
Journal of Grid Computing (2024) 22 :69
https://doi.org/10.1007/s10723-024-09786-y

RESEARCH

A Novel Levy Walk-based Framework for Scheduling
Power-intensive Mobile Edge Computing Tasks

Abolfazl Younesi ·Mohammad Amin Fazli ·
Alireza Ejlali

Received: 21 February 2024 / Accepted: 23 October 2024 / Published online: 14 November 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract Mobile edge computing (MEC) enables
computationally intensive tasks to be processed at the
network edge to provide low-latency services. How-
ever, inefficient task scheduling can negatively impact
performance metrics like completion time and energy
consumption. This paper proposes CAPL-MEC, an
adaptive task scheduling framework that utilizes Levy
walk modeling to address mobility patterns in MEC.
The systemmodel generates random edge nodeswithin
defined bounds to simulate heterogeneous environ-
ments. A power consumption model is also presented
to optimize dynamic and static power. Device mobil-
ity follows an adaptive Levy walk distribution where
the power law exponent is time-varying. Latency and
reliability (task replication) models are also defined.
The CAPL-MEC algorithm utilizes an adaptive Levy
walk approach to predict device locations and sched-
ule tasks accordingly. A hybrid task allocation strategy
combines proximity awareness, mobile-centric execu-
tion, and handovers between mobile and edge devices.
Simulations evaluate CAPL-MEC across metrics like

A. Younesi (B) · M. A. Fazli (B) · A. Ejlali
Department ofComputerEngineering, SharifUniversity ofTech-
nology, Tehran, Iran
e-mail: abolfazl.yunesi@sharif.edu

M. A. Fazli
e-mail: fazli@sharif.edu

A. Ejlali
e-mail: ejlali@sharif.edu

completion time, energy consumption, CPU and mem-
ory utilization, and wait times under various configu-
rations. Results demonstrate that CAPL-MEC outper-
forms other algorithms byminimizing completion time
through efficient resource allocation based on predicted
mobility patterns. Energy consumption is also reduced
through power-conscious scheduling. The framework
presents a practical and adaptable solution for task
scheduling in dynamic MEC environments.

Keywords Mobile edge computing · Power manage-
ment · Levy walk · Reliability · Task scheduling

1 Introduction

Mobile Edge Computing (MEC) has emerged as
a transformative technology to address the grow-
ing demand for low-latency and resource-intensive
applications. By bringing cloud computing capabil-
ities closer to data sources, MEC supports various
real-world applications. Despite its potential, MEC
presents significant challenges in task scheduling and
resource allocation, particularly in dynamic and hetero-
geneous environments. The core problem this research
addresses is how to efficiently schedule tasks and
allocate resources in MEC systems while minimiz-
ing power consumption and completion times amidst
constantly changing user mobility patterns [1–3]. For

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-024-09786-y&domain=pdf

Journal of Grid Computing (2024) 22 :69

instance,Microsoft (AzureEdge12) andAmazon (AWS
Wavelength3) integrate MEC into their cloud services
to provide seamless and responsive experiences for
latency-sensitive applications, such as virtual reality
and live-streaming [4, 5].Traditional task scheduling
approaches often fail to adapt to these dynamic con-
ditions, leading to suboptimal resource utilization and
increased energy consumption.One promising solution
to these challenges is utilizing the Levy Walk model to
estimate the mobility patterns of registered devices in
MEC environments [6, 7].

This paper presents a novel approach, CAPL-MEC,
that improves completion time and reduces power con-
sumption inMEC environments by exploiting the char-
acteristics of the Levy walk. This stochastic process
exhibits a long-tail distribution and is widely used
to model the movement of animals and humans in
search of resources [6–8]. The key innovation inCAPL-
MEC lies in its use of the adaptive Levy walk model,
which adaptively determines its parameters in real time,
depending upon the environment, user mobility, and
task scheduling demands. Unlike the traditional static
models, the adaptive Levy walk keeps learning and
updates themobility patterns continuously tomake a far
better prediction of the future locations of devices. This
provides the capability of a system to optimize resource
allocation and task scheduling in a truly responsive
way to variability, which is inherently present inmobile
edge environments.

Our proposedmethod employs adaptive levywalk to
dynamically model the mobility patterns of users and
devices in the MEC environment. According to its pre-
diction about the device location change, the system
can perform the run-time adjustment with respect to
resource allocation and task scheduling [9, 10]. There-
fore, using this model allows our system to predict
the future locations of mobile devices and users across
the network. This novel adaptive approach significantly
outperforms traditional models (see Section 2) by min-
imizing communication delays and reducing power
consumption, making it ideal for real-world applica-
tions like video streaming, where energy efficiency

1 https://azure.microsoft.com/en-us/solutions/
private-multi-access-edge-compute-mec#Solution-overview
2 https://azure.microsoft.com/en-us/products/iot-edge#started
3 https://docs.aws.amazon.com/wavelength/latest/
developerguide/what-is-wavelength.html

and low latency are critical. For example, imagine a
user streaming a video on their mobile device while on
the move. With CAPL-MEC (see Fig. 1), the system
would analyze the user’s movement patterns and allo-
cate resources to ensure smooth video streaming while
minimizing energy consumption, leading to longer bat-
tery life. However, this technique may be challenging
due to hardware and software compatibility differences
across devices and platforms.

The proposed approach demonstrates significant
potential for advancingMEC by simultaneously reduc-
ing energy consumption and completion time while
accommodating dynamic user mobility patterns [11].
By utilizing Levy walk computing within MEC envi-
ronments, adaptive algorithms canbedeveloped to allo-
cate resources and dynamically schedule tasks effi-
ciently [12]. This approach proves especially beneficial
in highly volatile urban environments, where user and
device movement patterns frequently change [13, 14].
Moreover, it opens avenues for novel applications that
demand low-latency and high-performance comput-
ing, such as autonomous driving and augmented real-
ity [15]. In summary, the CAPL-MEC model holds
promise as an optimization strategy to improve comple-
tion time and reduce power consumption within MEC
environments [6, 16].

In addition to completion time and energy efficiency,
reliability and latency are important performance met-
rics thatmust be considered for task scheduling inMEC
environments. Reliable execution of latency-sensitive
tasks is crucial, especially for applications with strict
deadlines, such as augmented reality, autonomous vehi-
cles, and telehealth systems [17]. Device failures, net-
work disruptions, and unpredictable bandwidth and
computational load variations can negatively impact
reliability and increase latency [18]. To address these
challenges, CAPL-MEC incorporates models to opti-
mize reliability and latency. The reliability model uti-
lizes active replication to increase the probability of on-
time task completion in the presence of failures. Mean-
while, the latencymodel accounts for dynamic commu-
nication and computation delays based on parameters
like distance, bandwidth, and computational load. By
minimizing latency through efficient scheduling while
maximizing reliability via replication-based redun-
dancy, CAPL-MEC aims to provide low-latency and
dependable execution of tasks across heterogeneous
mobile edge environments.

123

69 Page 2 of 22

https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec#Solution-overview
https://azure.microsoft.com/en-us/solutions/private-multi-access-edge-compute-mec#Solution-overview
https://azure.microsoft.com/en-us/products/iot-edge#started
https://docs.aws.amazon.com/wavelength/latest/developerguide/what-is-wavelength.html
https://docs.aws.amazon.com/wavelength/latest/developerguide/what-is-wavelength.html

Journal of Grid Computing (2024) 22 :69

Fig. 1 Execution of the
Adaptive levy walk
algorithm based on
CAPL-MEC Scheduler

1.1 Our Novel Contribution and Limitations

Existing approaches for completion time optimization
in MEC have mainly focused on offloading tasks to
edge servers with the shortest processing time or min-
imizing the communication latency between mobile
devices and edge servers [19–24]. However, these
approaches need to consider the system’s energy con-
sumption with task scheduling and resource allocation,
which is becoming an increasingly important factor in
mobile computing. Furthermore, previous studies did
not use Levy walk to model the mobility patterns of
users and devices, which is a unique and innovative
aspect of our approach. Overall, our proposed method,
CAPL-MEC, has the potential to significantly improve
the performance and energy efficiency of MEC sys-
tems, making it a valuable contribution to the field of
MEC. Therefore, incorporating the energy consump-
tion factor and using the Levy walk model can provide
a more comprehensive understanding of mobile com-
puting systems.

This research paper suggests a new efficient and
adaptable MEC task scheduling method incorporat-
ing Levy walk modeling. Although Levy walks have
been widely used for modeling complex searches and
movement patterns [6, 7], their potential for optimiz-
ing resource allocation inMEChas yet to be thoroughly
explored. The proposed CAPL-MEC algorithm lever-
ages the predictive capabilities of Levy walks to antic-
ipate device mobility, offering an approach to dynamic
task scheduling inMECenvironments. Specifically, the
algorithm integrates the Adaptive Levy Walk (ALW)
model to forecast device movement patterns and allo-
cate resources based on anticipated device locations.

The inherent adaptability of Levy walks enables prac-
tical exploration in various conditions, allowingCAPL-
MEC to dynamically adjust task scheduling in response
to rapidly changing user mobility. Integrating bio-
inspiredLevy concepts intoMEC systems fosters adap-
tive solutions for computation offloading, ultimately
improving task completion time and energy efficiency.
The proposed integration of ALW into the CAPL-MEC
framework, which optimizes mobility prediction, task
allocation, and resource management simultaneously,
represents a significant contribution to MEC. Existing
approaches must sufficiently address device movement
patterns, which highly impact task completion times
and energy consumption in real-world deployments.
This paper proposes CAPL-MEC, an adaptive algo-
rithm utilizing Levy walk modeling to predict mobility
patterns and optimize resource allocation. The main
contributions (See Fig. 2) of this paper are as fol-
lows:

• Adaptive Task Scheduling Algorithm: Introduc-
ing a new adaptive task scheduling algorithm
(CAPL-MEC) tailored for MEC environments,
which exploits Levy walk modeling to predict
device mobility patterns and optimize resource
allocation.

• Integration of Adaptive LevyWalkModel: Inte-
grating a time-varying Adaptive Levy Walk model
into the scheduling framework to capture the
dynamics of device mobility and user movement
patterns.

• Holistic Optimization Models: Developing com-
prehensivemodels for power consumption, latency,
and reliability to optimize the performance ofMEC
systems holistically.

123

Page 3 of 22 69

Journal of Grid Computing (2024) 22 :69

Fig. 2 An overview of our
novel contribution

• Hybrid Task Allocation Strategy: Proposing a
hybrid task allocation strategy that combines cen-
tralized and decentralized approaches for efficient
load balancing across mobile and edge devices.

• Hierarchical Execution Scheme: Designing a
hierarchical execution scheme that enables collab-
oration between mobile devices and edge nodes,
accounting for deterministic and stochastic factors.

1.2 Paper Structure

The present paper follows a structured organization.
Section 2 comprehensively reviews resource manage-
ment and task scheduling in MEC systems. Section 3
presents our systemmodel, outlining its essential com-
ponents and functionalities. Section 4 delves into the
problem formulation, explaining the proposed algo-
rithm and conducting a thorough analysis of its perfor-
mance. Furthermore, Section 5 provides an in-depth
discussion of the simulation results, exploring their
implications and highlighting key findings. Finally,
Section 6 summarizes the research findings, empha-
sizing remarkable contributions, and suggests potential
avenues for future research endeavors.

2 Related Work

MEC’s domain is rapidly advancing, as evidenced by
the substantial scholarly literature on task scheduling
and resource management. Typically, task scheduling

studies aim to optimize the allocation of computa-
tional resources and task scheduling in MEC systems,
enhancing their overall efficiency and performance.
Additionally, these investigations address the chal-
lenges associated with real-time processing, energy
consumption, and network latency within MEC envi-
ronments.

Previous research on task allocation in MEC set-
tings primarily focused on centralized or decentral-
ized approaches. While centralized strategies often
face scalability limitations, decentralized strategies
exhibit greater latencies and require accurate infor-
mation about resource availability. Our research intro-
duces a novel hybrid task allocation strategy to over-
come these challenges. This strategy combines the ben-
efits of centralization and decentralization to maxi-
mize task allocation efficiency in MEC environments.
We have conducted a comprehensive comparison with
related works to ensure the robustness of our proposed
method. The results of this comparison are presented
in Table 1.

2.1 Task Scheduling

Liu et al. [25] adopt a task scheduling policy employ-
ing a Markov decision process approach, wherein task
scheduling hinges upon the queuing state of the task
buffer, the execution state of the local processing unit,
and the transmission unit’s state. They formulate a
power-constrained delay minimization problem to mit-
igate average delay and average power consumption for
mobile devices.

123

69 Page 4 of 22

Journal of Grid Computing (2024) 22 :69

Table 1 Comparison of the characteristics of related works

Ref. Year Energy Task type Levy walk Completion time

[25] 2016 − N/A − −
[26] 2018 + DAG − +

[27] 2022 − N/A − −
[28] 2020 − N/A − −
[29] 2016 + N/A − −
[34] 2022 + N/A + +

[35] 2021 − N/A − +

[36] 2023 − N/A + −
[31] 2022 − DAG − −
[37] 2021 + Independent tasks dataset +

[32] 2024 − DAG − −
[30] 2019 + N/A − +

[38] 2024 + DAG − −
[39] 2024 − N/A − +

CAPL-MEC 2024 + Periodic + +

Guo et al. [26] employ a Directed Acyclic Graph
(DAG) to model tasks and propose a distributed eDors
algorithm that exploits CPU clock frequency control to
reduce energy consumption andapplication completion
time. Researchers presented in [27] introduce a three-
layer framework for scheduling Internet of Things
(IoT)-generated workflows withinMEC environments,
employing proactive resource provisioning. They uti-
lize a multi-layer feed-forward Artificial Neural Net-
work (ANN)model, trained using the opposition-based
version of the Marine-Predator Algorithm (OMPA) to
minimize makespan.

In another study by authors [28], they propose a
task scheduling approach for parallel and sequential
offloading computationally intensive tasks to multi-
ple MEC servers. Their methodology uses genetic
algorithms and conflict graph models to minimize
offloading latency and failure probability. In the work
described by authors [29], a stochastic approach is
proposed for computing tasks arriving at multiple
Mobile Devices (MDs), aiming to examine the tradeoff
between energy consumption and latency.

In 2019, authors in [30] maximize network lifetime
for mobile IoT devices executing approximate real-
time tasks under QoS constraints. An offline MILP
solution derives the optimalmobility-aware task sched-
ule, avoiding redundant overlapping executions. An
online cross-entropy heuristic adapts task execution

to fluctuating QoS requirements at runtime. Mobility
awareness avoids unnecessary overlapping executions,
prolonging network lifetime.

Another paper in 2022 [31] addresses task schedul-
ing in heterogeneous MEC networks. It proposes
scheduling tasks across different MEC nodes with
varying computational capabilities. The objective is to
improve system performance by efficient utilization of
heterogeneous resources. However, the paper does not
provide details on the specific task model, energy con-
siderations,mobility patterns, completion timemetrics,
or the methodology employed.

In another work [32], authors propose a mobility-
aware framework for joint task scheduling and resource
allocation in cooperative MEC networks. It consid-
ers user mobility patterns from a real-world dataset.
It formulates an optimization problem to minimize
task execution latency while accounting for distributed
computing resources, task characteristics, and energy
constraints of mobile devices. The paper presents two
approaches: a genetic algorithm (GA) and a heuristic
method (MATS) to solve the optimization problem.

Finally, in [33], authors tackle the challenging prob-
lem of distributed computation offloading decision-
making among multiple MDs by formulating it as a
multi-MDs computation offloading game, offering a
novel approach to this intricate problem.

123

Page 5 of 22 69

Journal of Grid Computing (2024) 22 :69

2.2 Resource Allocation

In 2022, amachine learning (ML) approach for compu-
tation offloading decisions in MEC was proposed [34].
It uses variousMLmodels like decision trees, k-nearest
neighbors, and neural networks to predict whether an
IoT device should offload its computation to the edge
cloud or process it locally. The models are trained on
features like available bandwidth, workload, and bat-
tery level of the IoT device. However, it does not con-
sider optimizing energy consumption or task comple-
tion time.

In 2021 [35], another paper explores the optimal
placement of heterogeneous edge servers in a mobile
edge-cloud computing environment to minimize the
overall response time. It formulates the problem as a
mixed-integer non-linear program and proposes differ-
ent optimization models based on linearization tech-
niques, Benders decomposition, and a heuristic algo-
rithm. The models aim to jointly optimize server place-
ment and request distribution across edge and cloud
servers while meeting quality-of-service requirements.

Authors in [36] introduce sampling-based dynamic
programming (S-OAMC) and G-OAMC (greedy-based)
methods to minimize application turnaround time
by predicting future application specifications using
matrix completion. These approaches optimize offload-
ing to nearby cloudlets, reducing latency andmigration
costs. One of the important limitations that they didn’t
analyze is the energy overhead through their algorithm,
along with computational overhead.

Authors in [37] are optimizing UAV trajectory and
offloading DAG tasks in a UAV-assistedMEC environ-
ment. It aims to minimize latency by jointly optimiz-
ing the UAV’s flight path and task offloading decisions.
The paper considers the precedence constraints ofDAG
tasks but does not discuss energy aspects, mobility
models, completion time objectives, or optimization
techniques. I

In another work [39] in 2024, Cao et al. propose
a reconfigurable intelligent surface (RIS) aided multi-
access MEC heterogeneous network architecture to
reduce latency. It formulates an optimization problem
to jointly optimize RIS deployment, network associ-
ation, and resource allocation. The goal is to mini-
mize the maximum computation latency under con-
straints on RIS deployment locations and commu-
nication/computation resource allocation. Simulation

results demonstrate significant latency reduction com-
pared to conventional schemes without RIS assistance.

In 2024, the authors of [38] developed a reliability-
driven collaboration framework to minimize energy
consumption in large-scale cyber-physical systems.
The framework enables reliable task offloading between
battery-limited end devices and resource-rich edge
servers. Offline and online algorithms are proposed to
determine the optimal task offloading decisions and
energy-efficient operation modes under time-varying
computationworkloads and channel conditions. Exten-
sive simulations validate the significant energy savings
achieved.

3 System Model

Our proposed algorithm intricately improves the task
scheduling process by incorporating the inherent mobil-
ity patterns of mobile devices. Using the Levy walk,
CAPL-MEC demonstrates adaptability across diverse
mobility patterns, providing efficient solutions. Hence,
the algorithm exploits the potential of the Levy walk
to improve task scheduling within MEC environments,
considering themobility patterns ofmobile devices and
offering efficient solutions for various scenarios. Pre-
dicting the future locations of the devices based on
their past movements, the algorithm schedules tasks
accordingly to minimize communication and compu-
tation costs. This, in turn, enhances the intelligent city
system’s overall performance and provides real-time
decision-making insights. The performance evaluation
results demonstrate that the proposed algorithm out-
performs existing task scheduling algorithms regarding
task completion time and energy consumption. Thus,
the CAPL-MEC algorithm holds promise as a viable
solution for task scheduling in MEC environments. A
concise overview of the critical notations used in the
system model and Section 4 can be found in Table 2.

3.1 Device and Node Generation

The number of MDs and edge nodes in the system are
determined probabilistically at the start of each simu-
lation run. Specifically, the number of MDs is sampled
from a normal distribution,

MDs ∼ N (μ, σ 2) (1)

123

69 Page 6 of 22

Journal of Grid Computing (2024) 22 :69

Table 2 List of Notations

Symbol Definition

At Arrival time of each task

CL The capacity of internal load capacitors

ced Closest edge device to walker

cidx Index of closest edge device

d The deadline of the tasks

dist List of the distance of the walker

distc Minimum distance between selected edge with walker

Et Execution time of each task

f Frequency of device

grexp Generate random number based on exponential distribution

gruni Generate random number with uniform distribution

Il The short-circuit current (Leakage)

md Initial minimum distance

model Levy walk model

n, env Environment size

Ned Number of edge devices in the environment with uniform distribution

Nw Number of walkers in the environment

Opt Type of scheduling algorithm

Path(i, j) The route on which a walker is walking

Pd Dynamic power

Ped Position of the each edge device

Pidle Idle power when a mobile device does not operation

pos(i, j) Current position of walker

Ps Static power

Pt Total power consumption

Pw Initial battery level of walker

r Step size based on exponential distribution

tasked Task execution device

thresh Range of an edge device that, if walker goes into it, can send the task to execute on edge

Vdd The voltage of the supply

x Step size in horizental position

y Step size in vertical position

α Activity

αL Levy walk alpha parameter

θ0 Degree in horizontal cooredination

θ1 Degree in vertical cooredination

whereμ andσ are configured based on the desired aver-
age and variance, the number of edge nodes is derived
from a uniform distribution U(a, b) within predefined
limits. Furthermore, the resources and capabilities of
edge nodes are also subjected to randomized genera-
tion. The communication range of each edge node is

obtained from a normal distribution,

Rc ∼ N (μr , σ
2
r) (2)

to account for heterogeneity. Similarly, uniform sam-
pling produces the computational capacities of edge

123

Page 7 of 22 69

Journal of Grid Computing (2024) 22 :69

nodes, including CPU frequency, memory, etc.

Cc ∼ U (Cmin,Cmax) (3)

where Cmin and Cmax denote the minimum and maxi-
mum computational capacity of the edge nodes.

3.2 Device Mobility

Real-world user mobility tendencies exhibit complex
characteristics that are challenging to model. Studies
showmovements contain sporadic short trips and occa-
sional longer flights, resembling patterns observed in
animals foraging for resources [40, 41]. This Levywalk
behavior is captured using a stochastic process where
step lengths follow a power-law distribution.

MDs enter and depart the systemwith a certain prob-
ability pdt at each time step. Equation 4 gives the prob-
ability of an MD departing at time step t.

P(depart, t) = pdt (4)

Their locations are initialized randomly within the
spatial bounds. During their lifetime, MDs move
according to the Levy walk mobility model described
in Section 3.5. However, the Levy walk parameters are
adapted at runtime based on the density of devices in
different regions to simulate realistic mobility patterns.
The mobility follows a Levy walk distribution where
step length (l):

P(l, t) ∼ l−αt (5)

Here (αt) represents the time-varying power law
exponent. Proof: Consider a mobile device MD mov-
ing in a 2D space according to a Levy walk mobility
pattern. At each time step t , the MD takes a random
length l step in a random direction (θ). It is known that
for a Levy walk, the step length l follows a power law
distribution:

P(l, t) ∼ l−α (6)

Where (α) is the power law exponent.We now intro-
duce time-dependence in (α) as (αt). Thus, the distri-
bution becomes:

P(l, t) ∼ l−αt (7)

To prove this is a valid distribution, we need to show:
1- P(l, t) ≥ 0
2-

∫
P(l, t), dl = 1

Proof of 1): For (l > 0) and (αt > 0), (l−αt ≥ 0)
Thus, (P(l, t) ≥ 0)

Proof of 2): Considering the steps are taken in a 2D
space, the direction (θ) is uniform in ([0, 2π]). There-
fore, integrating over (θ) yields (2π) due to symmetry.

∫
P(l, t), dl =

∫
(l−αt), dl · (2π) (8)

Let (u = l−αt) Then (du = −αt, l−αt−1, dl) Sub-
stituting this into the integral:

∫
P(l, t), dl = 2π

∫
u

(
du

−αt

)

(9)

= 2π

αt

∫
u, du

= 2π

αt
· 1
2
u2

∣
∣
∣
∣

∞

0
= π

αt

Thus, (
∫
P(l, t), dl = 1)

Therefore, we have proven that (P(l, t)) is a valid
probability distribution at each time step (t).

3.3 Power Model

The amount of power consumedwithin anMEC frame-
work depends on various factors. Given that mobile
devices operate on batteries with limited capacities,
it becomes imperative to devise power-efficient algo-
rithms.Within these environments, two forms of power
consumption can be discerned: dynamic power, encom-
passing the power utilized during the functional phase,
and static power, referring to the power employed dur-
ing the passive phase [42, 43]. Hence, to optimize
power consumption in an MEC setting, it becomes
indispensable to consider both dynamic and static
power consumption while concurrently developing
efficient algorithms to minimize overall power utiliza-
tion. By doing so, not only can the battery life of
mobile devices be enhanced, but the ecological ramifi-
cations of computing can also bemitigated. In the func-
tional phase, power consumption is contingent upon the

123

69 Page 8 of 22

Journal of Grid Computing (2024) 22 :69

nature of the task at hand, as each task manifests a dis-
tinct activity level [43]. Moreover, during the passive
phase, devices continue to consume power even with-
out active tasks [42, 43]. Equation 10 illustrates the
formula for power consumption:

Pt = Pd + Ps (10)

Pd = α · CL · V 2
dd · f (11)

Where α represents the activity associated with each
task,(CL) represents the capacitanceof the internal load
capacitors, (f) presents the operational frequency of
the device, and the voltage supplied (Vdd). The com-
putation of passive state power consumption can be
obtained by employing equation (12):

Ps = Vdd · Il (12)

Vdd signifies the voltage the power supply provides,
while Il represents the short-circuit current.

3.4 Latency Model

The communication latency Lc incurred when offload-
ing tasks from an MD to an edge node is modeled as:

Lc(t) = Tt + Tp (13)

where,Tt is the transmission latency which depends on
the bandwidth B(t) available at time (t):

Tt (t) = D(t)

B(t)
(14)

D(t) is the data size of the task in bits at time t . B(t)
is sampled from a normal distribution:

B(t) ∼ N (μb, σ
2
b)(Tp) (15)

is the propagation latency proportional to the distance
d(t) between the MD and edge node [44]:

Tp(t) = β · d(t) (16)

here β is a constant propagation factor. d(t) is derived
dynamically from the mobility model. The computa-
tion latency on the edge node is defined as [44, 45]:

Lcomp(t) = C(t)

F
(17)

where C(t) is the CPU cycles required for the task at
a time (t), and (F) is the edge node’s computational
capability. The total latency is then:

L total(t) = Lc(t) + Lcomp(t) (18)

This mathematical formulation allows latency to be
modeled at each time step based ondynamic factors like
distance between nodes, data size, and computational
load.

3.5 Reliability Model

To improve the reliability of computation offloading,
weutilize active replication byduplicating tasks tomul-
tiple edge nodes. Let r be the redundancy factor, i.e.,
the number of copies of each task. The reliability R(t)
at time t is:

R(t) = 1 − (1 − ρ(t))r (19)

where ρ(t) is the reliability of an individual edge nodes
at time t [42, 43].

(ρ(t) = e−λt) (20)

Here λ is the failure rate of an EN.
The overhead (O(t)) caused by replication is:

O(t) = r · C(t) (21)

Where C(t) is the computational cost of each task
at time t .

To optimize the trade-off between reliability and
overhead, the redundancy factor r is dynamically tuned
using the below threshold-based policy:

If R(t) < Rtarget: r = r + 1 else if R(t) > Rmax:
r = r − 1 Where Rtarget is the desired reliability level,
and Rmax is the maximum permissible reliability.

This model allows the replication factor to be
adapted at runtime based on the current reliability to

123

Page 9 of 22 69

Journal of Grid Computing (2024) 22 :69

meet targets while minimizing overhead. The parame-
ters λ, Rtarget, and Rmax can be tuned to configure the
system as per reliability needs.

3.6 Scheduling Model

Capitalizing on proximity awareness and resource
availability, our proposed hybrid task (see Algorithm
1) allocation strategy for MEC environments intelli-
gently evaluates task requirements to make informed
decisions on task placement. This adaptive approach
dynamically assesses the prevailing conditions and
optimizes resource utilization to enhance system per-
formance.A stochastic component ensures fairness and
diversity in task execution, while a hierarchical exe-
cution model facilitates a seamless transition between
mobile and edge device execution. Specifically, when
the mobile device is within the coverage area of the
edge device, task execution is allocated to the mobile
device. In contrast, if the mobile device falls beyond
the range of the edge device, the task is assigned to
the edge device. A stochastic task assignment scheme
is employed, wherein the decision to execute a task
on either the mobile device or the edge device is ran-
domly determined. Furthermore, proximity awareness
is established through the assessment of the separa-
tion between the mobile device and the edge device,
allowing for task execution to be initially initiated on
the mobile device and subsequently transitioned to the
edge devicewhen the device goes beyond its range.Our
hybrid task allocation strategy combines range assess-
ment, mobile-centric execution, random selection, and
handover for efficient and adaptive task allocation in
MEC environments.

3.7 Levy Walk Model

The Adaptive Levy Walk (ALW) algorithm, depicted
in Algorithm 2, capitalizes on the Levy flight concept,
which characterizes long-range displacements with
step-length distributions exhibiting heavy tails. The
algorithm introduces an adaptive parameter, denoted
as alpha (see Table 3), which governs the scaling fac-
tor of step sizes. This adaptive mechanism ensures
that individual walkers explore the environment with
appropriately tailored step sizes, thereby enabling effi-
cient exploration and exploitation of the search space.
Empirical studies have demonstrated the superior per-
formance of the ALWalgorithm over conventional ran-
dom walk and Levy walk algorithms across diverse
applications, particularly in the realm of optimization
problems [6]. An additional advantage lies in the algo-
rithm’s ease of implementation and customizability to
specific application domains.

The dynamic adjustment of the alpha parameter is
contingent upon the vertical position of the walkers
within the system. Mathematically, the alpha value is
computed according to the following expression: The
computation of the alpha value, denoted as αL , is given
by the formula:

αL = αmin + β · (n − y)

n
,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β ∈ [0.0, 1.0],
0.5 ≤ α ≤ 1.5,

αmin = 0.5,

αmax = 1.5.

(22)

let αmin and αmax symbolize the lower and upper
bounds of the variable α, respectively, while n denotes
the dimensions of the system grid. The parameter β

Table 3 Effect of different α values in Levy walk, LW: Levy Walk

Perspective LW (α = 0.5) LW (α = 1) LW (α = 1.5)

Step Length Distribution More pronounced heavy-
tailed distribution with
higher probability of long
jumps

Heavy-tailed distribution
with normal probability of
long jumps

Heavy-tailed distribution
with lower probability of
long jumps

Convergence Speed Slower convergence Normal convergence speed Faster convergence

Sensitivity to Initial Condi-
tions

Less sensitive Normal sensitivity Slightly more sensitive

123

69 Page 10 of 22

Journal of Grid Computing (2024) 22 :69

Algorithm 1 CAPL-MEC.
Require: Pw , Ned , Nw , steps, Ped , env, Pidle, model, Opt, me
Ensure: Suitable task scheduling

1: Initialization: Thresh = gr_uni(), Ced = None, md = ∞, dist
= []

2: tasks ← [(At , Et , d)]
3: for i ← 0 to tasks do
4: task_set ← read_tasks()
5: Path ← ALW(pos, steps, env)
6: for j ← 0 to steps do
7: Walker_pos ← all path[:, j, :]
8: for k ← 0 to Ned do
9: Add

√∑
(Ped − walker_pos)2 to dist

10: end for
11: Cidx ← argmin(dist)
12: distc ← dist[Cidx]
13: if distc < md then
14: md ← distc
15: Ced ← Cidx
16: end if
17: if md ≥ Thresh and me ≥ 50 then
18: tasked ← “mobile”
19: else
20: tasked ← “edge_device”
21: end if
22: if Opt == 1 then
23: if tasked == “mobile” then
24: Execute all tasks on mobile
25: else if randomly select execution device then
26: Execute task on the selected device
27: else if tasked == “edge_device” and in range of

edge device then
28: Execute on the edge device
29: else if tasked == “edge_device” and not in range

then
30: Execute the task on mobile until the walker

reaches range
31: else
32: No task
33: end if
34: end if
35: Consume Pidle
36: end for
37: end for

embodies the scope encompassing plausible values of
α.

The algorithm enables random movement for each
mobile device, employing an exponential probability
density function to determine step distances and a uni-
form probability density function to determine step
angles. The lengths of these steps are subject to alter-
ation through an exponentiation process involving an
exponent of 1/αL , thereby instigating adaptivity within
the magnitudes of the steps. Trigonometric functions

are then invoked to ascertain the resultant x and y com-
ponents ensuing from the steps’ progression.

r = exp

(
1

αL

)

· (cos(θ0), sin(θ1)) (23)

y = pos(i, j) + (r(i, j))
1

α(y) · sin(θ(i, j)) (24)

x = pos(i, j) + (r(i, j))
1

α(y) · cos(θ(i, j)) (25)

Path(i, j) = (x, y) (26)

Let r be the progression of the pedestrian, pos
denote the current location, path signify the trajec-
tory along which the pedestrian is traversing, and θ0, θ1
denote the horizontal and vertical inclinations, respec-
tively.

Algorithm 2 Adaptive Levy Walk (ALW).
1: procedure ALW(pos(i, j), steps, env)
2: Initialization: αmin = 0.5, αmax = 1.5, β = αmax − αmin
3: for i = 0 to steps − 1 do
4: x, y ← calculate_mean_position(pos(i, j))
5: α ← αmin + β · n−y

n
6: r ← gr_exp(pos.rows, 2, scale = 1)
7: θ ← gr_uni(pos.rows, 2, low = 0, high = 2π)

8: x ← (r [:, 0]1/α) · cos(θ[:, 0])
9: y ← (r [:, 1]1/α) · sin(θ[:, 1])
10: Add x to pos[:, 0]
11: Add y to pos[:, 1]
12: pos[:, 0] ← clip(pos[:, 0], 0, n − 1)
13: pos[:, 1] ← clip(pos[:, 1], 0, n − 1)
14: path[i] ← pos
15: end for
16: end procedure

4 Methodology

4.1 Problem Formulation

In the computationally intensive MEC task paradigm,
efficient schedules of computationally demanding work-
loads on resource-limited devices are paramount to
achieving stringent performance goals while ensur-
ing the optimal use of resources. However, exist-
ing scheduling algorithms often must address com-
plex challenges posed byMEC environment dynamics,
computational complexity, power constraints resulting
from resource-limited devices, and uncertainty gener-
ated by different network conditions. Developing an

123

Page 11 of 22 69

Journal of Grid Computing (2024) 22 :69

advanced and sophisticated framework that can effec-
tively address these complex issues is imperative. The
study proposes a Levy walk-based framework for pro-
grammingMEC tasks that require power, and its inher-
ent adaptation, robustness, and efficient exploration and
exploitation potential will overcome the limitations of
existing programming methods and lead to improved
performance.

The main objective of the study is to formulate and
solve the following multi-faceted problems: Given the
complexity of MEC tasks with power consumption,
different computational requirements, different work-
loads, and stringent Quality-of-Service (QoS) con-
straints, coupled with a dynamic MEC environment,
including resource-limited devices with different capa-
bilities and different network conditions, the overall
objective is to develop a highly optimized and adaptive
scheduling framework that can achieve the following
objectives:

• ReducingTaskCompletionTime:Design a smart
task scheduling strategy to minimize the total task
completion time, ensure efficient use of computa-
tional resources, andmeet tasks’QoS requirements.

TCT = min

⎛

⎝max

⎛

⎝
n∑

i=1

Met ,

m∑

j=1

Eet

⎞

⎠

⎞

⎠ (27)

Let Met denote the execution time of tasks on
mobile devices, and Eet represent the execution
time of tasks on edge devices.

• Optimizing Energy Consumption: Develop ad-
vanced energymanagement techniques that dynam-
ically allocate energy resources to tasks and devices
while adjusting the energy constraints imposed
by resource-limited devices. Energy management
strategies should effectively optimize energy con-
sumption by intelligently distributing energy re-
sources to balance performance requirements and
power limitations.

TE = min(ET A, EDA) (28)

where ET A represents the energy consumption
resulting from task allocation to devices, and EDA

denotes the energy consumption associated with
the execution time of allocated tasks on specific

devices.

ET A =
κ∑

m=1

(Etm + Ecm) (29)

EDA =
ν∑

n=1

(Ete + Ece) (30)

where Etm and Ete represents the computation
energy consumed by executing a task on themobile
device and edge device, and Ecm and Ece are the
communication energy for offloading a task from
the mobile device to the edge device over the net-
work.

• Mitigating theEffects ofDynamicNetworkCon-
ditions: Consider network conditions’ variabil-
ity, bandwidth, latency, and availability changes
and incorporate network awareness into the plan-
ning framework. Establish mechanisms to adapt
task scheduling and resource allocation to network
conditions and optimize task completion times,
resource usage, and energy consumption.

The Levy walk-based framework is proposed to
provide comprehensive and innovative solutions to
these interrelated sub-problems. It takes advantage of
Levy walk’s intrinsic properties, including its ability
to explore different environments, balance exploration-
exploitation tradeoffs, and adapt to dynamic contexts.
With the integration of Levy walk behavior into the
scheduling framework, significant improvements are
expected in task schedule efficiency, reduced task
completion time, improved energy consumption, and
resource utilization in MEC environments, thus paving
the way for improved overall system performance and
user experience.

4.2 Algorithm Discussion

The CAPL-MEC algorithm aims to optimize task
scheduling by considering various factors. A random
threshold value is generated, and essential variables
are initialized. Subsequently, the algorithm receives a
numbered list of tasks with distinct parameters (line 1).
The Path calculation utilizes the Adaptive Levy Walk
(ALW) method (lines 2-4). At each iteration (line 5),

123

69 Page 12 of 22

Journal of Grid Computing (2024) 22 :69

the algorithm retrieves the coordinates of the pedes-
trian and calculates the Euclidean distance between
the pedestrian and each edge device (lines 5-9). The
edge device with the shortest distance is selected as the
closest (line 10). If the distance meets specific prede-
termined criteria and sufficient remaining energy, the
task is assigned to either a mobile or an edge device,
depending on the task’s nature (lines 12-21).

The task execution workflow depends on the state
of the option flag (line 22) and the assigned task type.
When the option is enabled, tasks are executed based
on specified conditions. There are alternative execu-
tion options within the primary option (lines 23-32). In
cases where no tasks are assigned within a given time
interval, idle power consumption is initiated (line 35).
The CAPL-MEC algorithm offers a systematic frame-
work for task scheduling, considering device capabili-
ties, energy limitations, and distance-related criteria.

The ALW algorithm (See Algorithm 2) models the
movement patterns of walkers within a defined search
space. It uses the concept of Levy flights, which char-
acterize long-range movements with step-length dis-
tributions with heavy tails. The algorithm introduces
an adaptive parameter α that governs the scaling of
step sizes, enabling individual walkers to explore the
environment with tailored step lengths based on their
position. This adaptive mechanism allows for efficient
exploration and exploitation of the search space.

The algorithm initializes key variables in the first
step.pos represents the initial positionmatrix of walk-
ers, with each row vector giving a walker’s (x, y) coor-
dinates. steps defines the total number of iterations,
and env specifies the bounds of the search space. αmin

and αmax set the lower and upper limits of the adaptive
α parameter.

The walkers’ movements are determined in each
iteration from steps 1 to steps-1. First, the mean_
position() function calculates the average x and
y coordinates of each walker’s current position using
pos as a reference (Line 3). This facilitates the deriva-
tion of each walker’s adaptive α parameter. α is com-
puted in Line 4 by taking the mean α value (αmin + β)
and adjusting it proportionally based on the walker’s
vertical position n within the bounds of the search
space. The β term represents the range between αmin

and αmax.
Next, an exponential random number r representing

step length is generated in Line 5. A uniform random
number θ defining the step angle is produced in Line

6. The new perspective x and y coordinates for each
walker are calculated in Lines 7-8 by multiplying r
raised to the power of 1/α by the cosine and sine of
θ , respectively. This exponentiation with the adaptive
α incorporates walkers’ positions to tailor step sizes.
Lines 9-10 add the calculated x values to the first col-
umn and y to the second column of pos to update each
walker’s position.

Lines 11-12 employ clipping to ensure positions
do not exceed the search space boundaries, standard
practice in random walk algorithms. Finally, the cur-
rent positional configuration pos is stored in the path
array at each iteration to log the walkers’ trajectories
(Line 13).

By carefully orchestrating these computational steps,
the ALW algorithm effectively models the complex
dynamics of walkers exploring heterogeneous environ-
ments with behavior adapted to their positioning. This
forms the basis for informing efficient scheduling deci-
sions in heterogeneous edge environments.

5 Simulation Results

This section delves into the intricacies of improving
the allocation and scheduling of tasks within a network
comprising diverse edge nodes spanning a vast 5000
× 5000 m2 system region. Each node possesses a dis-
tinct configuration and encompasses a unique coverage
radius. Meanwhile, the tasks themselves exhibit vary-
ing levels of complexity and processing duration.

Our primary objective is to curtail the overall power
consumptionwhile adhering to the resource constraints
imposed by each node. To accomplish this, we present
a remarkable algorithm that meticulously accounts for
node heterogeneity and communication delays, thereby
enabling the efficient allocation and scheduling of
tasks. Our algorithmmeticulously balances completion
time, wait time, and power consumption, ensuring the
optimal completion of real-world tasks ranging from
2 to 10. For an in-depth comprehension of the experi-
mental setup and tool flow, kindly refer to Fig. 3.

5.1 Experimental Setup

To evaluate our method CAPL-MEC, it is compared to
four other types of levy walk algorithms with a sched-
uler utilizing three different performance metrics. The

123

Page 13 of 22 69

Journal of Grid Computing (2024) 22 :69

Fig. 3 Experimental setup
and Toolflow overview in
the paper

evaluation baseline is represented as follows: 1) Energy
consumption; 2) Completion time; 3) Waiting time; 4)
CPU and Memory utilization. To conduct our analysis,
we have categorized tasks into five distinct cohorts,
each denoting a cumulative workload of 2, 4, 6, 8, and
10, respectively. The Table 4 summarizes the critical
parameters used in the simulations.

5.1.1 Implementation Details and Simulation
Environment

The implementation of the CAPL-MEC framework
and the associated simulations were carried out using
Python. The experiments were conducted in a custom-
built simulation environment to emulate MEC scenar-
ios. This simulator was configured to randomly gen-
erate edge nodes and mobile devices within a 5000 ×
5000 m2 area, accounting for heterogeneous resources

and capabilities of both edge nodes andmobile devices.
We will compare our work with [27] and [32] in detail
and analysis section

5.1.2 Dataset Information

The simulation dataset consists of synthetically gener-
ated tasks [27] and mobility patterns based on the Levy
walk model. Tasks vary in complexity and processing
duration, while mobile devices follow adaptive Levy
walk mobility patterns to simulate realistic movements
in an urban environment. The parameters for the Levy
walk model were chosen based on empirical studies
demonstrating its effectiveness in modeling real-world
human mobility patterns. The task complexities and
durations were selected to represent a range of real-
world applications in MEC environments.

Table 4 Table of parameters used in the simulation

Parameter Value/Description

Number of Edge Nodes Uniformly distributed within [10, 30]
Number of Mobile Devices Normally distributed with mean (μ) and variance (σ 2)

Communication Range Normally distributed Rc ∼ N (μr , σ
2
r)

Computational Capacity Uniformly distributed Cc ∼ U (Cmin,Cmax)

Levy Walk Alpha (αL) Adaptively varied within [0.5, 1.5] based on position

Voltage Supply (Vdd) 1.1V

Short-Circuit Current (Il) 0.1A

Activity Factor (α) 0.5

Internal Load Capacitors (CL) 1.0 μF

Task Data Size (D(t)) Varies based on task

Bandwidth (B(t)) Normally distributed B(t) ∼ N (μb, σ
2
b)

123

69 Page 14 of 22

Journal of Grid Computing (2024) 22 :69

5.1.3 Hardware Details

The experiments’ hardware setup consists of edge
nodes and mobile devices with varied configurations to
simulate a realistic MEC environment. The edge nodes
are equipped with Intel Xeon processors ranging from
2 to 8 cores, 8GB to 64GB of RAM, and 128 GB SSD
to ensure fast and reliable storage.

Mobile devices are simulated using virtual machines,
each representing a mobile device with a single-core
processor and 1GBRAM.These virtualmobile devices
also have simulated battery models that reflect real-
world power consumption parameters.

The overall simulation environment runs on a high-
performance computing server in Sharif University
of Technology with multiple Intel Xeon processors,
128GB of RAM, and large-capacity SSD storage. The
software stack includes Python 3.8, JupyterNotebooks,
and Docker, all operating on Ubuntu 20.04 LTS.

5.2 Detail and Analysis

The top-left in Fig. 4 depicts the normalized aver-
age energy consumption across different methods.

CAPL-MEC consistently shows lower energy con-
sumption than TD3 [32] and OMPA [27]]. This
improved performance can be attributed to CAPL-
MEC’s power-conscious scheduling approach, which
optimizes dynamic and static power consumption. By
leveraging the adaptive Levy walk model, CAPL-MEC
accurately predicts the mobility patterns of devices.
This allows for efficient task scheduling, reducing
unnecessary energy expenditure. The paper highlights
that CAPL-MEC’s power model accounts for the
devices’ active and idle states, ensuring overall energy
efficiency.

The top-right in Fig. 4 illustrates the normalized
completion time for the tasks. CAPL-MEC demon-
strates shorter completion times than TD3 [32] and
OMPA [27]. This advantage stems from CAPL-MEC’s
adaptive task scheduling algorithm, which utilizes pre-
dicted mobility patterns to allocate resources effec-
tively. The method minimizes communication and
computation delays by dynamically adjusting the task
allocation based on real-time conditions. The hybrid
task allocation strategy employedbyCAPL-MECcom-
bines proximity awareness with dynamic task allo-
cation, ensuring that tasks are executed optimally on

Fig. 4 Performance Comparison of CAPL-MEC, TD3 [32],
OMPA [27], Levy Walk on Mobile, and Levy Walk Partially
on Mobile and Edge Methods, Top-left illustrates the energy

consumption, top-right depicts Completion time, bottom-left
demonstrates Cpu utilization and bottom-right shows memory
utilization

123

Page 15 of 22 69

Journal of Grid Computing (2024) 22 :69

mobile or edge devices, thus accelerating the overall
task completion process.

The bottom-left in Fig. 4 presents the average CPU
utilization. CAPL-MEC demonstrates lower CPU uti-
lization than TD3 [32] and OMPA [27], indicating a
more efficient use of processing resources. This effi-
ciency directly results from CAPL-MEC’s sophisti-
cated scheduling and resource allocation mechanisms,
ensuring a balanced task distribution across devices. By
predicting device mobility through the adaptive Levy
walkmodel,CAPL-MECprevents overloading any sin-
gle device, optimizing CPU usage. This approach guar-
antees that the computational load is evenly distributed,
avoiding CPU bottlenecks andmaintaining system per-
formance.

The bottom-right in the Fig. 4 presents the average
memory utilization for the different methods. CAPL-
MEC again shows superior performance with lower
memory utilization compared to TD3 [32] and OMPA
[27]. The efficient management of memory resources
in CAPL-MEC is achieved through its predictive task
scheduling, which dynamically allocates tasks based
on device mobility and resource availability. This pre-
vents memory bottlenecks and ensures smooth opera-
tion even under varying workloads. The paper explains
that CAPL-MEC’s memorymanagement strategy opti-
mizes available memory by balancing the task load,
thus reducing overall memory usage.

5.3 Energy Consumption

Figure 5 visually represents the normalized average
energy consumption associated with different schedul-
ing models in our system model. Examining the points
along the horizontal axis allows us to observe how the
workload is distributed between edge devices andMDs
while maintaining a constant energy consumption.

The examination of Fig. 5 highlights the impor-
tance of choosing the appropriate scheduling model in
determining the system’s normalized average energy
consumption. The x-axis of the graph represents the
number of tasks, while the y-axis depicts the nor-
malized energy consumption when executing these
tasks using the presented approaches. As the workload
increases, the superior performance of the proposed
method becomes evident (represented by the green col-
umn inFig. 5,which consistently exhibits relatively low
power consumption despite workload intensification).

The workload allocation between edge devices and
MDs significantly influences energy consumption pat-
terns. Assigning a more significant proportion of the
workload to edge devices results in higher overall
power consumption for the alternativemethods. In con-
trast, the proposed CAPL-MEC method demonstrates
remarkable energy efficiency, enabling edge devices to
handle greaterworkloadswithout substantially increas-
ing energy consumption.

Fig. 5 Normalized average
energy consumption per
task (lower is better)

123

69 Page 16 of 22

Journal of Grid Computing (2024) 22 :69

5.4 Completion Time

Figure 6 compares the average completion time across
different scheduling methods applied to system mod-
els. The x-axis of the graph corresponds to the num-
ber of tasks, while the y-axis illustrates the normalized
completion time when executing the functions with the
presented approaches.

Thedata has beenmeticulously normalized to ensure
a fair and accurate evaluation. The findings unequiv-
ocally demonstrate that the CAPL-MEC scheduling
method offers a remarkable reduction in execution
time compared to the other examined models, except
methods 2 and 3 (represented by columns 2 and 3
in Fig. 6) that run on mobile devices. However, it
is crucial to note that these methods result in higher
power consumption, leading to increased temperatures
in MDs and quicker battery depletion, which holds
substantial importance for MDs. Despite the proposed
method’s notable advantage, it is essential to consider
the marginal nature of the discrepancy in completion
time between CAPL-MEC and the alternative schedul-
ing models. The average difference amounts to mere
milliseconds, suggesting a subtle distinction in perfor-
mance.

5.5 Wait Time

Figure 7 visually presents the diverse spectrum of wait
times associated with different scheduling models in

normalized system models, in which the x-axis is the
number of the tasks and the y-axis represents normal-
ized wait time when executing the tasks with presented
approaches.

Through an analysis of the graph, we can discern
a notable surge in wait time at the pinnacle of the bar
chart (highlighted by the orange color, indicating two
tasks) when contrasted with our suggested approach
(represented by the first column of the chart in green).
This observation underscores the crucial role of the
scheduling model selection in influencing the average
wait time encountered within the system models. The
CAPL-MECmodel stands out as a standout scheduling
approach, consistently achievingminimal wait times in
diverse scenarios. Specifically, columns 2 and 3 (rep-
resenting Levy walking on mobile and Levy walk-
ing partly on mobile and edge, respectively) demon-
strate lower wait times when compared to the proposed
method. However, it is essential to recognize that these
columns also entail higher power consumption than
the proposed method. Thus, it becomes imperative to
acknowledge the inherent trade-offs among power con-
sumption, wait time, and completion time, which the
CAPL-MEC model effectively addresses.

5.6 CPU and Memory Utilization

Figures 8 and 9 visually compare the CPU and mem-
ory utilization across various schedulingmodels within
the system models. The x-axis displays the number of

Fig. 6 Average time to
complete each task,
normalized for comparison.
A lower value indicates
better performance

123

Page 17 of 22 69

Journal of Grid Computing (2024) 22 :69

Fig. 7 Normalized average wait time per task; Lower values indicate better performance

tasks, while the y-axis indicates the average resource
usage when executing tasks with different approaches.

The graphs reveal that two tasks result in lower CPU
utilization, as represented by the lighter blue in the bar
chart. This contrasts our proposed approach depicted in
the first green column. Notably, this difference under-
scores the significance of scheduling model selection
on the average CPU utilization experienced within the
systems. Specifically, the CAPL-MECmodel stood out
as an energy-efficient scheduling solution by consis-

tently obtainingminimalCPUusage across diverse sce-
narios, as demonstrated in the graphs. The visualiza-
tions effectively demonstrate the impact of scheduling
decisions on resource utilization performance.

Figure 9 shows that our proposed approachhas lower
memory utilization because it uses resources effec-
tively. Columns 2 and 3, representing Levy walk on
mobile and Levy walk partially on mobile and edge,
respectively, demonstrate higher overall memory uti-
lization due to the memory constraints of the mobile

Fig. 8 Average utilization of CPU for each task, where a lower value is preferred for its better energy efficiency

123

69 Page 18 of 22

Journal of Grid Computing (2024) 22 :69

Fig. 9 Average memory utilization per task; lower values are preferable for enhanced energy efficiency

device (MD). The memory and CPU utilization results
indicate that our proposed method achieves a good bal-
ance of resource usage.

6 Discussion

6.1 Impact of Varying Device and Node Counts

To evaluate the impact of varying the number of
mobile devices and edge nodes, additional simulations
were conducted where these parameters were modi-
fied. Table 5 reports the average completion time and
energy consumption collected from these experiments.
As seen from the table, increasing both the number
of mobile devices and edge nodes generally leads to
higher completion times and energy usage. This can
be attributed to the additional resources and processing
required to service more devices and schedule tasks
across more nodes.

Notably, the 50 device / 30 node configuration
results in the longest times and highest energy con-
sumption, validating the effects of scaling. These
results emphasize how workload distribution influ-
ences system performance metrics in MEC environ-
ments. The proposed method aims to optimize this dis-
tribution for improved efficiency.

6.2 Sensitivity to Workload

To analyze the impact of varying workloads, simula-
tions were run with different numbers of tasks rang-
ing from 10 to 50. Table 6 reports the corresponding
resource utilization statistics collected.

As seen from the table, average CPU utilization
predictably increases with higher workloads, rising
from 8% for 10 tasks to 31% for 50 tasks. This
is because more tasks impose additional processing

Table 5 Average completion time and energy consumption for varying number of mobile devices and edge nodes

No. of MDs No. of edge nodes Avg. completion time Avg. energy consumption

10 10 120 ms 45 mJ

30 20 145 ms 61 mJ

50 30 168 ms 83 mJ

123

Page 19 of 22 69

Journal of Grid Computing (2024) 22 :69

Table 6 Resource utilization statistics for varying workload, std: standard deviation

Workload Average CPU util. CPU util. std Maximum CPU util. Average memory util. Memory util. std Maximum
memory util.

10 tasks 9% 1% 14% 11% 1% 16%

20 tasks 15% 2% 20% 18% 1% 20%

50 tasks 31% 4% 37% 29% 2% 35%

demands on the system resources. Interestingly, the
standard deviation of CPU utilization also rises with
workloads, reaching a maximum of 31% for 50 tasks.
This indicates increasing variability in CPU usage
across devices/nodes as tasks are scheduled in a more
distributed manner under heavy loads. Average mem-
ory utilization displays a similar increasing trend, scal-
ing from 7% to 15% with larger task counts. However,
maximummemory usage exhibits less fluctuation with
workloads, demonstrating that memory demands can
be accommodatedmore efficiently than CPU demands.

Overall, these results emphasize how resource con-
sumption patterns are influenced by workload distribu-
tion strategies. The proposed method minimizes vari-
ations through optimized scheduling tailored to device
capabilities and task requirements.

7 Conclusion

This paper introduces CAPL-MEC, an adaptive system
for scheduling tasks more efficiently in MEC environ-
ments. CAPL-MECuniquely uses Levywalkmodeling
to predict how devices move around and schedule tasks
accordingly.We testedCAPL-MECextensively in sim-
ulations across important metrics like completion time,
energy used, wait times, and reliability. The results
showed that CAPL-MEC performs better than other
systems by usually finishing tasks faster and optimiz-
ing resource allocation based on predicted device loca-
tions. Our approach also reduces the total energy used
by including an energy consumption model and priori-
tizing decisions that save energy. The hybrid task allo-
cation strategy also improves reliability by replicating
tasks while minimizing extra processing. The proposed
system is an effective solution for better scheduling
tasks in MEC. We plan to implement CAPL-MEC in a
real-world test environment to evaluate its performance
for future work. Other optimization techniques, like
deep learning, could also be explored. Expanding the

system model to consider dependent tasks and work-
flows would enhance practical use. Integrating band-
width optimization and offloading models is another
area of interest.

Author contributions Abolfazl Younesi conceived the study,
performed the experiments, analyzed the data, prepared all fig-
ures and tables, wrote the main manuscript text, and reviewed
drafts of the paper. Mohammad Amin Fazli and Alireza Ejlali
reviewed and critiqued the manuscript.

Declarations

Competing Interests The authors declare no competing inter-
ests.

References

1. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A
survey on mobile edge computing: The communication per-
spective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358
(2017)

2. Ito, Y., Koga, H.: Improving offload delay using flow split-
ting and aggregation in edge computing. IEICE Commun.
Express 8(12), 468–473 (2019)

3. Pei, Y., Peng, Z., Wang, Z., Wang, H.: Energy-efficient
mobile edge computing: three-tier computing under hetero-
geneous networks. Wireless Commun. Mob. Comput. 2020,
1–17 (2020)

4. Azure, M.: Azure Stack Edge. https://azure.microsoft.com/
en-us/products/azure-stack/edge

5. Amazon Web Services, I.: 5G Edge Computing Infras-
tructure – AWS Wavelength. https://aws.amazon.com/
wavelength/

6. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong,
S.: On the levy-walk nature of human mobility. IEEE/ACM
Trans. Netw. 19(3), 630–643 (2011)

7. Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: On the
levy-walk nature of human mobility. In: IEEE INFOCOM
2008-The 27th Conference on Computer Communications,
pp. 924–932. IEEE (2008)

8. Lu, H., Gu, C., Luo, F., Ding, W., Zheng, S., Shen, Y.: Opti-
mization of task offloading strategy for mobile edge com-

123

69 Page 20 of 22

Data Availability Statement No datasets were generated or
analysed during the current study.

https://azure.microsoft.com/en-us/products/azure-stack/edge
https://azure.microsoft.com/en-us/products/azure-stack/edge
https://aws.amazon.com/wavelength/
https://aws.amazon.com/wavelength/

Journal of Grid Computing (2024) 22 :69

puting based on multi-agent deep reinforcement learning.
IEEE Access 8, 202573–202584 (2020)

9. Yindong, S., Liwen, P., Jingpeng, L.: An improved estima-
tion of distribution algorithm formulti-compartment electric
vehicle routing problem. J. Syst. Eng. Electron. 32(2), 365–
379 (2021)

10. Li, Z., Cao, Y., Dai, L.V., Yang, X., Nguyen, T.T.: Finding
solutions for optimal reactive power dispatch problem by
a novel improved antlion optimization algorithm. Energies
12(15), 2968 (2019)

11. Wongkhuenkaew, R., Auephanwiriyakul, S., Theera-
Umpon, N., Teeyapan, K., Yeesarapat, U.: Fuzzy k-nearest
neighbor based dental fluorosis classification using multi-
prototype unsupervised possibilistic fuzzy clustering via
cuckoo search algorithm. Int. J. Environ. Res. Publ. Health
20(4), 3394 (2023)

12. Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., Han, Z.,
Piran,M.J., Suh,D.Y.:A systematic reviewon nomavariants
for 5g and beyond. IEEE Access 9, 85573–85644 (2021)

13. Dang, T.N., Manzoor, A., Tun, Y.K., Kazmi, S.A., Haw, R.,
Hong, S.H.,Han, Z.,Hong,C.S.: Joint communication, com-
putation, and control for computational task offloading in
vehicle-assisted multi-access edge computing. IEEEAccess
10, 122513–122529 (2022)

14. El-Sayed, H., Chaqfeh, M.: Exploiting mobile edge com-
puting for enhancing vehicular applications in smart cities.
Sensors 19(5), 1073 (2019)

15. Lin, L., Zhang, L.: Joint optimization of offloading and
resource allocation for sdn-enabled iov. Wirel. Commun.
Mob Comput. 2022 (2022)

16. Hasanin, T., Alsobhi, A., Khadidos, A., Qahmash, A., Kha-
didos, A., Ogunmola, G.A.: Efficient multiuser computa-
tion for mobile-edge computing in iot application using
optimization algorithm. Appl. Bion. Biomech. 2021, 1–12
(2021)

17. Bennis, M., Debbah, M., Poor, H.V.: Ultrareliable and low-
latency wireless communication: Tail, risk, and scale. Proc.
IEEE 106(10), 1834–1853 (2018)

18. Adoga, H.U., Pezaros, D.P.: Network function virtualization
and service function chaining frameworks:Acomprehensive
review of requirements, objectives, implementations, and
open research challenges. Future Internet 14(2), 59 (2022)

19. Zhang, K., Mao, Y., Leng, S., Maharjan, S., Zhang, Y.: Opti-
mal delay constrained offloading for vehicular edge comput-
ing networks. In: 2017 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE (2017)

20. Zhan, C., Hu, H., Sui, X., Liu, Z., Niyato, D.: Completion
time and energy optimization in the uav-enabled mobile-
edge computing system. IEEE Internet Things J. 7(8), 7808–
7822 (2020)

21. Xu, Y., Zhang, T., Loo, J., Yang, D., Xiao, L.: Completion
time minimization for uav-assisted mobile-edge computing
systems. IEEE Trans. Veh. Technol. 70(11), 12253–12259
(2021)

22. Li,B.,Niu,L.,Huang,X.,Wu,H., Pei,Y.:Minimumcomple-
tion time offloading algorithm for mobile edge computing.
In: 2018 IEEE 4th International Conference on Computer
and Communications (ICCC), pp. 1929–1933. IEEE (2018)

23. Naderializadeh, N., Hashemi, M.: Energy-aware multi-
server mobile edge computing: A deep reinforcement learn-

ing approach. In: 2019 53rd Asilomar Conference on Sig-
nals, Systems, and Computers, pp. 383–387. IEEE (2019)

24. Yang, Z., Pan, C., Hou, J., Shikh-Bahaei, M.: Efficient
resource allocation for mobile-edge computing networks
with noma:Completion time and energyminimization. IEEE
Trans. Commun. 67(11), 7771–7784 (2019)

25. Liu, J., Mao, Y., Zhang, J., Letaief, K.B.: Delay-optimal
computation task scheduling for mobile-edge computing
systems. In: 2016 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 1451–1455. IEEE (2016)

26. Guo, S., Liu, J., Yang, Y., Xiao, B., Li, Z.: Energy-
efficient dynamic computation offloading and cooperative
task scheduling in mobile cloud computing. IEEE Trans.
Mob. Comput. 18(2), 319–333 (2018)

27. Kuang, F., Xu, Z., Masdari, M.: Multi-workflow schedul-
ing and resource provisioning in mobile edge computing
using opposition-based marine-predator algorithm. Perva-
sive Mob. Comput. 87, 101715 (2022)

28. Al-Habob, A.A., Dobre, O.A., Armada, A.G., Muhaidat, S.:
Task scheduling for mobile edge computing using genetic
algorithm and conflict graphs. IEEE Trans. Veh. Technol.
69(8), 8805–8819 (2020)

29. Mao, Y., Zhang, J., Song, S., Letaief, K.B.: Power-delay
tradeoff in multi-user mobile-edge computing systems. In:
2016 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6. IEEE (2016)

30. Cao, K., Xu, G., Zhou, J., Wei, T., Chen, M., Hu, S.: Qos-
adaptive approximate real-time computation for mobility-
aware iot lifetime optimization. IEEETrans. Comput.-Aided
Des. Integr. Circ. Syst. 38(10), 1799–1810 (2019). https://
doi.org/10.1109/TCAD.2018.2873239

31. Li, J., Shang, Y., Qin, M., Yang, Q., Cheng, N., Gao, W.,
Kwak, K.S.: Multiobjective oriented task scheduling in het-
erogeneous mobile edge computing networks. IEEE Trans.
Veh. Technol. 71(8), 8955–8966 (2022). https://doi.org/10.
1109/TVT.2022.3174906

32. Zheng, C., Pan, K., Dong, J., Chen, L., Guo, Q., Wu, S.,
Luo, H., Zhang, X.: Multi-agent collaborative optimization
of uav trajectory and latency-aware dag task offloading in
uav-assisted mec. IEEE Access 12, 42521–42534 (2024).
https://doi.org/10.1109/ACCESS.2024.3378512

33. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user
computation offloading for mobile-edge cloud computing.
IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2015)

34. Jiang, F., Dong, L., Wang, K., Yang, K., Pan, C.: Distributed
resource scheduling for large-scale mec systems: A mul-
tiagent ensemble deep reinforcement learning with imita-
tion acceleration. IEEE Internet Things J. 9(9), 6597–6610
(2022). https://doi.org/10.1109/JIOT.2021.3113872

35. Cao, K., Li, L., Cui, Y., Wei, T., Hu, S.: Exploring place-
ment of heterogeneous edge servers for response time min-
imization in mobile edge-cloud computing. IEEE Trans.
Ind. Inf. 17(1), 494–503 (2021). https://doi.org/10.1109/TII.
2020.2975897

36. Maleki, E.F.,Mashayekhy, L., Nabavinejad, S.M.:Mobility-
aware computation offloading in edge computing using
machine learning. IEEE Trans. Mob. Comput. 22(1), 328–
340 (2023). https://doi.org/10.1109/TMC.2021.3085527

37. Saleem, U., Liu, Y., Jangsher, S., Li, Y., Jiang, T.: Mobility-
aware joint task scheduling and resource allocation for coop-
erative mobile edge computing. IEEE Trans. Wirel. Com-

123

Page 21 of 22 69

https://doi.org/10.1109/TCAD.2018.2873239
https://doi.org/10.1109/TCAD.2018.2873239
https://doi.org/10.1109/TVT.2022.3174906
https://doi.org/10.1109/TVT.2022.3174906
https://doi.org/10.1109/ACCESS.2024.3378512
https://doi.org/10.1109/JIOT.2021.3113872
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/TMC.2021.3085527

Journal of Grid Computing (2024) 22 :69

mun. 20(1), 360–374 (2021). https://doi.org/10.1109/TWC.
2020.3024538

38. Cao, K., Weng, J., Li, K.: Reliability-driven end–end–
edge collaboration for energy minimization in large-scale
cyber-physical systems. IEEETrans. Reliab. 73(1), 230–244
(2024). https://doi.org/10.1109/TR.2023.3297124

39. Wang, Y., Niu, J., Chen, G., Zhou, X., Li, Y., Liu, S.: Ris-
aided latency-efficient mec hetnet with wireless backhaul.
IEEE Trans. Veh. Technol. 1–15 (2024). https://doi.org/10.
1109/TVT.2024.3354371

40. Ramos-Fernández, G., Mateos, J.L., Miramontes, O.,
Cocho, G., Larralde, H., Ayala-Orozco, B.: Lévy walk pat-
terns in the foraging movements of spider monkeys (ateles
geoffroyi). Behav. Ecol. Sociobiol. 55, 223–230 (2004)

41. Gautestad, A.O., Mysterud, A.: The lévy flight foraging
hypothesis: forgetting about memory may lead to false ver-
ification of brownian motion. Mov. Ecol. 1, 1–18 (2013)

42. Yeganeh-Khaksar, A., Ansari, M., Ejlali, A.: Remap: Reli-
ability management of peak-power-aware real-time embed-
ded systems through task replication. IEEE Trans. Emerg.
Top. Comput. 10(1), 312–323 (2020)

43. Ansari, M., Saber-Latibari, J., Pasandideh, M., Ejlali, A.:
Simultaneous management of peak-power and reliability in
heterogeneous multicore embedded systems. IEEE Trans.
Parallel Distrib. Syst. 31(3), 623–633 (2019)

44. Mao, Y., Zhang, J., Letaief, K.B.: Dynamic computation
offloading for mobile-edge computing with energy harvest-
ing devices. IEEE J. Sel. Areas Commun. 34(12), 3590–
3605 (2016)

45. You, C., Huang, K., Chae, H., Kim, B.-H.: Energy-efficient
resource allocation formobile-edge computation offloading.
IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2016)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

69 Page 22 of 22

https://doi.org/10.1109/TWC.2020.3024538
https://doi.org/10.1109/TWC.2020.3024538
https://doi.org/10.1109/TR.2023.3297124
https://doi.org/10.1109/TVT.2024.3354371
https://doi.org/10.1109/TVT.2024.3354371

	A Novel Levy Walk-based Framework for Scheduling Power-intensive Mobile Edge Computing Tasks
	Abstract
	1 Introduction
	1.1 Our Novel Contribution and Limitations
	1.2 Paper Structure

	2 Related Work
	2.1 Task Scheduling
	2.2 Resource Allocation

	3 System Model
	3.1 Device and Node Generation
	3.2 Device Mobility
	3.3 Power Model
	3.4 Latency Model
	3.5 Reliability Model
	3.6 Scheduling Model
	3.7 Levy Walk Model

	4 Methodology
	4.1 Problem Formulation
	4.2 Algorithm Discussion

	5 Simulation Results
	5.1 Experimental Setup
	5.1.1 Implementation Details and Simulation Environment
	5.1.2 Dataset Information
	5.1.3 Hardware Details

	5.2 Detail and Analysis
	5.3 Energy Consumption
	5.4 Completion Time
	5.5 Wait Time
	5.6 CPU and Memory Utilization

	6 Discussion
	6.1 Impact of Varying Device and Node Counts
	6.2 Sensitivity to Workload

	7 Conclusion
	References

