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Abstract

A latin interchange is a pair of disjoint partial latin squares of the
same shape and order which are row–wise and column–wise mutu-
ally balanced. In this paper we document a simple algorithm which
enables one to write a latin interchange as the sum of 2 × 2 latin
interchanges; that is as the sum of intercalates.

1 Introduction and preliminaries

A latin square L of order n is an n × n array with entries chosen from
a set N = {1, . . . , n} in such a way that each element of N occurs pre-
cisely once in each row and column of the array. For ease of exposition, a
latin square L will be represented by a set of ordered triples {(i, j;Lij) |
where element Lij occurs in cell (i, j) of the array}.

A partial latin square P of order n is an n× n array with entries chosen
from a set N = {1, . . . , n} in such a way that each element of N occurs
at most once in each row and at most once in each column of the array.
Hence there are cells in the array that may be empty, but the positions
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that are filled have been so as to conform with the latin property of array.
Once again a partial latin square may be represented as a set of ordered
triples. However in this case we will include triples of the form (i, j; ∅)
and read this to mean that cell (i, j) of the partial latin square is empty.
The set of cells SP = {(i, j) | (i, j;Pij) ∈ P, for some Pij ∈ N} is said to
determine the shape of P and |SP | is said to be the volume of the partial
latin square. That is, the volume is the number of nonempty cells. For
each row r, 1 ≤ r ≤ n, we let Rr

P denote the set of entries occurring in row
r of P . Formally, Rr

P = {Prj | Prj ∈ N ∧ (r, j;Prj) ∈ P}. Similarly, for
each column c, 1 ≤ c ≤ n, we define Cc

P = {Pic | Pic ∈ N ∧ (i, c;Pic) ∈ P}.
A latin interchange, I = (P,Q), of volume s is an ordered set of two

partial latin squares, of order n, such that

1. SP = SQ,

2. for each (i, j) ∈ SP , Pij 6= Qij ,

3. for each r, 1 ≤ r ≤ n, Rr
P = Rr

Q, and

4. for each c, 1 ≤ c ≤ n, Cc
P = Cc

Q.

Thus a latin interchange is a pair of disjoint partial latin squares of the same
shape and order, which are row–wise and column–wise mutually balanced.
We refer to the shape of a latin interchange I as the shape of the individual
components P and Q.

EXAMPLE 1.1 Below is an example of two partial latin square which
together form a latin interchange of order 5 and of volume 19. To conserve
space it will be our practice to display a latin interchange by superim-
posing one partial latin square on top of the other, and using subscripts
to differentiate the entries of the second from those of the first, as shown
below.

. . 2 3 1

. 2 . 1 4
1 . 5 4 3
5 4 1 . 2
4 1 3 2 5

. . 1 2 3

. 1 . 4 2
4 . 3 1 5
1 2 5 . 4
5 4 2 3 1

. . 21 32 13

. 21 . 14 42
14 . 53 41 35
51 42 15 . 24
45 14 32 23 51

The concept of a latin interchange in a latin square is similar to the
concept of a mutually balanced set or a trade (see [9]) in a block design. The
same as trades, the discussion of latin interchanges is related to intersection
problems. For example, they are relevant to the problem of finding the
possible number of intersections for latin squares (see [7], [6], [2], and [1]).
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EXAMPLE 1.2 The following array shows each of the partial latin
squares given in Example 1.1 can be embedded in a latin square of or-
der 6, which indicates that there exist two latin squares of order 6 having
36-19=17 elements in common.

6 5 21 32 13 4
3 21 6 14 42 5
14 6 53 41 35 2
51 42 15 6 24 3
45 14 32 23 51 6
2 3 4 5 6 1

Also latin interchanges arise naturally in the discussion of critical sets in
latin squares (see for example [10]). The determination of critical sets has
been shown to be an NP–complete problem [4].

Latin interchanges have been studied by other authors. Fu and Fu [6]
used the term “disjoint and mutually balanced” (DMB) partial latin
squares, Keedwell [10] used “critical partial latin square” (CPLS), while
Donovan et al. [5] used the term “latin interchange”. Adams et al. [1] sug-
gest the terminology 2-way latin trade for consistency with similar concepts
in other combinatorial structures such as block designs, graph colouring,
cycle systems, etc. See for instance [9], [13], [8], and [3] for further use of
trades.

Let ri denote the number of non-empty cells in row i and cj denote
the number of non-empty cells in column j in a latin interchange I. Then
it is obvious that

∑n
i=1 ri =

∑n
j=1 cj = |SI |, and the type of the latin

interchange I is defined to be(
c1 + c2 + c3 + . . . + cn

r1 + r2 + r3 + . . . + rn

)
.

The type of the latin interchange in Example 1.1 is(
3 + 3 + 4 + 4 + 5
3 + 3 + 4 + 4 + 5

)
.

Note that the type describes the number of non–empty cells in each of
the columns and rows of I. Since the empty rows and columns of I give
very little useful information, wherever possible they are deleted, and the
latin interchange I is taken to be a partial latin square of order n, where
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n = max{r, c}. Then the type is written as(
c1 + c2 + c3 + . . . + cc

r1 + r2 + r3 + . . . + rr

)
.

A latin interchange of volume 4 and type

(
2 + 2
2 + 2

)
, which is unique (up

to isomorphism), is said to be an intercalate.

Next we define the sum of two latin interchanges. To this end we intro-
duce the definition of a generalized interchange. A generalized interchange
I = (P,Q) is defined as a latin interchange but with the proviso that for
any r, 1 ≤ r ≤ n, (c, 1 ≤ c ≤ n) the sets Rr

P and Rr
Q, (Cc

P and Cc
Q) may

be multisets, but we still require that for all r, 1 ≤ r ≤ n, (c, 1 ≤ c ≤ n)
Rr

P = Rr
Q, (Cc

P = Cc
Q).

Let I = (P,Q) and I ′ = (P ′, Q′) be two generalized interchanges. As-
sume that for each cell (i, j) ∈ SI ∩ SI′ (that is, a cell where both I and I ′

are nonempty) we have Pij 6= P ′
ij , Qij 6= Q′

ij , and {Pij , P
′
ij}∩{Qij , Q

′
ij} 6=

∅. Then the sum of I and I ′ is defined to be a generalized interchange
I + I ′ = (S, T ), where the partial squares S and T are such that:

• for each cell (i, j) ∈ SI ∩ SI′ :

S = {(i, j; {Pij , P
′
ij} \ {Qij , Q

′
ij})| (i, j) ∈ SI ∩ SI′},

T = {(i, j; {Qij , Q
′
ij} \ {Pij , P

′
ij})| (i, j) ∈ SI ∩ SI′};

• for each cell (i, j) for which at least one of the interchanges, say I, is
empty while P ′

ij and Q′
ij ∈ N : (i, j;P ′

ij) ∈ S and (i, j;Q′
ij) ∈ T ; and

finally

• for each cell (i, j) that both of the interchanges I and I ′ are empty,
then (i, j) in I + I ′ is also empty.

EXAMPLE 1.3 For example the latin interchange of Example 1.1 is
equal to the sum of the following generalized interchanges.

. . 21 32 13

. 21 . 14 42
14 . 53 41 35
51 42 15 . 24
45 14 32 23 51

=

. . . 32 23

. . . 24 42
24 . 53 42 35
52 42 25 . 24
45 24 32 23 52

+

. . 21 . 12

. 21 . 12 .

12 . . 21 .

21 . 12 . .
. 12 . . 21
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Khanban and Mahmoodian [11] define a linear sum and introduce a linear
space which contains all generalized interchanges. Their operation, when
induced on the set of generalized interchanges, is the same as the definition
above. Mahdian and Mahmoodian [12] show that there is a basis for that
linear space which consists of intercalates. In this note we introduce a very
simple algorithm to write each latin interchange as a sum of intercalates.

2 The algorithm

In this section we state our results and, in the proofs, we introduce an algo-
rithm for writing a latin interchange as sum of intercalates. A latin inter-
change is called a cycle if there are exactly two filled cells in each nonempty

row or nonempty column; that is, a cycle has type
(

2 + 2 + 2 + . . . + 2
2 + 2 + 2 + . . . + 2

)
.

An intercalate is a cycle of volume 4.

LEMMA 2.1 Every latin interchange which is a cycle can be written as
sum of intercalates.

Proof. We proceed by induction on s, the volume of the latin interchange.
For the smallest value of s = 4 the cycle itself is an intercalate. Now let
C = (P,Q) be a cycle of volume s > 4. For conveniences we refer to the
elements of C as 4-tuples, for example (i, j; (Pij , Qij)). Reorder the rows so
that row 1 is nonempty. So for some column j, (1, j; (P1j , Q1j)) ∈ C. Let
P1j = a and Q1j = b and it follows that for some column k, (1, k; (b, a)) ∈ C
and for some row i, (i, j; (b, a)) ∈ C. Then we see that C contains the
following nonempty cells.

j k
. ab

. ba .
. . . . .

i ba
. . . . .

If cell (i, k) is nonempty then C can be written as the sum

{(1, j; (a, b)), (1, k; (b, a)), (i, j; (b, a)), (i, k; (a, b))} +
C \ {(1, j; (a, b)), (1, k; (b, a)), (i, j; (b, a)), (i, k; (a, b))},

which is the sum of two cycles. If cell (i, k) is empty then C can be written
as the sum

{(1, j; (a, b)), (1, k; (b, a)), (i, j; (b, a)), (i, k; (a, b)} + C ′,
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where

C ′ = (C \ {(1, j; (a, b)), (1, k; (b, a)), (i, j; (b, a))}) ∪ {(i, k; (b, a))},

and it is easy to see that C ′ is a cycle as it is a latin interchange of type(
2 + 2 + 2 + . . . + 2
2 + 2 + 2 + . . . + 2

)
.

In either case we have C equal to the sum of an intercalate with a
cycle C ′, where |C ′| ≤ |C| − 2, and the statement follows by the inductive
hypothesis.

EXAMPLE 2.1 The cycle in Example 1.3 can be decomposed as

C1 =

. . 21 . 12

. 21 . 12 .

12 . . 21 .

21 . 12 . .
. 12 . . 21

=

. . 21 . 12

. . . . .

. . . . .

. . 12 . 21

. . . . .

+

. . . . .

. 21 . 12 .

12 . . 21 .

21 . . . 12
. 12 . . 21

= · · ·

THEOREM 2.1 Every generalized interchange can be written as sum of
intercalates.

Proof. We show that any generalized interchange can be written as sum
of cycles. Then the statement follows by Lemma 2.1. We proceed by
induction on s, the volume of generalized interchange. For the smallest
value of s which is 4, the generalized interchange itself is an intercalate.
Now let I = (P,Q) be a generalized interchange of volume s > 4. Let a1

be the smallest element which appears in the first nonempty row, r1, of I
and assume that (a1, a2) appears in row r1 of I in a column say c1, that is
(r1, c1; (a1, a2)) ∈ I. There exists a3, where (a3, a1) appears in row r1 and
in a column, say c2 of I. There exists a4, where (a1, a4) appears in column
c2 and in a row, say r2 of I. Following this process we find a5 where (a5, a1)
appears in row r2 and column c3 of I, there exists a6, where (a1, a6) appear
in column c3 and row r3 of I, etc. This process will end when we find ak

where (ak, a1) appears in column c1 of I (see the following pattern).

. . (a1, a2) . . (a3, a1)

. . . . . .

(a1, ak−1) . (ak, a1) . . .
. . . (a5, a1) . (a1, a4)
∗ ∗ . . . .
. (a6, a1) . (a1, a6) . .
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Note that since it is a generalized interchange, we may meet a row or a
column more than once. In that case we omit the redundant paths and
continue the process making sure that each row and each column (except
row r1 and column c1) is visited only once (see the next example). Now
I is equal to the sum of the following cycle plus a generalized interchange
with a volume r, where r < s. And the statement follows by the induction
hypothesis.

. . (a1, a2) . . (a2, a1)

. . . . . .

(a1, a2) . (a2, a1) . . .
. . . (a2, a1) . (a1, a2)
∗ ∗ . . . .
. (a2, a1) . (a1, a2) . .

EXAMPLE 2.2 In the following we illustrate our algorithm on the latin
interchange of Example 1.1. Example 1.3 shows the first step of the al-
gorithm. It is interesting to see how it continues. Here, to facilitate un-
derstanding, we write in an initial row a pair of numbers which indicate
the order and the volume of the latin interchange, respectively. If for latin
interchanges I, J , and C we have I = J + C, then we also may write
J = I − C.

(5, 17) - a cycle (C2)
. . 32 - 23 23 - 32
. . 24 42

24 . 53 42 35
52 42 25 . 24
45 24 32 23 - 32 52 - 23

+

Cycle C2

. . . 32 23

. . . . .

. . . . .

. . . . .

. . . 23 32

=

(5, 14)
. .

. . 24 42
24 . 53 42 35
52 42 25 . 24
45 24 32 53

+ C2.

At this point if we continue our process on the (5,14) latin interchange, we
visit row four twice:

(5, 14) - a cycle ?
. .
. . 24 - 42 42 - 24

24 . 53 42 35
52 42 - 24 25 - ? . 24 - 42
45 24 - 42 32 - 42 53

= ?

7



As this is undesirable we delete the redundant path:

(5, 14) - a cycle (C3)
. .
. . 24 - 42 42 - 24

24 - 42 . 53 42 - 24 35
52 - 24 42 25 . 24 - 42

45 24 32 53

+

Cycle C3

. . . . .

. . . 24 42
24 . . 42 .

42 . . . 24
. . . . .

=

(5, 9)
. .

. .
. 53 35

54 42 25
45 24 32 53

+ C3.

(5, 9) - a cycle (C4)
. .
. .

. 53 - 35 35 - 53
54 42 25
45 24 32 - 53 53 - 35

+

Cycle C4

. . . . .

. . . . .

. . 53 . 35

. . . . .

. . 35 . 53

=

(5, 6)
. .
. .

.

54 42 25
45 24 52

+ C4.

(5, 6) - a cycle (C5)
. .
. .

.

54 42 - 24 25 - 42
45 24 - 42 52 - 24

+

Cycle C5

. . . . .

. . . . .

. . . . .

. 42 24 . .

. 24 42 . .

=

(5, 4): (C6)
. .
. .

.

54 45
45 54

+ C5.

So the latin interchange of Example 1.1, I(5, 19), is decomposed as sum of
6 cycles namely, C1 + C2 + C3 + C4 + C5 + C6.

COROLLARY 2.1 Every latin interchange can be written as sum of in-
tercalates.
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