

A Video Game Testing Method Utilizing Deep Learning

Mohammad Reza Taesiri1 Moslem Habibi2 MohammadAmin Fazli1

1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Computer video games must pass different types of tests before release. Yet most products in this multibillion-dollar industry still exhibit
various compatibility problems when run on end consumers' computers. In this work, we propose a new automated testing method which
utilizes deep convolutional neural networks to test video game compatibility with target runtime environments. This will result in better support
for various computing environments that run video games and a reduction of the effort needed for testing them. Our method executes tests both
on local computers and the cloud. Locally, a game tester will test the video game with normal testing routines. After that, these tests are
automatically replicated on the cloud, running the video game on different environments. With the help of two convolutional neural networks,
corrupted frames of the game containing artifacts are automatically discerned, and by comparing the local execution to the ones on the cloud,
the corresponding problematic Draw Calls are determined. These are then used as a basis for comparison in order to determine the root cause
of the graphical issue.
Keywords: Video Game Testing, Automated Testing, Software Testing, Deep Learning, Convolutional Neural Networks.

1. Introduction

The development process of video games varies in many
aspects compared to other software products. Different
development teams usually use their own specific test
processes based on the type of game they are creating. One
common problem that all teams deal with after a game is
published is incompatibility with consumers' personal
computers. In recent years, there have been many instances of
popular video games that needed so-called "day one patches"
shortly after release because of such incompatibility problems.
For example, in 2015, Steam temporarily discontinued sales
of the PC version of 'Batman: Arkham Knight' due to such
issues and bugs[1].

Video games can be evaluated from different viewpoints. A
video game is typically created using a Game Engine
composed of various components including the Rendering
Engine, Physics Engine, Particles System, Audio & Video
Libraries, etc. Such components can be tested individually
using traditional software testing methods. Additionally, some
components can use specialized testing procedures unique to
them, such as graphics tests for the rendering engine.

Game developers who create their products by utilizing the
components mentioned above have a hard time automatically
detecting graphical bugs which occur on some specific
runtime environment configuration. Identifying such visual
bugs might be easy for a human, but because of the large
number of elements that make up a PC's runtime
configuration, such manual detection is time-consuming and
tedious. Also, as many modern computer games consist of
numerous graphical objects in each frame, visual glitches
cannot all be detected by the naked human eye.

A typical method to detect such problems is to make use of
traditional image quality metrics, but such metrics have been
shown to possess shortcomings in detecting graphical glitches
in many situations.

In this paper, we propose a novel solution for automated
testing of video games based on deep learning methods. Our
main goal is to detect graphical glitches, i.e., corrupted frames,
that occur due to the different runtime environments in which
a game is executed in.

In the next section, we will briefly introduce related works
in this field. Then in Section 3, our proposed method is
explained and its various steps are discussed. In the
subsequent section, we will explain our evaluation method and

The CSI Journal on
Computer Science and Engineering
Vol. 17, No. 2, 2020
Pages 26-33
Regular Paper

M.R.Taesiri, M.Habibi & M.A.Fazli: A Video Game Testing Method Utilizing Deep Learning (Regular Paper) 27

the obtained results. Finally, future work in this field is
expanded upon in the Conclusion section.

2. Related Work

In this section, we introduce related works in literature dealing
with video game testing. In [2] several new methods for
usability testing in video games are introduced using data
gathered from users, a technique also emphasized in [3]. Diah
et al. [4] also deal with usability testing, utilizing the
observation method in this regard for a specific category of
video games, i.e., educational video games.

Automated testing of video games has also gathered much
attention, with [5] introducing a Smoke Testing mechanism
for video games, while the automated testing method proposed
by [6] is process based and platform independent. A large part
of the QA activities of any video game development outfit is
beta testing. Schaefer et al. [7] propose an automated testing
method which can reduce the time spent on beta testing,
introducing a framework for this purpose called Crushinator.
Testing games at earlier steps of the software development
process is discussed in [8], which proposes a state-based
technique to test games at the prototype stage.

An important recent trend in this field is the use of AI and
deep learning methods in video game testing. [9] provides an
overview of research in this field. The authors show that the
vast majority of analysed approaches rely on playtesting to
product results, with work in this field shown to fall into one
of three categories, human imitation, scenario-based, and
goal-based approaches. Researchers in [10] make use of
artificial intelligence agents and machine vision algorithms to
devise a semi-automated game testing technique, while Chan
et al. [11] use genetic algorithms to detect undesirable
behaviour in video games. Folan et al. [12] have proposed
Wuji, an automated game testing framework, which works by
using deep reinforcement learning alongside multi-object
optimization to automatically detect different category of
bugs, from crash bugs to user experience ones. Bergdahl et al.
[13] also use DRL, but to augment traditional scripting
methods, especially in edge cases hard for humans to simulate.
Researchers in [14] propose an approach for detecting
graphical anomalies in video game images. Their method,
which makes use of CNNs, is able to detect 88.1% of the
glitches with a false positive rate of 6.3%. In [15] the
researchers use deep neural networks to improve video game
graphics in real time. Their results show how graphical
artifacts can be manipulated and enhanced by AI methods,
which can be used in the context of testing computer game
graphics.

Other work deal with Black Box methods for game testing,
including [16] which uses scenario-based testing methods to
evaluate video games without information on their inner
workings. The authors of [17] concentrate on testing online
video games by proposing an online game testing tool,
EasyQA to create virtual gamer loads for the test environment.
Others such as [18] make use of model-driven testing
techniques, used to test a wide range of software products
including enterprise software, targeting the popular platform
genre of video games. Another important test category for
software products is Regression Testing where developers
make sure that new changes do not introduce side effects into
previously checked components. An automated regression

testing method customized for video game development is
presented in [19]. Lastly, [20] makes use of 𝐿𝑇𝐿 െ 𝐹𝑂ା, an
extension of linear temporal logic, to find bugs in video games
by monitoring their runtime behaviour.

3. Proposed Method

As mentioned before, the video game testing method we
propose in this paper makes use of deep learning methods to
detect graphical corruptions in rendered video game scenes.
As we will show, this is done at the Draw Call level, which
are commands that tell the Graphical Processing Unit (GPU)
to draw a certain set of polygons. Initially, the game
developers or testers will run the game on a local machine,
testing the game with traditional methods. At this step, we
capture the user's input commands (i.e., user activity) on the
local machine. This must be done in such a way so that
different runs of the game produce the same output, that is the
graphical output must be deterministic. For this, we make use
of the algorithm suggested by Cuervo et al. [21], which limits
sources of non-determinism, specifically system time, random
number generators, and the game's music.

For the next step, different instances of the same game must
be run on different runtime environments. To efficiently and
rapidly create such environments with different settings we
use virtualization technologies, such as KVM and QEMU,
which are prevalent in cloud computing solutions. These cloud
game executions are also made deterministic using the above-
mentioned algorithm.

After this step, our proposed method will then check the
output of each video game instance, searching for possible
corruptions in the rendered frames using two convolutional
neural networks. If any corruption is found, we store the
relevant Draw Calls at both the reference execution (local) and
the faulty cloud one. For our last step, we compare the results
in order to find the source of the encountered glitch at the
Draw Call level. The overall structure of our proposed method
can be seen in Figure 1. To summarize, our approach contains
3 main phases:

 A local reference instance of the video game

alongside several cloud instances are run, where their
graphical output is deterministic.

 Corrupted frames in each execution of the video
game are detected using a convolutional neural
network (CNN) and their Draw Calls are stored.

 The Draw Calls of the corrupted frames are
compared to the Draw Calls of equivalent frames
from the reference execution so that the source of the
corruption can be identified.

The CSI Journal on Computer Science and Engineering, Vol. 17, No. 2, 2020 28

Figure 1: Top level view of proposed video game testing
method.

An important question that arises here is why there is a need
to use neural networks for this purpose and whether traditional
image quality metrics could not be used in this regard. The
short answer to this question is that the rendering of graphical
frames in a video game is highly dependent on the game's
user-defined graphics settings, and therefore a broad spectrum
of valid frames for a given scene is possible based on the
values given to these settings. As an example, we can see
different renderings of the same scene in Figure 2, obtained
from one of the Unity game engine's [22] sample projects.
Here, rendering 1 is the reference rendering with the highest
graphical fidelity. Renderings 2 and 3 are valid, but with
graphical settings set to lower values (settings such as
Shadow, Screen Space Ambient Occlusion, etc.), while
rendering 4 is corrupted (the pink wooden objects).

Figure 2: Different renderings of the same scene. Here
renderings 1 to 3 are valid but at different quality settings.
Rendering 4 is invalid as it contains corrupted artifacts.

Typically, in the video game industry and also computer
graphics literature, traditional image quality assessment
metrics are used to compare and measure degradation,
similarity and corruption in different versions of an image.

SSIM [23] & HDR-VDP-2 [24] are two full-reference
quality metrics commonly used in this regard. We will give a
brief description of these metrics below and show why they do
not perform as desired in situations such as the example
renderings described above:

 SSIM or structural similarity index is a classic
algorithm used in computer graphics, especially in
graphics regression tests which consider image
degradation as a perceived change in structural
information while also considering perceptual
phenomena.

 HDR-VDP-2 is a visual metric that compares a pair
of images (a reference and a test image) and predicts
visibility (the probability that the differences
between the images are visible for an average
observer) & quality (the quality degradation with
respect to the reference image).

In Figure 2 we can see the values of SSIM & HDR-VDP-2
for different renderings. A value closer to 1 for SSIM (and
closer to 100 for HDR-VDP-2) shows a rendering that more
closely matches the reference one. The problem here is that
these metrics' values for renderings 2 & 3, which are valid
renderings, are lower than rendering 4, which is not desirable,
as rendering 4 contains corrupted pixels, being visually not
acceptable. This shows us that existing traditional metrics
have shortcomings in detecting such cases of graphics
artifacts. This adheres to the findings of Zhang et al. [25]
which show that deep learning methods can easily outperform
traditional image quality metrics assessing the perceptual
similarity between different images.

3.1. Deterministic Replays

As we need each instance of the game running on multiple
computers to be identical, their graphics output should be
deterministic. If in the process of duplicating user inputs from
the local run to the cloud even one frame is missed (e.g.,
because of delays), the state of the two video game instances
may be entirely different, each showing a different graphical
output. This limits our method's ability to compare frames
from different runs, as such frames must be identical to detect
any corruptions. Depending on the game and the game engine
it uses, the ability to replay runs might be supported. For the
case where such a feature is not available, we use a method
called “Deterministic Replays", based on an algorithm
proposed by [21]. By making small changes in the game
engine code, this method makes the output of a game
deterministic. One source of indeterminism not considered
there is the sensitivity of the output to the time between the
rendering of two consecutive frames. This plays a vital role in
calculations relating to a game's physics engine. To resolve
this problem, we store all frames alongside their inputs and
time-stamps in a table called the Events Table. Games being
run on the cloud obtain this table at fixed intervals and
advance the game execution based on its entries.

3.2. Comparing Two Runs

As we know, the output of video games is graphical images or
frames. Our proposed testing method deals with bugs and
issues that corrupt such rendered images. This may happen
because of reasons such as the use of specific functions that
are only available on certain VGAs or specific versions of an
OS. Another reason might be problems with one or more
buffers when rendering an image (i.e., corrupted rendering

M.R.Taesiri, M.Habibi & M.A.Fazli: A Video Game Testing Method Utilizing Deep Learning (Regular Paper) 29

buffers) due to programming mistakes. In our proposed testing
method, we use DenseNet [26], a CNN, to classify frames as
corrupted or healthy. Here we only make use of the final
graphical output (Back Buffers). The process of analyzing
such output frames is fast, but without considering other
rendering data, finding the root cause of the corruption is
difficult, e.g., objects not directly visible in the frame may
impact the graphics output. Also, glitches relating to lighting
and shading of scenes are very prevalent here. Therefore, our
method relies on identifying Draw Calls that play a role in
corrupting the graphics output.

To render a scene and create the final output image it is
necessary to move data such as meshes, textures, materials,
etc. from the main memory of the computer to the graphics
card memory. Next, the CPU will command the graphics card
to render an object on the scene using Draw Calls. The total
number of Draw Calls needed to render a scene depends on
the complexity of the scene itself, and in some cases, over
30000 draw calls might be used to fully render a scene. Figure
3 depicts the rendering process of a scene with around 4000
draw calls. An important point that affects the appearance of
the scene is the order of the draw calls. This order is
determined by the rendering algorithm and the game engine
architecture. One of the major assumptions in our method is
that the game engine uses a total order for the draw calls. Our
observation shows that many of today's most widely used
game engines such as the Unreal Engine [27] and Unity [22]
have this property.

Figure 3: Rendering process of a frame by a game engine.

When an output frame is identified as corrupted by the
DenseNet network, we need to obtain the Draw Calls used in
the execution. This can be done using a specialized layer
placed between the game and the graphics (API) which
receives function calls from the game and stores them before
passing them on. Many implementations of such layers exist
mainly for troubleshooting purposes. In this work, we use the
open source RenderDoc tool [28]. Now that we have access to
the Draw Calls, we must match them in different executions.
This is because, for a variety of reasons, a draw call in the local
execution may not be called in some of the cloud instances.
We name such draw calls as Missed Draw Calls. A missed
draw call may be a sign of graphical problems, but this is not

always the case. For example, reducing the graphic details
setting of a game leads to such missed draw calls.

If in the game instances run via our testing method, a draw
call is detected for which no corresponding draw call exists in
the local execution, such a draw call is called an Orphan Draw
Call. One reason for this such draw calls is the Level of Details
(LOD) algorithms.

To properly match draw calls from two separate executions
we can use special commands of the graphics API used for
troubleshooting (e.g., D3DPERF_SetMarker in DirectX) and
add extra information to each draw call. Such mechanisms are
not applicable to all game engines. Therefore, we propose an
automated method to find a match between draw calls; we
iterate the draw calls in order of their number and insert them
into a hash table. As the orphan & missed draw calls are
present in one execution and no match exists for them, we use
the final output image to compare them. We first detect the
bounding box of these draw calls on the output frame and
compare the pixels inside for local and cloud executions. If
these executions use different settings when run, a large
number of orphan & missed draw calls will be encountered.
To reduce this problem all instances of the video game must
run using the same settings. Also, as some draw calls affect a
small amount of the pixels in a frame, we can omit them to
speed things up.

3.4. Identifying Corrupted Frames Using CNNs

In a typical CNN architecture, several Convolutional and
Pooling Layers are used in a sequence to reduce the width &
height of the image and increase the depth of features. Such
use of many layers can cause issues such as the Vanishing &
Exploding Gradient problem when using backpropagation.
This hinders the learning ability of the network. At the same
time, as the number of layers grows, the network's capacity
also increases, and we expect the network to be able to extract
more features and learn the Identity Function. This is the main
reasoning behind the ResNet network[29]. Here, by adding
Skip Connections between different network layers, many of
the issues mentioned above are mitigated. The DenseNet
network builds on this idea by using several subnetworks
where the skip connections continue beyond consecutive
layers. In other words, not only is there an input to layer 𝐿௜
from layer 𝐿௜ିଵ , but the output of previous layers are also
present as inputs to this layer. This reduces the problem of
vanishing & exploding gradients, enhances the propagation of
features, enforces reuse of features, and decreases the total
number of the network's parameters.

The DenseNet network is trained on the ImageNet dataset
[30] and needs tuning for use in other areas. Therefore, 3
Affine layers measuring 2048, 1024, and 64 with the RELU
(Rectified Linear Unit) activation function are added to the
end of the neural network, with classification at the last layer
done using the Softmax algorithm. To train the network, we
freeze the first 169 layers of the network and only train the
parameters of the newly added layers. To be able to do this,
we first need to collect a large number of healthy & corrupted
frame samples. Fortunately, social platforms such as Youtube
and Twitch provide video content from which healthy frames
can be collected. For corrupted frames, we crawled Youtube
and Reddit to find video clips that have keywords showing
they contain graphical bugs. All in all, we collected 5000

The CSI Journal on Computer Science and Engineering, Vol. 17, No. 2, 2020 30

corrupted frames and 5000 healthy ones. The collected frames
were high resolution (up to 1920x1080), therefore to increase
accuracy & speed up processing each frame was sliced into
subframes measuring 256x256 pixels. These were then
labeled based on their pixel content. We also omitted
subframes which did not contain any valuable features, such
as the player webcam feed or overlaid text. An example can
be seen in Figure 4, where the omitted subframes are shown
in blue.

Figure 4: Slicing a single frame into multiple subframes.
Subframes are either correct, corrupted (buggy) or are
emitted for not including useful data.

3.4. Testing Method Procedure

After different instances of the video game have been run on
the cloud, the captured frames are sent to the DenseNet to
detect corrupted frames and store their draw calls. As most
games run at 30 to 60 FPS (frames per second), the
performance of the DenseNet network must be high enough
for such inferences. We can either use variations of this CNN,
which increase performance at the cost of losing some
accuracy, or reduce the number of frames. The time gap
between the two frames is very small, and therefore, two
consecutive frames might not have much difference among
them. To evaluate the difference between two consecutive
frames we can use metrics such as the Mean Square Error
(MSE), Normalized Root Mean Square Error (NRMSE), Peak
Signal to Noise Ratio (PSNR), and Sum of Absolute
Differences (ABSDIFF). Each metric performs best under
different circumstances. In [31], a similar problem to ours is
considered, and MSE is shown to provide reasonable
performance. We also use MSE to evaluate the difference
between two frames, denoting the parameter 𝛿ௗ௜௙௙ as the
difference threshold between two frames. 𝛿ௗ௜௙௙ is one of the
parameters that we must decide on.

Eventually, when a frame is detected as corrupted, its
related draw calls must be stored. But as the frame is fully
rendered, we do not have access to its constituting draw calls.
Two solutions exist for this; storing the draw calls inside the
frame (or consecutive frames) or recovering the corrupted
frame. In the first case, the command to store the draw calls in
the next 𝛿௙ frames is scheduled. When the marked frame is
encountered, the draw calls are stored in both the local video
game instance as well as the corrupted cloud one so that they
can be compared. 𝛿௙ is another parameter which must be
specified in our method, which can be difficult to do. This
solution is fast, but if only a single frame is corrupted, it cannot
store its draw calls. The corruption of a single frame may be

negligible in a real-world setting, but still using the first
solution decreases our method's overall accuracy.

In the second solution, we mark the corrupted frames and
store all input provided to the game in a table. After the testing
phases are finished, the game is run for a second round with
the input to the game read from the table. When encountering
previously marked frames the draw calls are stored. This
solution also has its drawbacks, i.e., the frames in the second
round might not precisely match those rendered in the first
round. To mitigate this, we can store a window 𝛿௪ of frames
neighboring the marked frames. This can increase accuracy
but results in an increased processing load. We must also
decide on a value for the parameter 𝛿௪ . Based on our
observations using both proposed solutions at the same time
increases accuracy. We will discuss value selection for 𝛿௙ and
𝛿௪ more in-depth in subsequent sections.

After storing the draw calls of the corrupted frames, the
comparison phase starts. We first omit the draw calls which
have updated pixels outside the area of the corrupted image.
Next, by matching the remaining draw calls the difference
between their output pixels is calculated and classified using
the second DenseNet network. Here the DenseNet network
determines the acceptable threshold for changes between two
draw calls. In order to also be able to compare orphan and
missing draw calls, we make use of the pixels in the final
image. Orphan draw calls can be a sign of artifacts in the final
image and missing draw calls lead to areas of this image not
being rendered. To make sure of the health of the frame, we
compare the final image from the local & cloud instances
directly. Algorithm 1 shows the steps of our procedure to find
different sets of draw calls, where 𝑘௅ ∩ 𝑘ோ is the set of
matched draw calls, 𝑘௅ െ 𝑘ோ is the set of missing draw calls
& 𝑘௅ െ 𝑘ோ is the set of orphan draw calls. Some draw calls are
used for calculations, and their output has no direct impact on
the output images pixels, but they can still be the root of some
graphical bugs. The above procedure can also be used to
compare such draw calls as their output is used by other draw
calls which do change pixels.

M.R.Taesiri, M.Habibi & M.A.Fazli: A Video Game Testing Method Utilizing Deep Learning (Regular Paper) 31

4. Evaluation & Results

Various experiments were performed to evaluate the accuracy
of our method in identifying graphical problems. To simulate
the cloud computing environment, we used KVM & QEMU
with VGA passthrough. We created six virtual machines, each
one having a dedicated graphics card. Each VM has 4 CPU
cores and 6GB of RAM. The exact specification of these VMs
can be seen in Table 1.

Table 1: Specs of VMs used for Simulation

Component Details
CPU Dual Xeon E5-2620v3
VM1 VGA NVIDIA GTX 1080
VM2 VGA NVIDIA GTX 780 Ti
VM3 VGA NVIDIA GT 740
VM4 VGA AMD Radeon RX 480
VM5 VGA AMD Radeon R9 270
VM6 VGA AMD Radeon HD6450
 RAM 6x 8GB DDR4 ECC 2400MHz
NVMe Storage Plextor 256GB PCIe NVMe
SSD Storage SAMSUNG 850 EVO 1TB
Hypervisor QEMU + KVM
Guest OS Windows 10.0.15063

We use VM1 (housing an NVIDIA GTX 1080) for deep

learning uses, utilizing the TensorFlow open-source library.
The other five VMs are used to execute the video game
instances.

For our evaluation to be meaningful, we needed to create
examples of graphical bugs in the executions
deterministically. As a collection of data relating to such bugs
with the level of detail we required does not exist, we
artificially created a collection of such bugs. This was done on
video games based on the Unity game engine. We manipulated
the Vertex Buffer, Textures & Materials to create more than
1000 graphical problems in different rendered objects. An
example of such graphical problems can be seen in Figure 5.

As all the VMs are run on a single machine, the
communication delay between the game instances & the
corruption detection platform is nearly zero. Therefore, we set
the 𝛿௙ parameter to 5ms and the 𝛿௪ parameter to 10 frames.
Our observations show that increasing 𝛿௙ up to 30ms has a
negligible impact on accuracy. This is due to the dataset used
and also the fact that most issues last at least 1 second. For
similar reasons, increasing the value of parameter 𝛿௪ to more
than 30 frames does not considerably change accuracy.

To evaluate the first DenseNet network, we look at its
ability to detect corrupted frames. After the extraction of video
game frames from online platforms using the method
described above, we classified them using the DenseNet
network. 10% of the input data were used as the validation set
and 10% held out for the Test set, with the rest used for the
purpose of training. The DenseNet network's accuracy during
the training period can be seen in Figure 6.

Figure 5: Inability of the DenseNet network in detecting
graphical problems - Right: Correct rendering of a fluid -
Left: The fluid has not been rendered at all [32].

Figure 6: Training & validation accuracy of detecting
graphical bugs using the proposed method.

As can be seen, the accuracy of detecting corrupted frames
in our proposed method can reach up to 94% in the Validation
set. The final accuracy of the network for the Test set is around
90%. These numbers show us that the DenseNet network
works exceptionally well in most situations. Also, we can see
that the gap between the accuracy of the validation set and the
training set does not change in later epochs. This shows us that
we are in an overfitting regime, and therefore more training
will not increase the validation accuracy. This can be
remediated by increasing the amount of training data.

In some scenarios, the first DenseNet network used in our
method might not be able to detect a graphical glitch. Figure
5 shows such a situation, in which the absence of a graphical
element (here a simulated fluid) cannot be detected. This
represents the hardest class of graphical issues which even a
human might not be able to identify unless they have specific
knowledge on the scene being rendered. As another example,
in Figure 7, an image of a special effects scene is shown. This
scene might visually look like a glitch, but it is in fact intended
to look distorted. Such images might be falsely classified as a
corrupted frame by the first DenseNet network. Here the
second DenseNet network comes to our aid. This network is
trained on the input relating to the difference between the
pixels of a frame from a faulty execution and a frame from the
healthy reference execution. This allows it to estimate the
boundary between corrupted frames and healthy ones. As our
generated corrupted frame data is very small compared to the
set of all possible graphical issues, in our observations, the
CNN can reach an accuracy of 90% in this second part.

The CSI Journal on Computer Science and Engineering, Vol. 17, No. 2, 2020 32

Figure 7: Example of incorrect classification of a frame
related to a special effects scene[33].

5. Conclusion and Future Works

In this paper, we presented a novel video game testing
method for graphical bugs that cause various visual artifacts
in a video game's rendered frames. Our results show that the
use of deep learning methods can be very effective in detecting
graphical bugs. Here, after corrupted frames are identified, by
processing the draw calls responsible for such frames and
comparison to the draw calls of related healthy frames we can
identify the root cause of the problem at the draw call level.
As we described in previous sections, the total accuracy of our
proposed method is 81%, with the first DenseNet network's
accuracy near 90% and the second network's accuracy at
around 90%. Further improvements in accuracy can be
obtained by using a more extensive data set.

One future direction this work can take is to create the input
to the game executions automatically. At the moment this
input is given by a human game tester. Reinforced Learning
methods can be useful in this regard by training a collection of
agents that can play the role of the tester and create input
commands for the game. Another promising direction is to
extend our method for specific classes of video games. For
example, a large number of video games today are made for
various mobile platforms. Here cloud services that are tailor-
made for mobile app testing, such as AWS device farm [34],
can be used. This can pose its own challenges, such as the
difference in the resolution of game instances run on various
mobile devices.

References

[1] Sales of batman: Arkham knight’s pc version suspended
on steam (update),
http://www.polygon.com/2015/6/24/8842447/, [accessed 20-
December-2017] (2015).
[2] Y. J. Choi, Providing novel and useful data for game
development using usability expert evaluation and testing, in:
Computer Graphics, Imaging and Visualization, 2009.
CGIV’09. Sixth International Conference on, IEEE, 2009, pp.
129–132.
[3] P. Moreno-Ger, J. Torrente, Y. G. Hsieh, W. T. Lester,
Usability testing for serious games: Making informed design
decisions with user data, Advances in Human-Computer
Interaction 2012 (2012) 4.
[4] N. M. Diah, M. Ismail, S. Ahmad, M. K. M. Dahari,
Usability testing for educational computer game using
observation method, in: Information Retrieval & Knowledge
Management,(CAMP), 2010 International Conference on,
IEEE, 2010, pp. 157–161.

[5] C. Buhl, F. Gareeboo, Automated testing: a key factor for
success in video game development. case study and lessons
learned, in: Proceedings of Pacific NW Software Quality
Conferences, 2012, pp. 1–15.
[6] K. Peterson, S. Behunin, F. Graham, Automated testing on
multiple video game platforms, uS Patent App. 13/020,959
(Feb. 4 2011).
[7] C. Schaefer, H. Do, B. M. Slator, Crushinator: A
framework towards game-independent testing, in: Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, IEEE, 2013, pp. 726–729.
[8] A. M. Smith, M. J. Nelson, M. Mateas, Computational
support for play testing game sketches., in: Artificial
Intelligence for Interactive Digital Entertainment (AIIDE),
2009 the Fifth International Conference on, AAAI, 2009, pp.
167–172.
[9] I. Zarembo, Analysis of Artificial Intelligence
Applications for Automated Testing of Video Games, in:
Environment Technologies Resources, 2019 Proceedings of
the International Scientific and Practical Conference, Vol. 2,
pp. 170-174.
[10] A. Nantes, R. Brown, F. Maire, A framework for the
semi-automatic testing of video games., in: Artificial
Intelligence for Interactive Digital Entertainment (AIIDE),
2008 The Fourth International Conference on, 2008.
[11] B. Chan, J. Denzinger, D. Gates, K. Loose, J. Buchanan,
Evolutionary behavior testing of commercial computer games,
in: Evolutionary Computation, 2004. CEC2004. Congress on,
Vol. 1, IEEE, 2004, pp. 125–132.
[12] Y,Zheng, X. Xie, T. Su, L. Ma, J Hao, Z. Meng & C. Fan,
Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning. 2019, in: 34th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE , pp. 772-784.
[13] J. Bergdahl, C. Gordillo, K. Tollmar, & L. Gisslén,
Augmenting automated game testing with deep reinforcement
learning, 2020, in: 2020 IEEE Conference on Games (CoG)
pp. 600-603.
[14] C. Ling, K. Tollmar & L. Gisslén, Using Deep
Convolutional Neural Networks to Detect Rendered Glitches
in Video Games, 2020, in: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, Vol. 16, No. 1, pp. 66-73.
[15] A. Watson, Deep Learning Techniques for Super-
Resolution, in Video Games, 2020, arXiv preprint
arXiv:2012.09810.
[16] C.-S. Cho, K.-M. Sohn, C.-J. Park, J.-H. Kang, Online
game testing using scenario-based control of massive virtual
users, in: Advanced Communication Technology (ICACT),
2010 The 12th International Conference on, Vol. 2, IEEE,
2010, pp. 1676–1680.
[17] Y. Choi, H. Kim, C. Park, S. Jin, A case study: Online
game testing using massive virtual player, in: Control and
Automation, and Energy System Engineering, Springer, 2011,
pp. 296–301.
[18] S. Iftikhar, M. Z. Iqbal, M. U. Khan, W. Mahmood, An
automated model based testing approach for platform games,
in: Model Driven Engineering Languages and Systems
(MODELS), 2015 ACM/IEEE 18th International Conference
on, IEEE, 2015, pp. 426–435.
[19] M. Ostrowski, S. Aroudj, Automated regression testing
within video game development, GSTF Journal on Computing
(JoC) 3 (2) (2013) 60.

M.R.Taesiri, M.Habibi & M.A.Fazli: A Video Game Testing Method Utilizing Deep Learning (Regular Paper) 33

[20] S. Varvaressos, K. Lavoie, A. B. Massé, S. Gaboury, S.
Hallé, Automated bug finding in video games: A case study
for runtime monitoring, in: Software Testing, Verification and
Validation, 2014 IEEE Seventh International Conference on,
IEEE, 2014, pp. 143–152.
[21] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen,
S. Saroiu, M. Musuvathi, Kahawai: High-quality mobile
gaming using gpu offload, in: Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications,
and Services, ACM, 2015, pp. 121–135.
[22] Unity - game engine, https://unity3d.com/, [accessed 20-
December-2016] (2016).
[23] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli,
Image quality assessment: from error visibility to structural
similarity, IEEE transactions on image processing 13 (4)
(2004) 600–612.
[24] R. Mantiuk, K. J. Kim, A. G. Rempel, W. Heidrich, Hdr-
vdp-2: a calibrated visual metric for visibility and quality
predictions in all luminance conditions, in: ACM Transactions
on graphics (TOG), Vol. 30.4, ACM, 2011, p. 40.
[25] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang,
The unreasonable effectiveness of deep features as a
perceptual metric, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 586–595.
[26] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger,
Densely connected convolutional networks, in: Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4700–4708.
[27] Unreal engine technology,
https://www.unrealengine.com/, [accessed 20-December-
2016] (2016).
[28] Renderdoc, a stand-alone graphics debugging tool.,
https://github.com/ baldurk/renderdoc/, [accessed 20-
December-2017] (2016).
[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning
for image recognition, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.
[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei,
Imagenet: A largescale hierarchical image database, in: 2009
IEEE conference on computer vision and pattern recognition,
Ieee, 2009, pp. 248–255.
[31] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, M. Zaharia,
Noscope: optimizing neural network queries over video at
scale, Proceedings of the VLDB Endowment 10 (11) (2017)
1586–1597.
[32] uflex - asset store, goo.gl/gpaUJQ, [Online; accessed 18-
December-2017] (2017). URL goo.gl/gpaUJQ
[33] Kinoglitch: Video glitch effects for unity,
https://github.com/keijiro/KinoGlitch, [accessed 18-
December-2017] (2017).
[34] Mobile app testing on devices - aws device farm,
https://aws.amazon.com/device-farm/, [accessed 26-
December-2017] (2017).

Mohammad Reza Taesiri received his

BSc degree in Mathematics from Amirkabir
University in 2015, and his MSc degree in
Software Engineering from Sharif
University in 2017. His research interests
include video games, explainable, and
interpretable machine learning.

Email: mtaesiri@gmail.com

Moslem Habibi received his BSc, MSc

and PhD degrees in Computer Engineering
from Sharif University of Technology. He is
currently an assistant professor at Sharif
University’s Industrial Engineering
department where his research centers on
Digital Transformation, Organizational

Agility and Application Lifecycle Management.
Email: mhabibi@sharif.edu

MohammadAmin Fazli received his BSc
in hardware engineering and MSc and PhD
in software engineering from Sharif
University of Technology, in 2009, 2011 and
2015 respectively. He is currently a Lecturer
at Sharif University of Technology and R&D
Supervisor at Sharif's Intelligent Information

Center resided in this university. His research interests include
Game Theory, Combinatorial Optimization, Computational
Business and Economics, Graphs and Combinatorics,
Complex networks and Dynamical Systems.

Email: fazli@sharif.edu

Paper Handling Data:

Submitted: 12.27.2020
Received in revised form: 05.12.2021
Accepted: 05.20.2021
Corresponding author: Dr. Moslem Habibi
Industrial Engineering Department, Sharif University
of Technology, Tehran, Iran

