝑛 − 𝜇|| > 3𝜎𝑛] < 0.03 (8)

H. Haghshenas et al. Heliyon 5 (2019) e02877

Fig. 3. Estimation of spot prices as a function of data center load.
Using (7) and (8) we can find a reasonable value for 𝜎𝑛:

𝜎𝑛 =
95545

3
∼ 31848 (9)

Now let’s define some useful functions (2𝑇 ′ = 86400 is the number of
minutes in the two-month period, which is the length of our evaluation
data):

• 𝑡𝑠(𝑡) is the spot price of Amazon EC2 at time 𝑡 (0 ≤ 𝑡 < 2𝑇 ′)

• 𝑝𝑠(𝑝) is a value 𝑥 such that the spot price is at most 𝑥 with proba-

bility 𝑝 (0 ≤ 𝑝 ≤ 1). If we collect values of 𝑡𝑠(𝑡) for all 0 ≤ 𝑡 < 2𝑇 ′ and
sort them in an increasing order, then the ⌈2𝑝𝑇 ′⌉-th element is the
answer

• 𝑙𝑝(𝑙) is the probability of having 𝐿 ≤ 𝜇+ 𝑙 (for −3𝜎𝑛 ≤ 𝑙 ≤ 3𝜎𝑛). Using
𝐿𝑛 as an estimation of 𝐿 we have

𝑙𝑝(𝑙) ∼ 1
2

[
1 + erf

(
𝑙

𝜎𝑛

√
2

)]

Then we can estimate the spot price using the above functions:

spot(𝑥) ≈ 𝑝𝑠 (𝑙𝑝(𝜇 + 𝑥))

This function is represented in Fig. 3.

An important note in the above analysis is fixing 𝑠 = 0.002. What if
the actual value of 𝑠 is more or less than this value? Let’s set 𝑠 = 0.002𝑐
where 𝑐 ∈ℝ+. We have

ext(0.002𝑐,0.03) = 𝑐. ext(0.002,0.03)

𝜎′
𝑛
= ext(0.002𝑐,0.03)

3
= 𝜎𝑛𝑐

𝑙𝑝′(𝑙) = 𝑙𝑝(𝑙𝑐)

spot′(𝜇 + 𝑙) = spot(𝜇 + 𝑙𝑐)

where 𝜎′
𝑛
, 𝑙𝑝′(.) and spot′(.) correspond to 𝜎𝑛, 𝑙𝑝(.) and spot(.) respec-

tively, when having 𝑠 = 0.002𝑐.
We will use the spot function derived here in the subsequent subsec-

tions in order to analyze the gap between spot and on-demand prices.

4.4. Virtual capacity of the parasite CSP

In (4) we proposed a formula for estimating the virtual capacity of
the parasite CSP. Here we try to calculate the virtual capacity using
simulation.
7

As introduced in subsection 4.1, the BitBrains dataset contains in-

formation about work-load of a distributed data center. Since that data
center is relatively small, we scale the work-load to generate the re-

quired simulation data. For this, we calculate the mean time between
VM creation events, the mean time between VM destroy events as well
as the distribution of VM sizes in those events. Using an exponential
distribution to regenerate the events and then calculating the standard
deviation of work-loads in each day, we scale the events until the stan-

dard deviation reach the value obtained in (9).

We generate this data for each of the 𝑘 CSPs independently during
one month period. Then the simulation begins to calculate the unavail-

ability of the parasite CSP as a function of 𝑣 – the amount of resources
occupied. For each value of 𝑣, the simulation begins with renting 𝑣 re-

sources from the CSP having the minimum spot price (i.e. the most free
CSP). During the time, if the amount of free resources of the host CSP
becomes less than 𝑣, the parasite CSP migrates all its resources to an-

other CSP, which has the least spot price at that time. In some times,
all CSPs have less than 𝑣 free resources and hence, none of them accept
the parasite CSP. In these times, the parasite CSP cannot serve its users
and becomes unavailable. Counting these unavailability events during
the month and dividing by 43200 (the number of minutes in a month)
gives the unavailability of the parasite CSP.

An important note here is migrating all VMs to the cheapest CSP.
As noted in subsection 3.3, this assumption is made to ease mathemat-

ical analysis and in reality, a smooth migration plan is used instead of
migrating all VMs at once. In addition, the parasite CSP should pre-

vent downtimes during migrations. This results to a partitioning of VMs
across CSPs as well as a replication mechanism to prevent downtimes.
Dealing with this more complex system can be considered as a future
work.

So we have a mechanism to calculate unavailability with respect to
𝑣 and need the inverse; having an unavailability threshold 𝜀𝑝 what is
the maximum possible 𝑣? We use binary search to calculate this value
which is represented in Fig. 4. It is worth noting that we used Python
as programming language and run the simulation on a PC running Win-

dows 10 with Intel Core i3 CPU.

As can be seen, the virtual capacity is considerable and makes the
concept of a parasite CSP reasonable. However, the CSP should rely on
several host CSPs so it can maintain its capacity at a high level while
lowering the risk of unavailability due to large spot prices.

H. Haghshenas et al. Heliyon 5 (2019) e02877
Fig. 4. Virtual capacity of the parasite CSP by the bid-violation probability.

4.5. Service Level Agreement (SLA)

In this subsection, we investigate the ability of the parasite CSP to
expose reasonable SLAs to its customers and the risk of their violation.

As discussed in 3.4, each SLA item can be specified by parameters
𝑤 and 𝑟, which are the unavailability threshold and penalty coefficient,
respectively.

Assume that the parasite CSP has exposed the same SLA as Amazon
EC2, which can be summarized as follows:

• If the availability of the service in a month is below 99%, a penalty
of 30% is paid back to the customer (𝑤 = 433, 𝑟 = 0.3).

• If the availability is not below 99% but is below 99.95%, the
penalty is 10% (𝑤 = 22, 𝑟 = 0.1).

Define random variables 𝐶1 and 𝐶2 to be the penalties in a month for
the two above items, respectively.

For example, suppose that we can keep the probability of unavail-

ability in a minute to be at most 0.0011% (as in [7]). So 𝜀𝑢 = 0.000011.
For the first item, (5) yields:

𝐸[𝐶1] ≤
𝑟𝜀𝑢𝑇

′

𝑤
= 0.03%

and for the second item:

𝐸[𝐶2] ≤
𝑟𝜀𝑢𝑇

′

𝑤
= 0.22%

So the expected total penalty for this SLA is at most 0.25%, which is a
bit large, but not so bad, regarding to our too pessimistic analysis.

If we use (6) for bounding the penalty, we can set (𝜇𝑍 = 4.32 is the
expected number of unavailable minutes during a month):

𝛿1 =
0.01 × 43200

4.32
− 1 = 909

𝛿2 =
0.0005 × 43200

4.32
− 1 = 45

and the expected penalties are no more than

𝐸[𝐶1] ≤ 0.3 × 𝑃𝑟[𝑍 > (1 + 𝛿1)𝜇𝑍] < 6.43 × 10−1095

𝐸[𝐶2] ≤ 0.1 × 𝑃𝑟[𝑍 > (1 + 𝛿1)𝜇𝑍] < 5.08 × 10−29

summing to an upper bound of 5.1 × 10−29.
Table 1 shows optimistic as well as pessimistic upper bounds for

the SLA violation penalty with respect to the availability commit-

ment stated in the SLA. It is assumed that the expected availability is
99.9989%, from the results of [7].

The calculations provided and the numbers presented in the table
show that SLAs are meaningful in parasite CSPs paradigm and even
exposing the same SLAs as Amazon’s makes sense.
8

Table 1

Optimistic and pessimistic probability of SLA
violation for different availability commit-

ments.

Commitment Optimistic Pessimistic

99% 2.14 × 10−1094 1.10 × 10−3

99.5% 8.05 × 10−484 2.19 × 10−3

99.9% 2.36 × 10−68 1.08 × 10−2

99.95% 5.08 × 10−28 2.16 × 10−2

Fig. 5. Mean spot price vs on-demand and reserved prices.

4.6. On-demand price of parasite CSP

In this subsection, we investigate the question that whether the par-

asite CSP can expose an on-demand price less than that of the host CSP
or not?

To answer the question, we make a comparison between the host
CSP’s on-demand price and the expected value of its spot prices when
the parasite CSP exists. In fact, as we assume the spot price being a
function of load, presence of the parasite CSP affects the price.

Fig. 5 shows the comparison. Recently, Amazon has removed
m3.2xlarge VMs from the list and, as discussed in subsection 4.3,
our data belongs to 2016. Hence, we consider that time’s price of
m3.2xlarge VMs for comparison; the on-demand price of the VM was
0.532$ hourly (that is, 0.067$ per CPU core) and the reserved price
was 277.4$ monthly (that is, 0.048$ per CPU core hourly). These two
numbers are represented in the figure by dashed and dotted horizontal
lines, respectively.

For spot prices, we use the result of subsection 4.3. The mean value
of the spot price equals to spot(𝜇+𝑣) where 𝑣 is the number of resources
occupied by the parasite CSP and 𝜇 is the mean load of the host CSP
without the parasite CSP. This value is represented by a solid curve in
the figure.

From the figure, we observe that the mean spot price is much less
than even the reserved price. In fact, the parasite CSP can choose any
number between 0.03$ and 0.04$ as on-demand hourly price per CPU
core to ensure that the value is far enough to both the host CSP’s re-

served price and the cost paid for the spot price.

Determining an exact value for the on-demand price of the parasite
CSP is beyond this paper and can be done as a future work, but the
important thing here is the possibility of determining such a value.

5. Related works

Considerable work has been done on the spot instances of the
CSPs, specifically Amazon EC2 services. In this section, we provide an
overview on the existing work in three categories.

The first category are research works that try to analyze and model
price variations in Amazon EC2 spot instance prices. In [8, 9] traces
of the spot prices are gathered and analyzed. They calculate statistical

H. Haghshenas et al. Heliyon 5 (2019) e02877
measures over the traces in different hours of day as well as different
days of week. An estimation of the spot price function using a mixed
Gaussian distribution is also proposed. Ben-Yehuda and Ben-Yehuda
[10] analyze long-time traces of Amazon EC2 spot prices in different
zones. They argue that although widely believed, the determination of
spot prices is not totally market-driven and low spot prices are set by
random. However, the higher spot prices are market-driven and are
determined by user bids. Karunakaran and Sundarraj [11] use a simu-

lation study on data gathered from Amazon EC2 to analyze the effect
of increasing or decreasing the bid price on job completion cost, wait
time and interruption rates during job execution. Li et al. [12] develop
a Predator-Prey model for simulating market activities in order to ex-

plain variations in spot prices. They modeled demand and resource as
predator and prey, respectively. They identify some regular patterns of
market activities with respect to Amazon EC2 spot prices. Agarwal et al.
[13] propose a method for forecasting Amazon EC2 spot prices based
on recurrent neural networks. They argue that the error of their method
is at most 8.6%. In [14], Baughman et al. presented a long/short-term
memory (LSTM) recurrent neural network for spot price prediction, ar-

guing the error being less than that of the ARIMA method. Portella et
al. [15] propose static analysis over on-demand and spot prices of Ama-

zon EC2 services. They capture the correlation between VM types and
their on-demand price as well as spot price trends. With this informa-

tion, they provide a price-availability tradeoff to the user. For instance,
the user can set the bid to 30% of the on-demand price and ensure that
the availability of the VM will be above 90%. Baughman et al. [16]

recognize a major change in Amazon’s spot price mechanism in 2017.
They analyze spot prices before that time as well as current prices and
compare some of their properties.

The above works try to model the spot prices and their variations.
In fact, these works are orthogonal to ours and the concept of a parasite
CSP can be imagined in all models. However, the details of the analysis
depend on the model accepted for spot prices.

The second category of the existing work is about to optimize the
behavior of the CSP about its spot instances. Zhang et al. [17] assume
an auction-based model for exposing the VMs. They propose a mecha-

nism that predicts the future demand for different VM types and then
determines the optimum spot price as well as capacity for each VM
type in order to maximize the CSP’s profit. Toosi et al. [18] propose
an auction-based mechanism for determining the price of perishable
cloud resources. Their mechanism is envy-free, near optimal (in terms
of profit) and is truthful with high probability.

The mentioned works can be interpreted as suggestions to the CSPs
for their spot prices. As the previous category of related research, the
behavior of the CSPs about the spot prices affect the details of our anal-

ysis, but the concept of a parasite CSP is meaningful in all cases.

Finally, some researchers try to leverage the spot instances of the
existing cloud service providers and propose models and mechanisms
for their external users to gain profit. Here, we introduce these works
and compare them to ours.

Mattess et al. [19] discuss the idea of using spot instances in peak
loads. Computing clusters having variable loads can rent the spot in-

stances of an IaaS provider when a peak occurs in their load. They
analyze different service provisioning policies in this context. We can
interpret our work as a basis for theirs. In fact, the analysis presented in
our paper can be used to better understand the possibility of using spot
prices in peak loads.

Yi et al. [20, 21] propose and compare several checkpointing
schemas when using spot instances of Amazon EC2 services, such as
hourly, rising edge-driven and current-price based adaptive checkpoint-

ing. They also study the impact of work migrations on improving task
completion times while maintaining low costs, by proposing and eval-

uating several migration heuristics. Compared to our work, although
both try to rely on several CSPs to increase quality, the points of focus
differ: They focus on how to migrate the work and we focus on how
9

much resources can be rent. In fact, a future work can combine these
works to obtain a more detailed picture of how a parasite CSP works.

[22] proposes a method for hosting an always-available service over
the spot instances in order to reduce the relevant costs. It mainly con-

sists of a scheduler that bids appropriately for spot prices in order to
remain available and a mechanism for migrating the VMs from spot
instances to on-demand instances when needed. Compared to us, they
have focused on the migration and bidding mechanisms for increasing
availability, while our focus is on the mathematical analysis of such
availability in terms of SLA penalties and the number of resources we
can rent.

[23] develops an information service named SpotLight that moni-

tors the availability of different server types in different regions. Cloud
applications can query this service to know about their server availabil-

ity. Spot prices have an important role in their analysis. Their work can
be used as a tool for deploying a parasite CSP. In fact, we assumed all
information about spot prices and CSP availabilities can be accessed by
the parasite CSP and SpotLight can be the tool to achieve this.

[7] develops a cloud platform named SpotCheck which provides IaaS
on top of the spot instances of a native IaaS provider. The price of the
provided service is near the spot price of the underlying CSP but its
availability is about 99.9989%. This work is also related to ours in the
manner that they try to create a tool that rents spare resources from
a native provider and exposes them to its users. In comparison to that
work, our contribution is to expose spare instances with a fixed price
and also to calculate the virtual capacity of the parasite CSP. We used
their availability result in our evaluations in subsection 4.5.

6. Conclusion

In this paper, we introduced the concept of parasite cloud ser-

vice providers which can provide computational resources with an on-

demand price less than the on-demand price of the typical CSPs. The
main idea was to leverage the spare resources of one or several CSPs.
We proposed the overall architecture of the parasite CSP as well as its
model of interaction to the stakeholders.

We also analyzed the possibility of such CSPs existence; our analy-

sis shows that a relatively large amount of spare resources is likely to
exist in a typical CSP. We also showed that if the parasite CSP relies
on several (even two) independent CSPs, it can assure its availability
with high probability. The SLA of such CSP has been also analyzed
and we obtained a pessimistic as well as an optimistic upper bound
on its expected penalty of SLA violation. The optimistic upper bound
is somewhat negligible and the pessimistic one is relatively small. So,
our analysis shows that a parasite CSP can exist providing services with
acceptable availability and exposing the same SLA as typical CSPs.

Several extensions to this work can be made as future works. The
legal aspects of creating parasite CSPs can be studied. These aspects may
vary among different countries or among different host CSPs. In fact,
the basic model proposed in this paper can be refined or customized
for different countries or host CSPs regarding to these legal aspects.
Also recall that our model assumed all resources of the parasite CSP to
rely on a single host CSP at each time so that it migrates the whole to
another host CSP when needed. Hence, another extension is to consider
partitioning the resources among several host CSPs or even replicate
some VMs in order to be more available. Another extension is to propose
mechanisms to prevent downtimes during migrations.

Declarations

Author contribution statement

Hamid Haghshenas: Conceived and designed the experiments; Per-

formed the experiments; Analyzed and interpreted the data; Con-

tributed reagents, materials, analysis tools or data; Wrote the paper.

H. Haghshenas et al. Heliyon 5 (2019) e02877
Jafar Habibi: Conceived and designed the experiments; Contributed
reagents, materials, analysis tools or data; Wrote the paper.

Mohammad Amin Fazli: Conceived and designed the experiments;
Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agen-

cies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] I. Iankoulova, M. Daneva, Cloud computing security requirements: a systematic re-

view, in: Proceedings of the Sixth International Conference on Research Challenges
in Information Science (RCIS), IEEE, 2012, pp. 1–7.

[2] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research chal-

lenges, J. Internet Serv. Appl. 1 (1) (2010) 7–18.

[3] R. Motwani, P. Raghavan, Randomized Algorithms, Chapman & Hall/CRC, 2010.

[4] S. Shen, V. van Beek, A. Iosup, Statistical characterization of business-critical work-

loads hosted in cloud datacenters, in: Proceedings of the 15th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE, 2015,
pp. 465–474.

[5] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bianchini, Resource
central: understanding and predicting workloads for improved resource manage-

ment in large cloud platforms, in: Proceedings of the 26th Symposium on Operating
Systems Principles, ACM, 2017, pp. 153–167.

[6] D.A. Monge, Amazon web services (AWS) spot prices data 2016, http://dx .doi .org /
10 .17632 /zcnp5xwvz6 .1 #file -d9d19e05 -eec1 -4d8c -959d -a4909a883161, 2018.

[7] P. Sharma, S. Lee, T. Guo, D. Irwin, P. Shenoy, Spotcheck: designing a derivative
IaaS cloud on the spot market, in: Proceedings of the Tenth European Conference
on Computer Systems, ACM, 2015, pp. 16–30.

[8] B. Javadi, R.K. Thulasiramy, R. Buyya, Statistical modeling of spot instance prices
in public cloud environments, in: Proceedings of the Fourth IEEE International Con-

ference on Utility and Cloud Computing (UCC), IEEE, 2011, pp. 219–228.

[9] B. Javadi, R.K. Thulasiram, R. Buyya, Characterizing spot price dynamics in public
cloud environments, Future Gener. Comput. Syst. 29 (4) (2013) 988–999.

[10] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, D. Tsafrir, Deconstructing Ama-

zon EC2 spot instance pricing, ACM Trans. Econ. Comput. 1 (3) (2013) 16–36.

[11] S. Karunakaran, R.P. Sundarraj, Bidding strategies for spot instances in cloud com-

puting markets, IEEE Internet Comput. 19 (3) (2015) 32–40.

[12] Z. Li, W. Tärneberg, M. Kihl, A. Robertsson, Using a predator-prey model to explain
variations of cloud spot price, in: Proceedings of the 6th International Conference
on Cloud Computing and Services Science (CLOSER), SciTePress, 2016, pp. 1–8.

[13] S. Agarwal, A.K. Mishra, D.K. Yadav, Forecasting price of Amazon spot instances
using neural networks, Int. J. Appl. Eng. Res. 12 (20) (2017) 10276–10283.

[14] M. Baughman, C. Haas, R. Wolski, I. Foster, K. Chard, Predicting Amazon spot prices
with LSTM networks, in: Proceedings of the 9th Workshop on Scientific Cloud Com-

puting, ACM, 2018, pp. 1–7.

[15] G. Portella, G.N. Rodrigues, E. Nakano, A.C. Melo, Statistical analysis of Amazon
EC2 cloud pricing models, Concurr. Comput., Pract. Exp. 31 (18) (2019) 1–16.

[16] M. Baughman, S. Caton, C. Haas, R. Chard, R. Wolski, I. Foster, K. Chard, Decon-

structing the 2017 changes to AWS spot market pricing, in: Proceedings of the 10th
Workshop on Scientific Cloud Computing, ACM, 2019, pp. 19–26.

[17] Q. Zhang, Q. Zhu, R. Boutaba, Dynamic resource allocation for spot markets in cloud
computing environments, in: Proceedings of the Fourth International Conference on
Utility and Cloud Computing (UCC), IEEE, 2011, pp. 178–185.

[18] A.N. Toosi, K. Vanmechelen, F. Khodadadi, R. Buyya, ACM Trans. Auton. Adapt.
Syst. 11 (1) (2016) 2–36.

[19] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing cloud infras-

tructure services from a spot market, in: 12th International Conference on High
Performance Computing and Communications (HPCC), IEEE, 2010, pp. 180–188.

[20] S. Yi, D. Kondo, A. Andrzejak, Reducing costs of spot instances via checkpointing in
the Amazon elastic compute cloud, in: Proceedings of the 3rd International Confer-

ence on Cloud Computing, IEEE, 2010, pp. 236–243.

[21] S. Yi, A. Andrzejak, D. Kondo, Monetary cost-aware checkpointing and migration on
Amazon cloud spot instances, IEEE Trans. Serv. Comput. 5 (4) (2012) 512–524.

[22] X. He, P. Shenoy, R. Sitaraman, D. Irwin, Cutting the cost of hosting online services
using cloud spot markets, in: Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, ACM, 2015, pp. 207–218.

[23] X. Ouyang, D. Irwin, P. Shenoy, Spotlight: an information service for the cloud, in:
Proceedings of the 36th International Conference on Distributed Computing Systems
(ICDCS), IEEE, 2016, pp. 425–436.
10

http://refhub.elsevier.com/S2405-8440(19)36536-3/bib5499CB1216CAAC7536D1139D80E6F9FEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib5499CB1216CAAC7536D1139D80E6F9FEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib5499CB1216CAAC7536D1139D80E6F9FEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibF097545E4AF424E309BC401E5758A05Fs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibF097545E4AF424E309BC401E5758A05Fs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibAB1C2D5D8BC2A5EF0537CCFCEC5FCF8As1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD7A318417528846560AB82F4E5FD2FD6s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD7A318417528846560AB82F4E5FD2FD6s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD7A318417528846560AB82F4E5FD2FD6s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD7A318417528846560AB82F4E5FD2FD6s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibEDB37E8A3178C52F5B3E166718643C30s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibEDB37E8A3178C52F5B3E166718643C30s1
http://dx.doi.org/10.17632/zcnp5xwvz6.1#file-d9d19e05-eec1-4d8c-959d-a4909a883161
http://dx.doi.org/10.17632/zcnp5xwvz6.1#file-d9d19e05-eec1-4d8c-959d-a4909a883161
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib6EA86897AC70759D09BAD8164F9109ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib6EA86897AC70759D09BAD8164F9109ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib6EA86897AC70759D09BAD8164F9109ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib838BE7338CA8EEE4E1270A1C1AB3EECAs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib838BE7338CA8EEE4E1270A1C1AB3EECAs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib838BE7338CA8EEE4E1270A1C1AB3EECAs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibA7C9A4E9F3198658315CD8EBB7AB2CABs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibA7C9A4E9F3198658315CD8EBB7AB2CABs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib880EE07BCC67F5E47A3FA83E00313B24s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib880EE07BCC67F5E47A3FA83E00313B24s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib24FDC814DDAC764E5C06B9337F5C61B5s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib24FDC814DDAC764E5C06B9337F5C61B5s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD525747C2868B9D2FB607C22FDCB56AEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD525747C2868B9D2FB607C22FDCB56AEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD525747C2868B9D2FB607C22FDCB56AEs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibCF366EE69DAB8CC36EC1DAB777D382C2s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibCF366EE69DAB8CC36EC1DAB777D382C2s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4B6A0A3AD544712F0D1B15862C0FF40As1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4B6A0A3AD544712F0D1B15862C0FF40As1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4B6A0A3AD544712F0D1B15862C0FF40As1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib6D9B9EE3CC22593DA9651C31CC3D7D42s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib6D9B9EE3CC22593DA9651C31CC3D7D42s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD5875372F2054298A2AE43BB44C9831Cs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD5875372F2054298A2AE43BB44C9831Cs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD5875372F2054298A2AE43BB44C9831Cs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib944A65FEEC6D3B49A998C12F838E759Es1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib944A65FEEC6D3B49A998C12F838E759Es1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib944A65FEEC6D3B49A998C12F838E759Es1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibCC34F93C45A4FF84494D2137D754A125s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibCC34F93C45A4FF84494D2137D754A125s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD2B40651EC2CD811DF8B2F37C41B7181s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD2B40651EC2CD811DF8B2F37C41B7181s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibD2B40651EC2CD811DF8B2F37C41B7181s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4C0FDBB1E3726D9CA41D2AFEE8EDD4ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4C0FDBB1E3726D9CA41D2AFEE8EDD4ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib4C0FDBB1E3726D9CA41D2AFEE8EDD4ACs1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib63CF15190FB2675F94EDBB37166E6142s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bib63CF15190FB2675F94EDBB37166E6142s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC234D400F74503B72A612A9E9FCC84E2s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC234D400F74503B72A612A9E9FCC84E2s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC234D400F74503B72A612A9E9FCC84E2s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC65553AA6D35D6CB76457EBA1D420165s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC65553AA6D35D6CB76457EBA1D420165s1
http://refhub.elsevier.com/S2405-8440(19)36536-3/bibC65553AA6D35D6CB76457EBA1D420165s1

	Parasite cloud service providers: on-demand prices on top of spot prices
	1 Introduction
	2 The proposed model
	2.1 Pricing model
	2.2 The basic idea
	2.3 Architecture

	3 Mathematical analysis
	3.1 Mathematical background
	3.2 Extra loads in CSPs
	3.3 Adding a parasite CSP to the ecosystem
	3.4 Service Level Agreement (SLA)

	4 Evaluation
	4.1 Load variations in clouds
	4.2 More resources, less risk
	4.3 Spot price by load
	4.4 Virtual capacity of the parasite CSP
	4.5 Service Level Agreement (SLA)
	4.6 On-demand price of parasite CSP

	5 Related works
	6 Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References

