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Abstract—In this paper we study envy free pricing problem
in general graphs where there is not a seller in every graph’s
nodes. We assume unique establishment cost for initiating a store
in each node and we wish to find an optimal set of nodes in
which we would make the maximum profit by initiating stores
in them. Our model is motivated from the observation that a
same product has different prices in different locations and there
is also an establishing cost for initiating any store. We consider
both of these issues in our model: first where should we establish
the stores, and second at what price should we sell our items in
them to gain maximum possible profit. We prove that in a case of
constant price our problem is NP-Hard and we present a (1− 1

e
)-

approximation algorithm for solving “Equal prices-Equal costs”
and “Equal prices-Difference costs” versions of this problem.

I. INTRODUCTION

Consider you own a chain store and wish to build some
branches in a city. You are well aware of your customers’
locations, the transportation cost and also customers’ valua-
tions for the selling items. Now with this information in your
hand you should first decide where to establish the stores
and second at what price you should sell the items in each
branch in order to maximize your revenue. You should also
consider branch’s establishment cost into account. The point
that we wish to make in this paper is pricing schemes in some
situations related to the locations of the stores. This is the
flavor of the pricing problems studied in this paper.

Envy-free pricing captures the notion of fairness of equi-
librium pricing in economics (for related works, see, e.g.,
[10], [11] and the references within), and has recently received
much attention in computer science [3]–[9], [12].

In fact algorithmic pricing is the computational optimization
problem that sellers (e.g., in supermarkets) face when trying
to set prices for their items in order to maximize their profit
while they are aware of demands. Guruswami et al. [12]
was the first who proposed this problem and give logarithmic
approximations (in the number of consumers) for the unit-
demand and single-parameter versions where there is a specific
set of consumers and their valuations for items are known
precisely. Subsequently several versions of the problem were
discussed like tollbooth tricing, item pricing for single-minded
bidders and pricing with restricted valuation ( [14]–[16]).

In [12] an O(logn)-approximation algorithm was provided.
Briest [5] recently showed that given appropriate complexity
assumptions (the hardness of the balanced bipartite indepen-

dent set problem in constant degree graphs or refuting random
3CNF formulas), the envy-free pricing problem can not be
approximated within O(log n) for some ε > 0. For the multi-
unit demand setting, Briest [5] showed that the problem is
hard to approximate within a ratio of O(nε) for some ε > 0,
unless NP ⊆ ⋂ε>0BPTIME(2n

ε

).
When consumers desire a fixed subset of items (i.e.,

consumers are single-minded), a logarithmic approximation
algorithm was derived in [12] and an almost tight lower bound
was provided by Demaine et al. [9]. A few special cases of
single-minded demand, such as the tollbooth problem where
consumers desire paths in a graph, were studied in [6], [12].
Balcan and Blum [4] studied the graph vertex pricing problem
where each consumer requests the two endpoints of an edge
in a given graph and the goal is to set prices on vertices to
maximize the total revenue. The graph vertex pricing problem
has a similar flavor to our model, for which a 4-approximation
algorithm was given in [4]. The best result which has been ever
proposed for one the specific version of this problem was [17].
In [17] they assume that the valuation of the i’th consumer
for j’th item - vi,j - forms a metric space, they solved their
proposed problem exactly in polynomial time by reducing it
to an instance of weighted independent set on a perfect graph.

Other pricing schemes (min-buying, max-buying, or rank-
buying, where consumers buy an item with the smallest price,
highest price, or highest ranking according to their preference)
were studied in [3], [7], [13], where different algorithmic and
lower bounds results were given.

In this paper, we consider establishment cost into account,
that means that we can not have stores in all graph’s nodes. We
want to find the stores locations and the items constant price
that maximize the seller’s profit. In our model each consumer
has a location and valuation for different items- vi,j - which is
the maximum amount she would be willing to pay for the j’th
item. In this case if she buys this item at price pj , her profit will
be vi,j−pj (obviously she will buy the item only if its profit is
positive for her) we want to find an envy free pricing scheme
for the items in chosen locations that maximize seller’s profit,
which is a natural assumption. We study this problem in two
specific cases: 1.“Equal Prices-Equal Costs” 2.“Equal prices-
Different Costs”. In case 1, the input establishment costs for
all locations are equal and we are forced to give equal prices
for all chosen locations. Case 2 is similar to case 1 except



that establishment costs can vary in each location. We give
(1− 1

e )-approximation algorithm for each of these cases.

II. OUR MODEL

Suppose that we have n locations and we want to sell
an item over these locations. There are ki customers at ith
location. And also suppose that establishing a chain at ith
location costs ci. Customers of ith location have valuation
vi,j over buying the item from jth location. For example their
valuations may be associated with their distance from that city.

We want to find a subset of cities S and establish our stores
there, then propose a price π(j) for our item in jth store such
that maximizes our profit. Customer i buy the item from one
the cities of S like k, that maximizes vi,k − π(k). If this
maximum value is negative then he will discard buying.

More formally we define ui as the maximum possible utility
of the customers at location i that is maxj∈S{vi,j − π(j)}.
And also suppose that this maximum occurs at index ti. The
profit that we can get from each customer of ith location is
defined as :

pi =

{
0 if ui < 0
π(ti) if ui ≥ 0

So we want to find S ⊆ {1, · · · , n} and π : S → R that
maximizes: ∑n

i=1 pi −
∑
i∈S ci

In other sections of this paper, We consider various types of
this problem from Algorithmic and complexity point of view.

III. EQUAL PRICES-EQUAL COSTS

In this section, we take the version of this problem into
consideration in which establishment of all the chains cost
equal and we are supposed to propose equal prices for our
item in each of these stores (i.e. c1 = c2 = · · · = cn = C and
π must be a constant function ).

So our goal is to determine a subset S of the cities and a
price Π that results in following profit:

max
S,Π
{
∑

vi(S)≥Π

ki.Π− C.|S|}

in which vi(S) = maxj∈Svi,j .
At first we prove that this problem is NP-Hard by reducing

to MDS1 to our problem.
Theorem 3.1: Suppose that we are given a constant

price Π. The problem of choosing the best set S in “Equal
prices-Equal costs” chain store pricing is NP-Hard.

Proof: Assume that we are given a graph G with vertex
set V and we are supposed to find a MDS in it. Consider an
instance of the “Equal prices-Equal costs” chain store pricing
in which each ki = 1, Π = C = |V | − 1 and vi,j = |V | − di,j
where di,j is the distances between vertices i and j in G.
Suppose that the maximum profit set chosen for this instance
of the problem is SOPT . We would establish a chain on all
the cities in SOPT . Consider the vertices of G whose distance

1Minimum Dominating Set

SOPT B V − (SOPT ∪ B) = ∅

Figure 1. SOPT is a MDS

to SOPT is exactly 1. Name these vertices B. The vertices
which are in B ∪ SOPT would buy the item. Because their
distance to SOPT ’s stores is within 1, we know that vi,j for
i ∈ SOPT ∪B and j ∈ SOPT is greater than |V |−1 and then
vi,j ≥ Π. So the total profit will be:

|SOPT ∪B|.Π− |SOPT |.C = (|V | − 1)|B|
If we add each member of V − (SOPT ∪ B) to SOPT this
profit wouldn’t change because adding that member to SOPT
costs C which is equal to Π, the profit we can gain by selling
the item to it. So without loss of generality we can assume
that V − (SOPT ∪B) = ∅. Now we can assume that SOPT is
a dominating set (See Figure. 1).

With these preliminaries we claim that SOPT is a MDS.
For a case of contradiction suppose that it is not and there is a
dominating set D in G with less than |SOPT | vertices. Since
|D| < |SOPT |, We can establish our chains on D vertices
and then we can earn the profit of (|V | − 1).(|V | − |D|) >
(|V | − 1).(|V | − |SOPT |) = (|V | − 1)|B| which contradicts
the optimality of choosing SOPT .

In the next step, we propose an O(1)-approximation algo-
rithm for this simplified version of the problem.

Lemma 3.2: Suppose that we have n = |V | sets
A1, · · · , An. The function f : 2{1,··· ,n} → N defined by
f({i1, i2, · · · , ik}) =

∑
p∈

⋃k
j=1 Aij

kp is submodular.
Proof: Assume that S ⊆ T ⊂ {1, · · · , n} and x /∈ T .

f(S ∪ {x}) − f(S) is equal to the number of Ax members
which are in

⋃
i∈S Ai. So we have

f(S ∪ {x})− f(S) =
∑

p∈(Ax−
⋃
i∈S Ai)

kp

And also we have

f(T ∪ {x})− f(T ) =
∑

p∈(Ax−
⋃
i∈T Ai)

kp

Since S ⊆ T we have
⋃
i∈S Ai ⊆

⋃
i∈T Ai. So we have

f(T ∪ {x})− f(T ) ≤ f(S ∪ {x})− f(S).
Suppose that we have fixed a price Π and a set S. Define

Ai(Π) to be the set {j|vj,i − Π ≥ 0}. These vertices will
buy the item, but not necessarily from i. Then our final profit



will be Π.|⋃i∈S Ai(Π)| − C.|S| = Π.f(S) − C.|S|. From
the previous lemma we know that f is submodular. More
than that this function is trivially monotone. We have the
following famous theorem about optimizing the monotone and
submodular functions:

Theorem 3.3: ( [1], [2]) For a non-negative, monotone
submodular function f , let S be a set of size k obtained
by selecting elements one at a time, each time choosing an
element that provides the largest marginal increase in the
function value. Let S∗ be a set that maximizes the value of f
over all k-element sets. Then f(S) ≥ (1− 1

e )f(S∗); in other
words, S provides a (1− 1

e )- approximation.
The algorithm proposed in [2] to find the best S with k

members is a kind of greedy hill climbing algorithms. This
algorithm gets the desired target set size (|S| = k) and desired
price(Π) as inputs and gives one of the most profitable target
set with a good approximated profit. We call the output of this
algorithm S∗(k,Π) but first we should limit the set of possible
price values.

Lemma 3.4: The best constant price (Π∗) is in set W =
{vi,j |1 ≤ i, j ≤ |V |}

Proof: Suppose that a = v′1 ≤ v′2 ≤ · · · ≤ v′|V |2 is a
sorted list of the W’s members. If v′i < Π∗ < v′i+1 we can
increase Π∗ to v′i+1 and earn more money.

So we have enough tools to express the main result of this
part.

Theorem 3.5: There is a (1 − 1
e )-approximation algo-

rithm for solving “Equal prices-Equal costs” version of the
chain store pricing.

Proof: The algorithm 1 is a desired algorithm. Its cor-
rectness is simply deduced from 3.4 and 3.2 and theorem 3.3.

Algorithm 1 “Equal Prices-Equal Costs” chain store pricing
1: for each π ∈W (lemma 3.4) and each 1 ≤ k ≤ |V | do
2: Calculate S∗(k, π) − C.k and save the most profitable

one as k∗ and π∗.
3: end for
4: return π∗ and S∗(k∗, π∗).

IV. EQUAL PRICES-DIFFERENT COSTS

In this section we verify the case in which all the prices must
be the same (ie. π is a constant function) but establishment
costs can be unequal. In this case we want to find the
following:

max
S,Π
{
∑

vi(S)≥Π

ki.Π−
∑
i∈S

ci}

The hardness of this new problem can be easily resulted from
theorem 3.1 just by setting ci = |V | − 1 for all 1 ≤ i ≤ |V |.
The main result of this section is that adding this degree of
freedom to problem does not violate the submodularity of the
profit function for a fixed price Π.

Lemma 4.1: Consider the function f defined in lemma
3.2. The function g(S) = f(S)−∑i∈S ci is also submodular.

Proof: Suppose that c(S) =
∑
i∈S ci. Then for S ⊆ T

we have c(S ∪ {x}) − c(S) = cx = c(T ∪ {x}) − c(T ). So
g(S∪{x})−g(S) = f(S∪{x})−f(S)−cx ≤ f(T ∪{x})−
f(T ) − cx = g(T ∪ {x}) − g(T ). That completes the proof.

So then again we can find one of the most profitable with
greedy hill climbing algorithm with the same sense of the
previous section.

Theorem 4.2: There is a (1 − 1
e )-approximation algo-

rithm for solving “Equal prices-Different costs” version of the
chain store pricing.

V. CONCLUSION

In this paper, we presented a general model for chain store
pricing and solved some specific versions of this problem
by giving hardness results and approximation algorithms for
them. Specifically, we prove that in a case of constant price our
problem is NP-Hard and we present a (1− 1

e )-approximation
algorithm for solving “Equal prices-Equal costs” and “Equal
prices-Difference costs” version of this problem. The results
of this paper can be extended in future works by considering
more parameters such as different prices, marketing phases
and other related factors.
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