
Computers and Structures 120 (2013) 9–23
Contents lists available at SciVerse ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
A three-dimensional cyclic meso-scale numerical procedure
for simulation of unreinforced masonry structures
0045-7949/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruc.2013.01.012

⇑ Corresponding author. Tel.: +1 716 6454369; fax: +1 716 645 3733.
E-mail addresses: aaref@buffalo.edu (A.J. Aref), km256@buffalo.edu

(K.M. Dolatshahi).
Amjad J. Aref ⇑, Kiarash M. Dolatshahi
Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, NY, USA

a r t i c l e i n f o
Article history:
Received 6 February 2012
Accepted 21 January 2013
Available online 6 March 2013

Keywords:
Masonry
Three-dimensional modeling
Explicit procedure
Cyclic modeling
Dynamic
Constitutive material model
a b s t r a c t

Three-dimensional (3D) cyclic analysis and constitutive material model are needed to better understand
the behavior of unreinforced masonry (URM) buildings under earthquake excitations. So far, most of the
existing constitutive material models applied to the field of masonry structures have focused on two-
dimensional modeling and monotonic loading. In addition, most of the studies have used implicit
dynamic procedures in the time domain. Based on the inherent features of implicit formulations for non-
linear problems, a number of iterations are required at each time step to achieve convergence, which
leads to intensive computations and lack of convergence in some cases such as cyclic loadings.

In this paper, a 3D cyclic constitutive material model implemented within an explicit analysis proce-
dure is proposed, which can be used to model large deformation behavior of masonry walls. A rigorous
constitutive material model is proposed and validated with available experimental data from previous
researches, and for the attributes for which experimental data is not readily available; a number of
new experimental tests has been conducted by the authors. The material model is implemented in a
user-defined subroutine and compiled with ABAQUS (VUMAT). The subroutine is then tested by several
numerical examples on a single element under cyclic normal and transverse deformations to examine the
behavior of the material model. Moreover, several analyses are conducted and the numerical results are
compared with experimental data to assess the robustness and predictive capabilities of the proposed
material model and the numerical solution algorithms.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Masonry structures have been used for many years in building
construction. The poor performance of masonry buildings under
earthquake excitations has been observed over the years; however,
masonry buildings are still in demand. Although novel structural
technologies are utilized in new buildings, masonry components
are not omitted from structural usage, and masonry components
are still used especially as infill walls, whereby they provide signif-
icant stiffness to buildings in earthquakes. Whether the masonry
structure constitutes the whole structural system or used as infill
walls in a concrete or steel building, the complex failure modes
often pose a significant challenge for any computational frame-
work. Therefore, it is necessary to develop new and robust material
models capable of capturing the cyclic three dimensional behavior
of unreinforced masonry structures. An extensive literature review
of existing approaches to modeling masonry structures reveals that
few detailed material models and analysis strategies exist, and
those that are available primarily focus on investigating the
two-dimensional (2D) cyclic behavior of masonry components
and structures [3–7].

Based on the sought accuracy level, different types of computa-
tional methods, with varying levels of computational demand,
have been presented to assess the behavior of masonry structures
under static and dynamic loadings [1,2,8,9]. These computational
methods are mainly categorized into three groups—namely,
micro-, macro-, and meso-scale. In micro-scale modeling approach,
each part of the wall is modeled in detail, using finite element
method (FEM), and that consequently provides a high level of accu-
racy for fine meshes and appropriate material models; however,
the time to create a complete numerical model and the analysis
computational demand are very significant and in many cases is
prohibitive if large scale computational resources are not available.
Accordingly, for practical purposes, meso- and macro-level
analyses have become the most common methods for studying
the structural response of masonry structures. In macro-scale
analysis, usually the general behavior of components is the main
point of interest. These types of models are much easier to use than
the micro-scale methods in terms of generating the idealized
numerical model and analyzing the structural system. Therefore,
macro-scale approaches are preferred for large structures and
particularly for seismic analysis. In a nutshell, the macro-scale
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Nomenclature

a, t and h width, thickness and height of wall, respectively
kn normal stiffness of joints
ksx,y transverse stiffness of joints
tan / friction coefficient
tan w dilatancy coefficient
/0 initial friction angle
/r residual friction angle
fc compressive strength of brick
ft tensile strength
c shear strength
GI

f tensile softening energy

GII
f shear softening energy

Em, Eb mortar and brick modulus of elasticity
Gm, Gb mortar and brick shear modulus
hm, hb mortar and brick height
r normal stress
s shear stress
un normal displacement
us shear displacement
j1/jt stiffness degradation factor
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analysis is associated with many simplified assumptions to signif-
icantly reduce the computational time. For example, Pasticier et al.
[10] used a very simple macro-element model to perform two-
dimensional seismic analysis of masonry panels, where each part
was divided into smaller panels that were represented by an equiv-
alent beam element with predefined hysteretic behavior.

As another example for macro-scale analysis of masonry build-
ings, Chen et al. [11] used nonlinear shear springs in series with
rotational springs to simulate both shear and flexural in-plane re-
sponse of masonry walls. The proposed macro-element includes an
axial spring, three shear springs, and two rotational springs to sim-
ulate the behavior of masonry walls. Using large rigid elements and
springs attached between them, Casolo [12] developed a macro-
scale model where he compared the frequencies and mode shapes
of a masonry wall using his proposed model and finite element
model. Later the model was extended to capture the cyclic 2D
behavior of masonry walls and to model masonry walls under
earthquake excitations [6]. In the model proposed by Casolo, the
propagated cracks of the wall were represented by a damage
parameter. Park et al. [8] proposed a model in which a masonry pa-
nel was divided into a number of springs with different hysteresis
loops. Their model was effectively used to calculate the fragility
curves for masonry structures. In addition to the studies described
herein, many macro-model approaches are available in literature,
and for thorough review of these methods, we direct the reader
to Dolatshahi’s study [13].

In terms of the accuracy level and computational demand,
meso-scale modeling is somewhere between micro- and macro-
scale analysis. As an example of the early work on meso-scale
modeling of masonry structures, Page [14] suggested using
interface elements between bricks. The yield surface in this
particular interface model is only defined for tensile and shear
failure. Lourenco [1] subsequently modified Page’s model by add-
ing a compressive cap to the yield surface, which led to accounting
for crushing of the masonry bricks. Oliveira and Lourenco [2] later
generalized Lourenco’s model to allow for the assessment of the
cyclic behavior of masonry walls subjected to in-plane loading. In
the model proposed by Lourenco [1] and later by Oliveira and Lour-
enco [2], bricks are modeled using elastic elements, and the nonlin-
ear behavior of the interface elements includes the tensile, shear
and compression failures [1]. In other words, all nonlinearity of
the model is defined in the interface elements and all other
elements in the model are assumed to remain elastic. Using rigid
elements in combination with interface elements Dolatshahi and
Aref [15] presented a meso-scale numerical model for simulation
of crack propagation in unreinforced masonry walls. Using rigid
elements that replaced solid elements in the FEM have led to
significantly decreasing the number of degrees-of-freedom (DOF)
of the system and alleviating the computational demand while
producing a good agreement with experimentally obtained data.

With respect to the temporal discretization, micro- and meso-
scale analysis can follow either implicit or explicit procedures.
Most of the notable research studies that address cyclic behavior
of masonry structures use implicit finite element solutions. Model-
ing a masonry structure with an implicit procedure offers some
advantages as well as many technical challenges. Based on the
most fundamental characteristics of implicit procedures, at each
time step, iterations are required to solve a system of equations.
The behavior of masonry structures is inherently nonlinear; thus,
an implicit procedure needs to iterate to achieve the desired con-
vergence tolerance. Unfortunately, for highly nonlinear problems
such as the one that represents a masonry structure, an implicit
FEM solution often encounters convergence issues and termination
of the solution at very early stages of the nonlinear regime. Most of
the finite element codes used to analyze masonry structures are
based on implicit formulations [1–3], and the analysis is computa-
tionally extensive when one considers large displacement domain.
The convergence of the numerical solution particularly deterio-
rates at the point of load reversal [16]. For this reason researchers
[17,18] have used explicit formulations to remedy the convergence
problems. For example, Karapitta et al. [17] used a homogenization
technique within an explicit formulation to capture the cyclic
behavior of in-plane masonry panels. Although the homogeniza-
tion model captured a significant range of the nonlinear behavior
very well, it could not capture the creation and progression of dis-
crete cracks. Instead, a damage parameter is used to show the dis-
torted elements. It should be noted that there are also some
disadvantages for explicit solutions. For instance, there is a risk
of converging to wrong solutions since the equilibrium is not en-
forced. Moreover, the final result can be dependent to the selected
time step and also many small time increments are needed which
is time-consuming.

Based on an extensive literature review [13], the authors have
found very few 3D cyclic finite element models that are readily
available to accurately model the behavior of masonry structures.
This paper presents a comprehensive study for 3D modeling of ma-
sonry structures, and is organized as follows; first, the description
of the finite element model and any pertinent assumptions are pre-
sented, including the types of elements used to model the mortar
and bricks. Second, the elastic and inelastic constitutive material
models are described and accompanied with numerical examples
used to validate a single element, to better illustrate and test the
behavior of the proposed numerical procedures. Finally, the pro-
posed numerical procedure is validated using experimental results
under the in-plane monotonic, out-of-plane monotonic and combi-
nation of in-plane and out-of-plane cyclic loadings.



Fig. 2. Detailed model of brick and mortar.
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Fig. 3. Potential cracks.
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2. Description of the finite element model

In the proposed 3D finite element model, which is a meso-scale
model, bricks and mortar are distinctly defined by two types of ele-
ments. For both types of elements linear and nonlinear behavior
are defined separately to achieve a better level of accuracy. The fi-
nite element models are generated in ABAQUS [19] using solid ele-
ments (C3D8R) for modeling bricks and plane interface elements
(COH3D8), as shown in Fig. 1, for mortar.

As illustrated in Fig. 2, bricks are expanded by half the mortar
thickness and interface elements are located between the brick ele-
ments representing the mortar.

Experimental observations indicate [20–22] that, in monotonic
and cyclic loading of masonry walls, cracks mostly pass through
either the mortar joint or middle of the bricks. As it will be dis-
cussed in Section 2.3, elasto–plastic behavior is defined for the
brick elements to capture their nonlinear behavior. However, to
guarantee for the possibility of crack propagation within the bricks,
each brick is divided into two parts and an interface element with
the constitutive material properties of brick (potential crack) is
placed at such particular interfaces (see Fig. 3). We note here the
user may choose more of the potential crack location and that adds
the accuracy of the solution.

The proposed numerical procedures are considered to be in the
domain of meso-scale analysis, since the mortar is not defined in
detail and is represented using zero thickness interface elements.
It should be noted that, with the usage of the zero thickness inter-
face element, distinction between the bond (brick–mortar inter-
face) failure and mid-thickness mortar failure is lost. In the
following sections, the linear and nonlinear behavior of the ele-
ments, and pertinent numerical implementations used in the FE
analysis are described.

2.1. Elastic behavior of joints

The behavior of the interface elements is initially elastic, i.e.,
Dt ¼ kD�u, where k is the elastic stiffness of joints and is calculated
using the properties of both the brick and mortar utilizing
equations (1)–(3), and t is the traction vector, where r is the
normal traction and sx,y is the transverse tractions. The deforma-
tion vector is defined by �u, where according to Eq. (3) u represents
the normal deformation of the interface element, and vx and vy are
the transverse deformations in the x and y directions, respectively.
The change in the stress or displacement in each increment is
defined by D.

k ¼
kn 0 0
0 ksx 0
0 0 ksy

2
64

3
75 ð1Þ

t ¼
r
sx

sy
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Fig. 1. Eight node plane interface element (ABAQUS).
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where kn is the normal stiffness of the interface element and ksx and
ksy are the transverse stiffness in the x and y directions, respectively.
To determine the normal and shear stiffness, the brick and mortar
are assumed to be elastic springs connected in series. The displace-
ment for the combination of the brick and mortar system must be
equal to the displacement of the brick element plane interface sys-
tem under the same compressive and shear loads (Fig. 2). Accord-
ingly, the stiffness of the system is calculated by using [1]

kn ¼
1

hm

EmEb

Eb � Em
ð4Þ

ksx;y ¼
1

hm

GmGb

Gb � Gm
ð5Þ

where G is the shear modulus and the rest of parameters that ap-
peared in Eqs. (4) and (5) are shown in Fig. 2. We note here that
the subscripts ‘‘b’’ and ‘‘m’’ refer to brick and mortar, respectively.
Following an explicit formulation, the displacement and strain
increments at each time step are calculated first. Total displace-
ments and strains in the new step (i + 1) are then generated by add-
ing these increments to the displacements and strains obtained in
the previous step (step i – Eq. (6)). The trial stress increments are
calculated knowing the strain (or displacement) increments. How-
ever, to calculate the new stresses in step i + 1 and before adding
the stress increments to the stresses of step i, the state of stress
must be checked to determine whether they are located in the elas-
tic region or not (Eq. (7)). Section 2.2 addresses the case when the
stresses are found to be outside of the yield surface.

uiþ1 ¼ ui þ Du

vxiþ1
¼ vxi

þ Dvx

vyiþ1
¼ vyi

þ Dvy

ð6Þ

rtrial ¼ ri þ Du kn

strial
x ¼ sxi

þ Dvx ksx

strial
y ¼ syi

þ Dvy ksy

8><
>: ð7Þ
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Fig. 4. Yield surface for the joints.

Fig. 5. Cyclic tensile loading [16].

Table 1
Stiffness degradation factor.

Numerical simulation j1
jt

Gopalaratnam and Shah [26] 0.76
Reinhardt [27] 0.73
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where u, is the normal deformations relative to the interface ele-
ment, and vx and vy are the transverse deformations in the x and
y directions, respectively.

2.2. Plastic behavior of joints

Three distinct modes are considered for the interface elements
namely, tension, shear, and tension-shear intersection (Fig. 4). As
mentioned above, after calculating the trial stresses using Eq. (7),
the status of the trial stresses must be checked with respect to
all yield surfaces. If the state of stress in the step i + 1 falls inside
the yield surfaces, the material is in the linear regime and the trial
stresses are correct. However, if the state of stress falls outside the
yield surfaces, the stresses must be modified based on their respec-
tive plastic domain and that is to bring them to the yield surface.

Linear Regime!

If rtrial < �r1ðjpÞ
for tension regime and

If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðstrial

x Þ
2 þ ðstrial

y Þ
2

q
< r tan /� �r2ðjpÞ

for shear regime

8>>>><
>>>>:

Each part of the yield surface of Fig. 4 is defined distinctly for ten-
sion, shear, and shear and tension regime in the following sections.

2.2.1. Tension regime
Exponential softening is considered for monotonic behavior of

the joints in the tension domain following the work of Pluijm
[23,24]. In the tension mode, the yield function [23] is

f1ðr;jpÞ ¼ r� �r1ðjpÞ ð8Þ

�r1 ¼ ft exp � ft

GI
f

jp

 !
ð9Þ

In Eqs. (8) and (9), ft is the tensile strength of the brick–mortar
interface and GI

f is the mode-I fracture energy, which indicates
the area under stress–displacement curve of a body under tensile
force. jp is the plastic strain which, following an associated flow
rule, in this case is equal to |Dup| (increment of plastic normal
displacement).

Following the normality rule [25], at any point of the yield sur-
face the outward normal vector is proportional to the plastic strain
increments. Moreover, while the material is in the nonlinear re-
gime, at any particular time step, the stress state should remain
on the yield surface. Therefore, Eq. (10) shows the stress correction
factor which modifies the trial stresses.

@f
@r drþ @f

@jp
djp ¼ 0

dr ¼ k d�u� dk @f
@r

� �
8>><
>>: ! dk ¼ �kndu

f 2
t

GI
f

exp � ft

GI
f
jp

� �
� kn

ð10Þ
where k is defined in Eq. (1). By employing dk , the new expression
for the updated stresses becomes,

riþ1 ¼ rtrial � dk kn

sxiþ1
¼ strial

x

syiþ1
¼ strial

y

8><
>: ð11Þ

Based on the experimental results, in the cyclic loadings the
stiffness in each cycle degrades following the strength degradation
[26,27]. To account for the stiffness degradation, at each cycle the
ratio between j1 and jt must remain constant as stipulated by
Gopalaratnam and Shah [26] and Reinhardt [27], as shown in
Fig. 5. Typical values for the stiffness degradation parameter
[26,27] are presented in Table 1.

FORTRAN routines have been developed to implement the plas-
ticity algorithms defined in Eqs. (1)–(11). To better illustrate the
axial behavior of the proposed material model, an interface ele-
ment (Fig. 6(a)) is subjected to a cyclic axial load (Fig. 7(a)). Follow-
ing the typical properties of masonry [1], the element is considered
to have a normal stiffness kn = 82 N/mm3 and tensile strength
ft = 0.25 N/mm2 with a softening energy GI

f ¼ 0:018 Nmm=mm2.
The response of this element is shown in Fig. 7(b). As depicted in
Fig. 7(a), first monotonic displacement-controlled increments are



Fig. 6. Interface elements under cyclic loading.
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applied up to point ‘‘A’’. Consequently, the normal stress reaches
the maximum tensile strength of 0.25 N/mm2 (see Fig. 7(c)) and
the strength degrades following an exponential curve. After load
reversal takes place at point ‘‘A’’, the stress decreases with a mod-
ified (i.e., degraded) stiffness. Note that the stiffness degradation is
only considered for the positive displacements due to the joint clo-
sure under the compressive load. Based on the experimental tests
conducted by Reinhardt [27] on brittle materials, such as concrete
or mortar, the point where the joint closes does not exactly coin-
cide with the zero displacement. However, as a simplification in
our approach, it can be considered to be at zero displacement.
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Fig. 10. The damaged specimen after compression test.
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2.2.2. Shear regime
The yield surface for the shear regime follows Eq. (12). The yield

surface and nonlinear behavior of the shear-dominated mode is
presented in reference [24] for 2D models. Herein, the model is ex-
tended to 3D models, and the formulations are derived based on
explicit formulations.

f2ðr;jpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x þ s2
y

q
þ r tan /� �r2ðjpÞ ð12Þ

�r2 ¼ c exp � c

GII
f

jp

 !
ð13Þ

where c is the cohesion of the brick–mortar interface, / is the fric-
tion angle, and GII

f is the mode-II fracture energy (the area under
stress–transverse displacement curve) appearing in Eqs. (12) and
(13). In Eq. (12), the friction angle is coupled with cohesion
softening,
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tan / ¼ tan /0 þ ðtan /r � tan /0Þ
c � �r2

c
ð14Þ

where /0 is the initial friction angle and /r is the residual friction
angle. The flow rule follows the non-associated plastic potential of,

g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x þ s2
y

q
þ r tan w� c ð15Þ

where w represents the dilatancy angle. Similar to Eq. (10), by
employing the normality rule and considering the fact that in the
nonlinear regime the state of stress remains on the yield surface,
the stress correction factor is calculated by

dk ¼
tan w knduþ sxffiffiffiffiffiffiffiffiffiffi

s2
xþs2

y

p ksxdvx þ syffiffiffiffiffiffiffiffiffiffi
s2

xþs2
y

p ksydvy

c2

GII
f

exp � c
GII

f
jp

� �
� tan2 w kn þ s2

x
s2

xþs2
y

ksx þ
s2

y

s2
xþs2

y
ksy

� � ð16Þ

Using the plasticity rules and following explicit formulations, the
modified stresses at step i + 1 can be calculated using Eq. (17),
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.000 0.002 0.004 0.006 0.008 0.010

St
re

ss
 (

M
Pa

)

Strain

Specimen 1

Specimen 2

Specimen 3
E=4300 MPa

(b) Masonry prism with low strength 
bricks

asonry prism specimens.



Fig. 12. Concrete damage material model under uniaxial tension and compression test [19].
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which accounts for fully updated state of stress in normal and trans-
verse directions
riþ1 ¼ rtrial � dk kn tanðwÞ
sxiþ1

¼ strial
x � dk ksx

sxffiffiffiffiffiffiffiffiffiffi
s2

xþs2
y

p

syiþ1
¼ strial

y � dk ksy
syffiffiffiffiffiffiffiffiffiffi
s2

xþs2
y

p

8>>>><
>>>>:

ð17Þ

As an example intended to illustrate the behavior of the pro-
posed material model, consider an interface element, shown in
Fig. 6(b), that is subjected to a transverse cyclic deformation with-
out the compressive loading (Fig. 8(a)). Following typical values for
masonry [1], the calculated element properties are: a transverse
stiffness ks = 36 N/mm3 and shear strength c = 0.35 N/mm2 with a
softening energy GII

f ¼ 0:125 Nmm=mm2. Shear stress has been
plotted against cyclic transverse displacement in Fig. 8(b). One
can see as soon as the shear stress reaches the initial yield surface
– which coincides with the value of 0.35 N/mm2 depicted in
Fig. 8(c) – the exponential strength degradation starts to govern
the behavior until the loading reversal takes place at point ‘‘A’’.
At point ‘‘A’’ the shear strength has reached a reduced value of
0.2 N/mm2 based on the governing yield surface. In the load rever-
sal, the absolute value of the stress decreases with the degradation
of stiffness until the shear stress intersects the updated yield sur-
face (0.2 N/mm2 – see Fig. 8(c)). Again, the strength degradation
continues until the second load reversal reaches point ‘‘B’’. In
Fig. 8(b), stiffness and strength degradation are evidently clear at
different stages of the loading. Note that in this numerical simula-
tion no compressive force exists; therefore, the frictional force is
not activated.

Experimental results [16] indicate no stiffness degradation for
frictional resistance, when a joint is subjected to cyclic transverse
loading in the absence of cohesion. In contrast to the tensile
strength case and according to Mohr–Coulomb rule, the shear
strength is a combination of cohesion and friction. Therefore, for
the formulation of stiffness degradation in the transverse cyclic
loading, we assume that for the portion of the shear strength
where cohesion is involved, the stiffness degradation is similar to
that used for tension (Fig. 5). Whereas, for the portion where fric-
tion exists, stiffness degradation is not considered. Hence, for the
final value of the transverse stiffness, at each time step the average
of the two values should be calculated. In other words, for a situa-
tion similar to Fig. 8(b) where compressive load does not exist, a
formulation similar to the tension-dominated case is used. For an
element with a high compressive load, where the frictional force
is predominant, no stiffness degradation is considered.

2.2.3. Shear and tension interaction regime
The cohesion behavior of the joint is coupled in tension and

shear, since both have the same source, which comes from the
cementation of the mortar. Therefore, in the model presented here-
in, isotropic softening is assumed for the coupled behavior be-
tween the shear and tension, similar to the approach adopted by
Lourenco [1]. In other words, after applying tensile force and
reducing tensile strength to m% of its initial strength
(0 < m < 100), the shear strength is also assumed to be reduced
by m% of its initial strength. Therefore, in the formulation, for the
total motion in the tensile direction in each time step, the reduc-
tion of the tensile strength and the ultimate shear strength are re-
duced consistently. This is shown as [1]

j2;nþ1 ¼
GI

f

GII
f

c
ft
jDup

nj ð18Þ

Therefore, for deformations in the shear and tensile direction:

j1 ¼ ðDup
nÞ þ

GI
f

GII
f

c
ft
jDup

nj
 !

ð19Þ

j2 ¼ ðDup
s Þ þ

GII
f

GI
f

ft

c
jDup

nj
 !

ð20Þ
2.2.4. Cap regime for the yield surface
In old buildings and due to the aging of materials, mortar is very

weak (usually weaker than bricks). Therefore, there is a possibility
for the mortar to fail under compressive forces before the adjoining
bricks. An experimental study (uniaxial compressive test) has been
performed by the authors, to identify the necessity of using cap re-
gime for the yield surface of the mortar under high compression
forces, especially when mortar is very weak. Two different types
of bricks have been selected with two different levels of compres-
sive capacities, including a high strength brick and a low strength
brick, to construct masonry prism samples. In constructing ma-
sonry prisms, only one type of mortar has been used (type ‘‘N’’)
for both types of the bricks. The stress–strain curves of uniaxial
compression test for high and low strength bricks in addition to
the cubic mortar samples are presented in Fig. 9. The high strength



Fig. 13. Steps 1 and 2 for applying the load [1].

Table 2
Properties of different types of crack (J4D/J5D). (Based on the experimental result by
[21,22]).

Type kn (N/mm3) ks (N/mm3)

Vertical/horizontal joints 82 36
Potential cracks 1000 1000
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brick was about three times stronger than the low strength brick
and the mortar as shown in Fig. 9.
Table 3
Inelastic properties of the joints (J4D/J5D). (Based on the experimental result by [21,22]).

Type Tension

ft (N/mm2) GI
f ðN=mmÞ

Vertical/horizontal joints 0.25 0.018
Potential cracks 2 0.08

Fig. 14. Numerical modeli
Fig. 10 shows a damaged brick prism after uniaxial compression
test. For both types of bricks, it was observed that even though the
bricks (for high strength bricks) were stronger than the mortar,
only bricks were crushed and the mortar was extracted without
any significant damage. The reason for this behavior is attributed
to the small thickness of the mortar and the high level of confine-
ment of the mortar induced by the adjacent bricks.

The stress–strain curves of the masonry prisms constructed
with high and low strength bricks are presented in Fig. 11(a) and
(b), respectively. Based on Fig. 11(a) the strength of the masonry
prism constructed using high strength brick was three times
Shear

c (N/mm2) tan / tan w GII
f ðN=mmÞ

0.35 0.75 0.0 0.125
2.8 0.75 0.0 0.55

ng of a masonry wall.



-100

- 80

rc
e 

(k
N

) Numerical (This Study)

Experimental 1

Experimental 2

[21,22]
[21,22]

A.J. Aref, K.M. Dolatshahi / Computers and Structures 120 (2013) 9–23 17
greater than the strength of the cubic mortar sample used between
the bricks. These observations indicate that no cap regime should
be defined in the yield surface of the mortar if the brick is modeled
using elasto–plastic elements.
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Fig. 15. Comparison of numerical and experimental load–displacement curves.
2.3. Nonlinear behavior of the brick elements

The concrete damaged plasticity material model in ABAQUS was
used to model the nonlinear behavior of the bricks. This material
model is specifically written for concrete. However, it can be used
for other quasi-brittle materials including bricks. The model as-
sumes that the main two failure mechanisms for brittle materials
are tensile cracking and compressive crushing. In this material
model, the position of the yield surface is always controlled by
two hardening variables, epl

t ; e
pl
c , tensile and compressive plastic

strain, respectively. This material behavior is also formulated to
capture the cyclic behavior of brittle material by considering stiff-
ness degradation (Fig. 12 – for more information the reader is re-
ferred to Ref. [19]).
Fig. 16. Numerical load–displacement curve.
3. Explicit dynamic analysis

Explicit analysis has been mostly used to solve the equations of
motion, either in dynamic or quasi-static problems. In contrast to
the implicit procedures, the explicit procedure requires no itera-
tions. The progression of analysis in the time domain is performed
by using many small increments dictated by a numerical stability
criterion [28].

The explicit dynamic analysis procedure is derived from explicit
central difference integration scheme. In order to have a stable
numerical solution, the time increment is the only constraint that
must be controlled; this parameter should be checked with the
highest natural frequency of the system. In other words, to have
a conditionally stable central difference operator, the time incre-
ment (Dt) should be less than the stability limit (Dtmax). In ABA-
QUS, by using the highest eigenvalue in the system (xmax), the
time increment is estimated by using the following inequality [19]:

Dt 6
2

xmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
� f

� �
ð21Þ

where f is the corresponding fraction of the critical damping in the
highest mode. Alternatively, this limit can be estimated from the
element characteristic dimension Le and the current effective wave
velocity Cd as follows:

Dtmax 6
Le

Cd
ð22Þ

where Cd ¼
ffiffiffi
E
q

q
, q is the density and E is the modulus of elasticity. In

nonlinear analysis, by changing the modulus of elasticity, the stabil-
ity limit will change. A complete discussion of the explicit dynamic
function can be found in ABAQUS manual [19].
4. Numerical validations

To validate the proposed constitutive material model, in this
section three different numerical simulations are presented with
different loading protocols along different directions, and com-
pared to well documented experimental results. The numerical
simulations include, (1) in-plane (IP) monotonic loading (2) out-
of-plane (OP) monotonic loading, and (3) combination of IP and
OP cyclic loading.
4.1. In-plane monotonic loading

The experimental and well-documented results by Raijmakers
and Vermelfoort [21] and Vermelfoort and Raijmakers [22] were
used to verify the proposed constitutive material model under
monotonic in-plane loadings. Vermelfoort and Raijmakers per-
formed an experimental study on two masonry walls with the
same geometry. The walls (wall J4D and wall J5D) were subjected
to an identical compressive loading of 30 kN. The height and width
of the walls were 1,000 and 990 mm, respectively, and had 16 ac-
tive rows of brick. The dimensions of the bricks were
210 � 52 � 100 mm and the mortar was 10 mm thick, prepared
with a volumetric cement:lime:sand ratio of 1:2:9 (Fig. 13). The
compressive load was applied first (Fig. 13(a)) then the vertical dis-
placement of the top surface was constrained. A monotonic dis-
placement-controlled load was finally imposed horizontally on
top of the wall (Fig. 13(b)).

Different experimental tests were also performed to obtain the
properties of the mortar and bricks [21,22]. The authors did not
have complete access to the material properties of the bricks used
in the concrete damaged material model of ABAQUS. Typical mate-
rial properties were selected from a range provided by Stavridis
[29] for bricks with compressive strength of 10.5 N/mm2. There-
fore, the tensile strength of the masonry units is assumed to be
10% of its compressive strength with the mode-I fracture energy
of 0.105 N/mm.

The FE model of the wall was created according to the descrip-
tion of Section 2 and using the material properties given in Tables 2
and 3. Fig. 14(a) and (b) shows the generated FE mesh for the wall
and a general view of the numerical model of the wall, respec-
tively. The size of the brick elements in this model is about
2.5 � 2.5 � 2.5 cm. Fig. 14(b) shows the assembly of the parts (half
bricks and joints) in the finite element software. As indicated ear-
lier and shown in Fig. 14(b), an interface element is located in the



Fig. 17. Crack pattern of the wall at different stages of loading; note that mesh is turned off in this view.

Fig. 18. Experimental crack pattern at 4 mm displacement [1].
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middle of the bricks to better simulate the crack propagation of the
bricks.

After imposing the compressive load on the top plane of the
wall, the vertical deformation of the top plane of the wall was re-
strained. To impose the horizontal loading in Fig. 13, two different
approaches can be considered. Numerical modeling can be
performed by using either quasi-static or dynamic analysis. In this
paper, the latter procedure is employed to show the capabilities of
the model in dynamic simulations. Thus, by applying a constant
velocity at the top plane of the wall, a monotonic deformation
was imposed to the wall. In Fig. 15, the dashed line represents
the solution obtained using the proposed constitutive material
model and numerical procedure and the two solid lines correspond
to the experimental results.
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Fig. 20. Resulting cyclic displacement at the top plane of the wall.
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Fig. 16 shows the numerical results for 10 mm horizontal dis-
placement. As expected, after the diagonal crack completed, the
wall continued to resist the loading by the frictional force at the
cracked surfaces, which is evident by the horizontal force remain-
ing almost unchanged after 6 mm, as shown in Fig. 16. Using the
proposed constitutive model and the associated numerical algo-
rithms, it is possible to simulate large displacements. However,
to obtain more accurate results for large displacements, a very fine
mesh should be used to allow the accurate creation of cracks and
formation of new contacts. The mesh sensitivity of the numerical
model is reported by Dolatshahi [13].

The crack pattern at different stages of loading is shown in
Fig. 17. To indicate the path of the crack in the early stages of
loading, different magnification factors are used for each snapshot.
In the first figure, the displacement is magnified 40 times (40�),
but in the last three figures where the deformations are higher, a
magnification factor of five (5�) is used. Fig. 17 shows that initially
the crack propagated from the two corners and continued to a full
diagonal crack. We note here also that the points at which the
crack patterns are obtained are marked in Fig. 16.

Fig. 18 shows the experimental crack pattern at a displacement
of 4 mm. It is abundantly clear that even for two walls with the
same material properties and loading, the experimental crack pat-
terns are distinctly different. This deviation is primarily due to the
heterogeneity of the mortar and brick materials. We evidently
show that the numerical crack pattern and load–displacement re-
sponse are in good agreement with the experimental results.

As the second phase of numerical modeling, a cyclic loading was
applied to the same wall used in the first example. To obtain the
cyclic loading protocol of Fig. 20, a varying velocity was applied
at the top plane of the wall according to Fig. 19.

The numerical simulation results of the cyclic loading along
with the monotonic loading are shown in Fig. 21. In this figure,
strength and stiffness degradation are clearly evident. After a few
cycles, as depicted in Fig. 21, the frictional force that is associated
with some strength degradation governs the cyclic response. The
top plane of the wall is constrained in the vertical direction while
the horizontal force was applied; therefore, after crushing of the
bricks located at the corners, the total compressive load decreases
and subsequently the resisting frictional force decreases. This is
one of the reasons that the resisting force decreases in the cyclic
loading depicted in Fig. 21.
4.2. Out-of-plane loading on masonry walls

In this section, the masonry wall discussed in the previous sec-
tion is subjected to a monotonic out-of-plane displacement. The
boundary conditions are the same as the examples in the previous
section, except for the top plane which is not constrained in the
vertical direction. Fig. 22 shows the load–displacement of the wall
under monotonic out-of-plane loading. This figure illustrates that
after a specific out-of-plane deformation (about 100 mm) the wall
become unstable.

The deformed configuration of the wall under out-of-plane
loading in points ‘‘A’’ and ‘‘B’’ of Fig. 22 is presented in Fig. 23. Point
‘‘A’’ shows the configuration of the wall when it has the most
resisting force and point ‘‘B’’ corresponds to the point where the
wall will be unstable at the larger deformation than deformation
of point ‘‘B’’. As shown in Fig. 23, most of the damage is associated
with the top and bottom three rows of the mortar in the wall. As
the deformation of the wall increases from point ‘‘A’’ to point



Fig. 23. Deformed configuration of the wall under out-of-plane loading; note that mesh is turned off for clarity.
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‘‘B’’, more crack opening is exhibited at point ‘‘B’’. In Fig. 23(c) and
(d) the wall is subjected to cyclic out-of-plane loading. Fig. 23(c)
and (d) show the deformed shape (rocking) of the wall under
out-of-plane cyclic loading. The circular dashed lines in Fig. 23
show a close-up at the crack opening of the mortar at the end of
the cycles. This figure clearly indicates the correct functionality
of the discussed material model in the simulation of opening and
closing of the joints.
Fig. 24 presents the moment diagram of the wall under OP load-
ing. According to Fig. 24(a), by writing the moment equilibrium
equation under point ‘‘O’’, the maximum value of the resisting



Fig. 26. Combination of IP and OP loadings.

Table 4
Material properties of the brick.

Elastic Compressive Tensile

E (N/mm2) m fc (N/mm2) jp jm f 0t ðN=mm2Þ GI
f ðN=mmÞ GII

f ðN=mmÞ

26500 0.15 34.5 0.007 0.0115 3.5 0.13 1.3

Table 5
Joint properties.

Elastic Shear Tension

kn (N/mm3) ksx,y (N/mm3) tan Ø tan w c (N/mm2) GII
f ðN=mmÞ ft (N/mm2) GI

f ðN=mmÞ

62 27 0.92 0.0 0.135 0.0625 0.1 0.00625

Fig. 27. Idealized stress–strain curve under uniaxial compression test.
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force (R) can be calculated. Note that, based on Fig. 23(a) in the
deformation associated to the maximum OP force (point ‘‘A’’ in
Fig. 22), the top and bottom planes are already separated from
the supports and mortar cohesion does not contribute in the OP
resisting force.
RMO ¼ 120ð50� DÞ þ R 1000
2

� R 1000 ¼ 0 ð23Þ
where D represents the OP deformation of the wall associated to
the maximum OP resisting force. According to Fig. 22 and point
‘‘A’’, for D = 7 mm Eq. (21) yields R = 10.3 kN which is very close
to the finite element results presented in Fig. 22.
As shown in Fig. 24(b) after about 100 mm out-of-plane defor-
mation, the top and bottom planes do not have any overlap and the
wall losses its stability under the gravity load. This conclusion is in
accord with the finite element results in Fig. 22 (point ‘‘B’’).
4.3. Combination of IP and OP cyclic loading

An experimental study has been conducted by the authors to
investigate the interaction behavior of the masonry walls under
in-plane and out-of-plane loadings. A brief description of the test
is presented in the following sections. For more information refer
to Ref. [13].

A masonry wall with 23 rows of brick has been constructed
with the width and height of, 170 and 155 cm, respectively; in
building the wall type ‘‘N’’ mortar has been utilized and the bricks
had the same dimensions of 20.3, 10, 6 cm in width, thickness and
height, respectively. Attention was paid to maintaining the dimen-
sion of the mortar constant at 1 cm in all horizontal and vertical
joints (see Figs. 25 and 26). According to Fig. 25 two vertical actu-
ators applied the axial load to the wall that represents the gravity
load, and a horizontal actuator applied the deformation-controlled
horizontal load. The vertical actuators applied the axial load to the
rigid beam and the rigid beam distributed the load to the top plane
of the wall. As shown in Fig. 25 four vertical columns were as-
signed as an OP support to control the OP deformation of the wall.

The wall has been tested in the IP direction with a combination
of an OP deformation. In the first step of loading, the compressive
load was applied on the top plane of the wall (100 kN, see
Fig. 26(a)), afterward, while keeping the compressive load



Fig. 28. Comparison between numerical and experimental cracks.
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constant, an OP deformation (dOP) of 10 mm was imposed to the
wall (Fig. 26(b)). Then, using two rollers beside the rigid beam at
top plane of the wall, the boundary condition has been imposed
to the rigid beam in such a way that any OP deformation of the
rigid beam was kept at the imposed value of 10 mm (Fig. 26).
Finally a displacement-controlled cyclic loading has been applied
to the top plane of the wall in the IP direction. Throughout the
testing the controller distributed the vertical load in two vertical
actuators in such a way that the rigid beam remained level.

The mechanical properties of different materials were obtained
by the authors and presented in Table 4 and 5. The elastic
properties of the joints are calculated according to Eqs. (4) and
(5). As shown in Fig. 27, a combination of three functions have
been used to show the stress–strain curve of the brick under uni-
axial compression test [1]. This stress–strain curve is used as an in-
put data for the numerical modeling, and specifically for the
concrete damaged material model in ABAQUS.

Where fc, jp and jm are defined in Fig. 27.
The experimental crack propagation is presented in Fig. 28(a).

Fig. 28(b) shows the deformation of the wall obtained from the
numerical analysis after the OP displacement was imposed. Fol-
lowing the OP deformation, a cyclic IP displacement-controlled
loading has been applied in the numerical model. The resulting
crack propagation obtained numerically is presented in Fig. 28(c).
As shown in Fig. 28, in both experimental and numerical analysis
diagonal crack is the dominant failure mode. We note here that
the diagonal crack in the experimental deviates in one aspect
and that is the pattern does not reach the corners, but rather at
the two-third of the height. One possible explanation is that the
quality of the mortar in this region is likely to be higher, as the wall
was not constructed in one working day. Moreover, using high
precision instruments (such as the Krypton [30] and string pots)
in the out-of-plane direction it was observed that the top plane
of the wall did not ideally remain at a constant out-of-plane dis-
placement due to the flexibility of the out-of-plane constrains (in
contradiction with the numerical model in Fig. 28(b) and (c)).
Therefore, the wall experienced a small torsion during the test (de-
tailed information is provided in Ref. [13]).

Due to the high strength of the brick used in the wall, not much
nonlinearity has been seen in the bricks, and the nonlinear behavior
of the wall was mostly governed by the nonlinearity of the joints.

Fig. 29 compares the experimental and numerical load–
displacement results. In the presented numerical results the
parameter j1/jt (stiffness degradation factor) is assumed to have
a unit value (see Fig. 5), which implies stiffness degradation is
not considered in the mortar. Fig. 29 shows a close agreement be-
tween the results of experimental and the numerical simulations.

5. Conclusion

This paper described the development of a robust modeling
strategy for simulating the response of masonry structures sub-
jected to 3D loadings. The modeling strategy entails the develop-
ment of a constitutive material model and its implementation in
a user-defined subroutine in ABAQUS.

Several simulations were conducted to evaluate the accuracy
and robustness of the derived material model and its implementa-
tion at both the element- and structure-level, and the numerical
results were compared to several well-documented experimental
results obtained by the authors and others.

The following points summarize the conclusions:

� Exponential softening is in good agreement with the behavior of
the mortar under tensile or transverse displacements, and such
model is well-suited to represent cohesion or tensile strength
degradation.
� When using a relatively weak mortar with strong brick, the

mortar will not fail under compression primarily due to the
high confinement of the thin mortar layer between the adjacent
bricks; therefore, no cap regime should be defined for the yield
surface of the mortar.
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� After failure of the wall in the in-plane direction, the wall con-
tinues to withstand the loading by the frictional forces (consid-
ering its aspect ratio); whereas, in the out-of-plane direction
and due to the low aspect ratio of the tested walls that were
governed by the dominance of the rocking behavior, the out-
of-plane strength after reaching a peak value diminishes to zero
very rapidly.
� In the numerical simulations pertinent to the out-of-plane load-

ing and by comparing to the theoretical results, numerical sim-
ulations were able to predict the collapse of the wall, and have
traced the theoretical results accurately.
� While several researchers have reported on the convergence

issues of implicit models that were used to model masonry
structures, the developed material model and its implementa-
tion in the user-defined subroutine in ABAQUS have remedied
the convergence and stability issues. Furthermore, the modeling
strategy offers efficient and a relatively reduced computational
demand. More work, however, is still needed to further enhance
the computational efficiency of the numerical modeling
strategy.
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