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Abstract 
 

Computer video games must pass different types of tests before release. Yet most products in this multibillion-dollar industry still exhibit 
various compatibility problems when run on end consumers' computers. In this work, we propose a new automated testing method which 
utilizes deep convolutional neural networks to test video game compatibility with target runtime environments. This will result in better support 
for various computing environments that run video games and a reduction of the effort needed for testing them. Our method executes tests both 
on local computers and the cloud. Locally, a game tester will test the video game with normal testing routines. After that, these tests are 
automatically replicated on the cloud, running the video game on different environments. With the help of two convolutional neural networks, 
corrupted frames of the game containing artifacts are automatically discerned, and by comparing the local execution to the ones on the cloud, 
the corresponding problematic Draw Calls are determined. These are then used as a basis for comparison in order to determine the root cause 
of the graphical issue. 
Keywords: Video Game Testing, Automated Testing, Software Testing, Deep Learning, Convolutional Neural Networks. 

 
 

 

1. Introduction 
 
The development process of video games varies in many 
aspects compared to other software products. Different 
development teams usually use their own specific test 
processes based on the type of game they are creating. One 
common problem that all teams deal with after a game is 
published is incompatibility with consumers' personal 
computers. In recent years, there have been many instances of 
popular video games that needed so-called "day one patches" 
shortly after release because of such incompatibility problems. 
For example, in 2015, Steam temporarily discontinued sales 
of the PC version of 'Batman: Arkham Knight' due to such 
issues and bugs[1]. 

Video games can be evaluated from different viewpoints. A 
video game is typically created using a Game Engine 
composed of various components including the Rendering 
Engine, Physics Engine, Particles System, Audio & Video 
Libraries, etc. Such components can be tested individually 
using traditional software testing methods. Additionally, some 
components can use specialized testing procedures unique to 
them, such as graphics tests for the rendering engine.  

Game developers who create their products by utilizing the 
components mentioned above have a hard time automatically 
detecting graphical bugs which occur on some specific 
runtime environment configuration. Identifying such visual 
bugs might be easy for a human, but because of the large 
number of elements that make up a PC's runtime 
configuration, such manual detection is time-consuming and 
tedious. Also, as many modern computer games consist of 
numerous graphical objects in each frame, visual glitches 
cannot all be detected by the naked human eye.  

A typical method to detect such problems is to make use of 
traditional image quality metrics, but such metrics have been 
shown to possess shortcomings in detecting graphical glitches 
in many situations. 

In this paper, we propose a novel solution for automated 
testing of video games based on deep learning methods. Our 
main goal is to detect graphical glitches, i.e., corrupted frames, 
that occur due to the different runtime environments in which 
a game is executed in.  

In the next section, we will briefly introduce related works 
in this field. Then in Section 3, our proposed method is 
explained and its various steps are discussed. In the 
subsequent section, we will explain our evaluation method and 
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the obtained results. Finally, future work in this field is 
expanded upon in the Conclusion section. 

 

2. Related Work 
 

In this section, we introduce related works in literature dealing 
with video game testing. In [2] several new methods for 
usability testing in video games are introduced using data 
gathered from users, a technique also emphasized in [3]. Diah 
et al. [4] also deal with usability testing, utilizing the 
observation method in this regard for a specific category of 
video games, i.e., educational video games.  

Automated testing of video games has also gathered much 
attention, with [5] introducing a Smoke Testing mechanism 
for video games, while the automated testing method proposed 
by [6] is process based and platform independent. A large part 
of the QA activities of any video game development outfit is 
beta testing. Schaefer et al. [7] propose an automated testing 
method which can reduce the time spent on beta testing, 
introducing a framework for this purpose called Crushinator. 
Testing games at earlier steps of the software development 
process is discussed in [8], which proposes a state-based 
technique to test games at the prototype stage. 

An important recent trend in this field is the use of AI and 
deep learning methods in video game testing. [9] provides an 
overview of research in this field. The authors show that the 
vast majority of analysed approaches rely on playtesting to 
product results, with work in this field shown to fall into one 
of three categories, human imitation, scenario-based, and 
goal-based approaches. Researchers in [10] make use of 
artificial intelligence agents and machine vision algorithms to 
devise a semi-automated game testing technique, while Chan 
et al. [11] use genetic algorithms to detect undesirable 
behaviour in video games. Folan et al. [12] have proposed 
Wuji, an automated game testing framework, which works by 
using deep reinforcement learning alongside multi-object 
optimization to automatically detect different category of 
bugs, from crash bugs to user experience ones. Bergdahl et al. 
[13] also use DRL, but to augment traditional scripting 
methods, especially in edge cases hard for humans to simulate. 
Researchers in [14] propose an approach for detecting 
graphical anomalies in video game images. Their method, 
which makes use of CNNs, is able to detect 88.1% of the 
glitches with a false positive rate of 6.3%. In [15] the 
researchers use deep neural networks to improve video game 
graphics in real time. Their results show how graphical 
artifacts can be manipulated and enhanced by AI methods, 
which can be used in the context of testing computer game 
graphics.  

Other work deal with Black Box methods for game testing, 
including [16] which uses scenario-based testing methods to 
evaluate video games without information on their inner 
workings. The authors of [17] concentrate on testing online 
video games by proposing an online game testing tool, 
EasyQA to create virtual gamer loads for the test environment. 
Others such as [18] make use of model-driven testing 
techniques, used to test a wide range of software products 
including enterprise software, targeting the popular platform 
genre of video games. Another important test category for 
software products is Regression Testing where developers 
make sure that new changes do not introduce side effects into 
previously checked components. An automated regression 

testing method customized for video game development is 
presented in [19]. Lastly, [20] makes use of 𝐿𝑇𝐿 െ 𝐹𝑂ା, an 
extension of linear temporal logic, to find bugs in video games 
by monitoring their runtime behaviour.  

 

3. Proposed Method 
 

As mentioned before, the video game testing method we 
propose in this paper makes use of deep learning methods to 
detect graphical corruptions in rendered video game scenes. 
As we will show, this is done at the Draw Call level, which 
are commands that tell the Graphical Processing Unit (GPU) 
to draw a certain set of polygons. Initially, the game 
developers or testers will run the game on a local machine, 
testing the game with traditional methods. At this step, we 
capture the user's input commands (i.e., user activity) on the 
local machine. This must be done in such a way so that 
different runs of the game produce the same output, that is the 
graphical output must be deterministic.  For this, we make use 
of the algorithm suggested by Cuervo et al. [21], which limits 
sources of non-determinism, specifically system time, random 
number generators, and the game's music. 

For the next step, different instances of the same game must 
be run on different runtime environments. To efficiently and 
rapidly create such environments with different settings we 
use virtualization technologies, such as KVM and QEMU, 
which are prevalent in cloud computing solutions. These cloud 
game executions are also made deterministic using the above-
mentioned algorithm. 

After this step, our proposed method will then check the 
output of each video game instance, searching for possible 
corruptions in the rendered frames using two convolutional 
neural networks. If any corruption is found, we store the 
relevant Draw Calls at both the reference execution (local) and 
the faulty cloud one. For our last step, we compare the results 
in order to find the source of the encountered glitch at the 
Draw Call level. The overall structure of our proposed method 
can be seen in Figure 1. To summarize, our approach contains 
3 main phases:  

 
 A local reference instance of the video game 

alongside several cloud instances are run, where their 
graphical output is deterministic. 

 Corrupted frames in each execution of the video 
game are detected using a convolutional neural 
network (CNN) and their Draw Calls are stored.  

 The Draw Calls of the corrupted frames are 
compared to the Draw Calls of equivalent frames 
from the reference execution so that the source of the 
corruption can be identified. 
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Figure 1: Top level view of proposed video game testing 
method. 

An important question that arises here is why there is a need 
to use neural networks for this purpose and whether traditional 
image quality metrics could not be used in this regard. The 
short answer to this question is that the rendering of graphical 
frames in a video game is highly dependent on the game's 
user-defined graphics settings, and therefore a broad spectrum 
of valid frames for a given scene is possible based on the 
values given to these settings. As an example, we can see 
different renderings of the same scene in Figure 2, obtained 
from one of the Unity game engine's [22] sample projects. 
Here, rendering 1 is the reference rendering with the highest 
graphical fidelity. Renderings 2 and 3 are valid, but with 
graphical settings set to lower values (settings such as 
Shadow, Screen Space Ambient Occlusion, etc.), while 
rendering 4 is corrupted (the pink wooden objects). 
 

 

Figure 2: Different renderings of the same scene. Here 
renderings 1 to 3 are valid but at different quality settings. 
Rendering 4 is invalid as it contains corrupted artifacts. 

Typically, in the video game industry and also computer 
graphics literature, traditional image quality assessment 
metrics are used to compare and measure degradation, 
similarity and corruption in different versions of an image. 

SSIM [23] & HDR-VDP-2 [24] are two full-reference 
quality metrics commonly used in this regard. We will give a 
brief description of these metrics below and show why they do 
not perform as desired in situations such as the example 
renderings described above: 

 SSIM or structural similarity index is a classic 
algorithm used in computer graphics, especially in 
graphics regression tests which consider image 
degradation as a perceived change in structural 
information while also considering perceptual 
phenomena. 

 HDR-VDP-2 is a visual metric that compares a pair 
of images (a reference and a test image) and predicts 
visibility (the probability that the differences 
between the images are visible for an average 
observer) & quality (the quality degradation with 
respect to the reference image). 
 

In Figure 2 we can see the values of SSIM & HDR-VDP-2 
for different renderings. A value closer to 1 for SSIM (and 
closer to 100 for HDR-VDP-2) shows a rendering that more 
closely matches the reference one. The problem here is that 
these metrics' values for renderings 2 & 3, which are valid 
renderings, are lower than rendering 4, which is not desirable, 
as rendering 4 contains corrupted pixels, being visually not 
acceptable. This shows us that existing traditional metrics 
have shortcomings in detecting such cases of graphics 
artifacts. This adheres to the findings of Zhang et al. [25] 
which show that deep learning methods can easily outperform 
traditional image quality metrics assessing the perceptual 
similarity between different images. 

 

3.1. Deterministic Replays 
 
As we need each instance of the game running on multiple 
computers to be identical, their graphics output should be 
deterministic. If in the process of duplicating user inputs from 
the local run to the cloud even one frame is missed (e.g., 
because of delays), the state of the two video game instances 
may be entirely different, each showing a different graphical 
output. This limits our method's ability to compare frames 
from different runs, as such frames must be identical to detect 
any corruptions. Depending on the game and the game engine 
it uses, the ability to replay runs might be supported. For the 
case where such a feature is not available, we use a method 
called “Deterministic Replays", based on an algorithm 
proposed by [21]. By making small changes in the game 
engine code, this method makes the output of a game 
deterministic. One source of indeterminism not considered 
there is the sensitivity of the output to the time between the 
rendering of two consecutive frames. This plays a vital role in 
calculations relating to a game's physics engine. To resolve 
this problem, we store all frames alongside their inputs and 
time-stamps in a table called the Events Table. Games being 
run on the cloud obtain this table at fixed intervals and 
advance the game execution based on its entries. 

 

3.2. Comparing Two Runs 
 
As we know, the output of video games is graphical images or 
frames. Our proposed testing method deals with bugs and 
issues that corrupt such rendered images. This may happen 
because of reasons such as the use of specific functions that 
are only available on certain VGAs or specific versions of an 
OS. Another reason might be problems with one or more 
buffers when rendering an image (i.e., corrupted rendering 
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buffers) due to programming mistakes. In our proposed testing 
method, we use DenseNet [26], a CNN, to classify frames as 
corrupted or healthy. Here we only make use of the final 
graphical output (Back Buffers). The process of analyzing 
such output frames is fast, but without considering other 
rendering data, finding the root cause of the corruption is 
difficult, e.g., objects not directly visible in the frame may 
impact the graphics output. Also, glitches relating to lighting 
and shading of scenes are very prevalent here. Therefore, our 
method relies on identifying Draw Calls that play a role in 
corrupting the graphics output.  

To render a scene and create the final output image it is 
necessary to move data such as meshes, textures, materials, 
etc. from the main memory of the computer to the graphics 
card memory. Next, the CPU will command the graphics card 
to render an object on the scene using Draw Calls. The total 
number of Draw Calls needed to render a scene depends on 
the complexity of the scene itself, and in some cases, over 
30000 draw calls might be used to fully render a scene. Figure 
3 depicts the rendering process of a scene with around 4000 
draw calls. An important point that affects the appearance of 
the scene is the order of the draw calls. This order is 
determined by the rendering algorithm and the game engine 
architecture. One of the major assumptions in our method is 
that the game engine uses a total order for the draw calls. Our 
observation shows that many of today's most widely used 
game engines such as the Unreal Engine [27] and Unity [22] 
have this property. 
 

 

Figure 3: Rendering process of a frame by a game engine. 

When an output frame is identified as corrupted by the 
DenseNet network, we need to obtain the Draw Calls used in 
the execution. This can be done using a specialized layer 
placed between the game and the graphics (API) which 
receives function calls from the game and stores them before 
passing them on. Many implementations of such layers exist 
mainly for troubleshooting purposes. In this work, we use the 
open source RenderDoc tool [28]. Now that we have access to 
the Draw Calls, we must match them in different executions. 
This is because, for a variety of reasons, a draw call in the local 
execution may not be called in some of the cloud instances. 
We name such draw calls as Missed Draw Calls. A missed 
draw call may be a sign of graphical problems, but this is not 

always the case. For example, reducing the graphic details 
setting of a game leads to such missed draw calls.  

If in the game instances run via our testing method, a draw 
call is detected for which no corresponding draw call exists in 
the local execution, such a draw call is called an Orphan Draw 
Call. One reason for this such draw calls is the Level of Details 
(LOD) algorithms. 

To properly match draw calls from two separate executions 
we can use special commands of the graphics API used for 
troubleshooting (e.g., D3DPERF_SetMarker in DirectX) and 
add extra information to each draw call. Such mechanisms are 
not applicable to all game engines. Therefore, we propose an 
automated method to find a match between draw calls; we 
iterate the draw calls in order of their number and insert them 
into a hash table. As the orphan & missed draw calls are 
present in one execution and no match exists for them, we use 
the final output image to compare them. We first detect the 
bounding box of these draw calls on the output frame and 
compare the pixels inside for local and cloud executions. If 
these executions use different settings when run, a large 
number of orphan & missed draw calls will be encountered. 
To reduce this problem all instances of the video game must 
run using the same settings. Also, as some draw calls affect a 
small amount of the pixels in a frame, we can omit them to 
speed things up. 
 

3.4. Identifying Corrupted Frames Using CNNs 
 
In a typical CNN architecture, several Convolutional and 
Pooling Layers are used in a sequence to reduce the width & 
height of the image and increase the depth of features. Such 
use of many layers can cause issues such as the Vanishing & 
Exploding Gradient problem when using backpropagation. 
This hinders the learning ability of the network. At the same 
time, as the number of layers grows, the network's capacity 
also increases, and we expect the network to be able to extract 
more features and learn the Identity Function. This is the main 
reasoning behind the ResNet network[29]. Here, by adding 
Skip Connections between different network layers, many of 
the issues mentioned above are mitigated. The DenseNet 
network builds on this idea by using several subnetworks 
where the skip connections continue beyond consecutive 
layers. In other words, not only is there an input to layer 𝐿௜ 
from layer 𝐿௜ିଵ , but the output of previous layers are also 
present as inputs to this layer. This reduces the problem of 
vanishing & exploding gradients, enhances the propagation of 
features, enforces reuse of features, and decreases the total 
number of the network's parameters. 

The DenseNet network is trained on the ImageNet dataset 
[30] and needs tuning for use in other areas. Therefore, 3 
Affine layers measuring 2048, 1024, and 64 with the RELU 
(Rectified Linear Unit) activation function are added to the 
end of the neural network, with classification at the last layer 
done using the Softmax algorithm. To train the network, we 
freeze the first 169 layers of the network and only train the 
parameters of the newly added layers. To be able to do this, 
we first need to collect a large number of healthy & corrupted 
frame samples. Fortunately, social platforms such as Youtube 
and Twitch provide video content from which healthy frames 
can be collected. For corrupted frames, we crawled Youtube 
and Reddit to find video clips that have keywords showing 
they contain graphical bugs. All in all, we collected 5000 
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corrupted frames and 5000 healthy ones. The collected frames 
were high resolution (up to 1920x1080), therefore to increase 
accuracy & speed up processing each frame was sliced into 
subframes measuring 256x256 pixels. These were then 
labeled based on their pixel content. We also omitted 
subframes which did not contain any valuable features, such 
as the player webcam feed or overlaid text. An example can 
be seen in Figure 4, where the omitted subframes are shown 
in blue. 

 

Figure 4: Slicing a single frame into multiple subframes. 
Subframes are either correct, corrupted (buggy) or are 
emitted for not including useful data. 

 

3.4. Testing Method Procedure 
 
After different instances of the video game have been run on 
the cloud, the captured frames are sent to the DenseNet to 
detect corrupted frames and store their draw calls. As most 
games run at 30 to 60 FPS (frames per second), the 
performance of the DenseNet network must be high enough 
for such inferences. We can either use variations of this CNN, 
which increase performance at the cost of losing some 
accuracy, or reduce the number of frames. The time gap 
between the two frames is very small, and therefore, two 
consecutive frames might not have much difference among 
them. To evaluate the difference between two consecutive 
frames we can use metrics such as the Mean Square Error 
(MSE), Normalized Root Mean Square Error (NRMSE), Peak 
Signal to Noise Ratio (PSNR), and Sum of Absolute 
Differences (ABSDIFF). Each metric performs best under 
different circumstances. In [31], a similar problem to ours is 
considered, and MSE is shown to provide reasonable 
performance. We also use MSE to evaluate the difference 
between two frames, denoting the parameter 𝛿ௗ௜௙௙  as the 
difference threshold between two frames. 𝛿ௗ௜௙௙ is one of the 
parameters that we must decide on. 

Eventually, when a frame is detected as corrupted, its 
related draw calls must be stored. But as the frame is fully 
rendered, we do not have access to its constituting draw calls. 
Two solutions exist for this; storing the draw calls inside the 
frame (or consecutive frames) or recovering the corrupted 
frame. In the first case, the command to store the draw calls in 
the next 𝛿௙ frames is scheduled. When the marked frame is 
encountered, the draw calls are stored in both the local video 
game instance as well as the corrupted cloud one so that they 
can be compared. 𝛿௙  is another parameter which must be 
specified in our method, which can be difficult to do. This 
solution is fast, but if only a single frame is corrupted, it cannot 
store its draw calls. The corruption of a single frame may be 

negligible in a real-world setting, but still using the first 
solution decreases our method's overall accuracy.  

In the second solution, we mark the corrupted frames and 
store all input provided to the game in a table. After the testing 
phases are finished, the game is run for a second round with 
the input to the game read from the table. When encountering 
previously marked frames the draw calls are stored. This 
solution also has its drawbacks, i.e., the frames in the second 
round might not precisely match those rendered in the first 
round. To mitigate this, we can store a window 𝛿௪ of frames 
neighboring the marked frames. This can increase accuracy 
but results in an increased processing load. We must also 
decide on a value for the parameter 𝛿௪ . Based on our 
observations using both proposed solutions at the same time 
increases accuracy. We will discuss value selection for 𝛿௙ and 
𝛿௪ more in-depth in subsequent sections.  

After storing the draw calls of the corrupted frames, the 
comparison phase starts. We first omit the draw calls which 
have updated pixels outside the area of the corrupted image. 
Next, by matching the remaining draw calls the difference 
between their output pixels is calculated and classified using 
the second DenseNet network. Here the DenseNet network 
determines the acceptable threshold for changes between two 
draw calls. In order to also be able to compare orphan and 
missing draw calls, we make use of the pixels in the final 
image. Orphan draw calls can be a sign of artifacts in the final 
image and missing draw calls lead to areas of this image not 
being rendered. To make sure of the health of the frame, we 
compare the final image from the local & cloud instances 
directly. Algorithm 1 shows the steps of our procedure to find 
different sets of draw calls, where 𝑘௅ ∩ 𝑘ோ  is the set of 
matched draw calls, 𝑘௅ െ 𝑘ோ is the set of missing draw calls 
& 𝑘௅ െ 𝑘ோ is the set of orphan draw calls. Some draw calls are 
used for calculations, and their output has no direct impact on 
the output images pixels, but they can still be the root of some 
graphical bugs. The above procedure can also be used to 
compare such draw calls as their output is used by other draw 
calls which do change pixels. 
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4. Evaluation & Results 
 

Various experiments were performed to evaluate the accuracy 
of our method in identifying graphical problems. To simulate 
the cloud computing environment, we used KVM & QEMU 
with VGA passthrough. We created six virtual machines, each 
one having a dedicated graphics card. Each VM has 4 CPU 
cores and 6GB of RAM. The exact specification of these VMs 
can be seen in Table 1. 
 

Table 1: Specs of VMs used for Simulation 

Component Details 
CPU Dual Xeon E5-2620v3 
VM1 VGA NVIDIA GTX 1080 
VM2 VGA NVIDIA GTX 780 Ti 
VM3 VGA NVIDIA GT 740 
VM4 VGA AMD Radeon RX 480 
VM5 VGA AMD Radeon R9 270 
VM6 VGA AMD Radeon HD6450 
 RAM 6x 8GB DDR4 ECC  2400MHz 
NVMe Storage Plextor 256GB PCIe NVMe 
SSD Storage SAMSUNG 850 EVO 1TB 
Hypervisor QEMU + KVM 
Guest OS Windows 10.0.15063 

 
 
We use VM1 (housing an NVIDIA GTX 1080) for deep 

learning uses, utilizing the TensorFlow open-source library. 
The other five VMs are used to execute the video game 
instances.  

For our evaluation to be meaningful, we needed to create 
examples of graphical bugs in the executions 
deterministically. As a collection of data relating to such bugs 
with the level of detail we required does not exist, we 
artificially created a collection of such bugs. This was done on 
video games based on the Unity game engine. We manipulated 
the Vertex Buffer, Textures & Materials to create more than 
1000 graphical problems in different rendered objects. An 
example of such graphical problems can be seen in Figure 5. 

As all the VMs are run on a single machine, the 
communication delay between the game instances & the 
corruption detection platform is nearly zero. Therefore, we set 
the 𝛿௙ parameter to 5ms and the 𝛿௪ parameter to 10 frames. 
Our observations show that increasing 𝛿௙  up to 30ms has a 
negligible impact on accuracy. This is due to the dataset used 
and also the fact that most issues last at least 1 second. For 
similar reasons, increasing the value of parameter 𝛿௪ to more 
than 30 frames does not considerably change accuracy.  

To evaluate the first DenseNet network, we look at its 
ability to detect corrupted frames. After the extraction of video 
game frames from online platforms using the method 
described above, we classified them using the DenseNet 
network. 10% of the input data were used as the validation set 
and 10% held out for the Test set, with the rest used for the 
purpose of training. The DenseNet network's accuracy during 
the training period can be seen in Figure 6. 

 

 
Figure 5: Inability of the DenseNet network in detecting 
graphical problems - Right: Correct rendering of a fluid - 
Left: The fluid has not been rendered at all [32]. 

 
 

 
Figure 6: Training & validation accuracy of detecting 
graphical bugs using the proposed method. 

As can be seen, the accuracy of detecting corrupted frames 
in our proposed method can reach up to 94% in the Validation 
set. The final accuracy of the network for the Test set is around 
90%. These numbers show us that the DenseNet network 
works exceptionally well in most situations. Also, we can see 
that the gap between the accuracy of the validation set and the 
training set does not change in later epochs. This shows us that 
we are in an overfitting regime, and therefore more training 
will not increase the validation accuracy. This can be 
remediated by increasing the amount of training data.  

In some scenarios, the first DenseNet network used in our 
method might not be able to detect a graphical glitch. Figure 
5 shows such a situation, in which the absence of a graphical 
element (here a simulated fluid) cannot be detected. This 
represents the hardest class of graphical issues which even a 
human might not be able to identify unless they have specific 
knowledge on the scene being rendered. As another example, 
in Figure 7, an image of a special effects scene is shown. This 
scene might visually look like a glitch, but it is in fact intended 
to look distorted. Such images might be falsely classified as a 
corrupted frame by the first DenseNet network. Here the 
second DenseNet network comes to our aid. This network is 
trained on the input relating to the difference between the 
pixels of a frame from a faulty execution and a frame from the 
healthy reference execution. This allows it to estimate the 
boundary between corrupted frames and healthy ones. As our 
generated corrupted frame data is very small compared to the 
set of all possible graphical issues, in our observations, the 
CNN can reach an accuracy of 90% in this second part. 
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Figure 7: Example of incorrect classification of a frame 
related to a special effects scene[33]. 

 

5. Conclusion and Future Works 
 

In this paper, we presented a novel video game testing 
method for graphical bugs that cause various visual artifacts 
in a video game's rendered frames. Our results show that the 
use of deep learning methods can be very effective in detecting 
graphical bugs. Here, after corrupted frames are identified, by 
processing the draw calls responsible for such frames and 
comparison to the draw calls of related healthy frames we can 
identify the root cause of the problem at the draw call level. 
As we described in previous sections, the total accuracy of our 
proposed method is 81%, with the first DenseNet network's 
accuracy near 90% and the second network's accuracy at 
around 90%. Further improvements in accuracy can be 
obtained by using a more extensive data set. 

One future direction this work can take is to create the input 
to the game executions automatically. At the moment this 
input is given by a human game tester. Reinforced Learning 
methods can be useful in this regard by training a collection of 
agents that can play the role of the tester and create input 
commands for the game. Another promising direction is to 
extend our method for specific classes of video games. For 
example, a large number of video games today are made for 
various mobile platforms. Here cloud services that are tailor-
made for mobile app testing, such as AWS device farm [34], 
can be used. This can pose its own challenges, such as the 
difference in the resolution of game instances run on various 
mobile devices. 
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