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What I am and what I am not going to talk about!

There are at least three different approaches to this fascinating
subject:

Geometry of metric-measure spaces,

Theory of Markov processes,

Theory of computation.

This talk is about computational aspects of how one may compute or
estimate the isoperimetric spectra of graphs and definitely not about
the computational consequences of constructing graphs with a
relatively high isoperimetric constant! (i.e. theory and applications of
expander graphs)
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Cheeger constant of a Riemannian Manifold

Cheeger constant of a (compact) n-dimensional Riemannian manifold
G:

ιM2 (G)
def
= inf

A
max

{
µn−1(∂A)

µn(A)
,
µn−1(∂A)

µn(Ac)

}
A runs over open subsets of M.
µn: n-dimensional measure, ∂A: the boundary of A
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The case of simple graphs

For a simple graph G = (V,E):
The max version: (Cheeger constant or edge expansion)

ιM2 (G)
def
= min

A⊆V(G)
max

{
|E(A,Ac)|
|A|

,
|E(A,Ac)

|Ac|

}
The mean version: (scaled uniform sparsest cut or normalized cut)

ιm2 (G)
def
= min

A⊆V(G)

1
2

(
|E(A,Ac)|
|A|

+
|E(A,Ac)

|Ac|

)

2-Isoperimetry Problem: Finding a
2-partition (A,Ac) of V(G) attaining the
edge expansion of G.
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Measures of connectivity

A classic theorem [PERRON-FROBENIUS]
Let G be a graph with the adjacency matrix C, the diagonal degree
matrix D and let L = D− C be its combinatorial Laplacian. Then,

The number of connected components of G is equal to the
number of 0-eigenvalues of L.

If G is connected then the 0-eigenvalue is simple and its
eigenvector does not change its sign (of course in this case the
eigenspace is generated by the constant vector 1!)

Is it possible to generalize such a theorem?

Let’s talk about this!

6 / 94



Prologue
Hardness

Approximation
Inequalities

Epilogue

Importance!

The subject is central and has connections to many different fields of
study as Geometric Analysis, Stochastic Processes, Representation
theory and Harmonic Analysis, Graph theory and Combinatorial
Optimization, Theoretical CS, Mathematical Physics, Signal
Processing and AI.
GENERAL REFERENCES FOR FURTHER READING:

Ashbaugh, Mark S.; Benguria, Rafael D., Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral theory
and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, 105-139, Proc. Sympos. Pure Math.,
76, Part 1, Amer. Math. Soc., Providence, RI, 2007.

Benguria, Rafael D.; Linde, Helmut; Loewe, Benjamin, Isoperimetric inequalities for eigenvalues of the Laplacian and
the Schrödinger operator, Bull. Math. Sci. 2 (2012), no. 1, 1-56.

Buser, Peter, Geometry and spectra of compact Riemann surfaces, Birkhäuser Boston, Inc., Boston, MA, 2010.

Gromov, Misha, Crystals, proteins, stability and isoperimetry, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 2,
229-257.

Hoory, Shlomo; Linial, Nathan; Wigderson, Avi, Expander graphs and their applications, Bull. Amer. Math. Soc.
(N.S.) 43 (2006), no. 4, 439-561.

Ledoux, Michel; Talagrand, Michel, Probability in Banach spaces. Isoperimetry and processes, Springer-Verlag,
Berlin, 2011.

Lubotzky, Alexander, Discrete groups, expanding graphs and invariant measures, Birkhäuser Verlag, Basel, 2010.

Naor, Assaf, L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, Proceedings of the
International Congress of Mathematicians. Volume III, 1549-1575, Hindustan Book Agency, New Delhi, 2010.
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Continuous versus discrete settings

Although the problem and the intuitions around it are essentially the
same in both continuous and discrete settings, motivations are quite
different.
In the continuous setting Cheeger’s constant is used to obtain
information about the eigenstructure of the Laplacian and hence the
geometry of the manifold which is essentially hard to estimate.
In the discrete setting the eigenstructure of the Laplacian as an easy to
compute concept is used to approximate Cheeger’s constant
(expansion) which is an important algorithmic and geometric hard to
compute parameter.
In what follows we try to delve into the details of this scenario.
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Weighted graphs

Model: (A finite weighted graph) A simple graph G = (V,E) together
with two weight functions w : V → R+ and c : E → R+.

Notations: For every x ∈ V and A ⊆ V ,

deg(x)
def
=
∑
y∼x

c(xy).

E(A,B)
def
= {e = uv ∈ E : u ∈ A, v ∈ B},

w(A)
def
=
∑
u∈A

w(u), c(A)
def
=

∑
e∈E(A,Ac)

c(e).

Pk(V) : The set of k-partitions of V .

For the case of weighted graphs with potentials
see [R. JAVADI PHD THESIS 2011]
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Clustering

In general, clustering is the problem of partitioning a data-set into
subpartitions in a way that each subpartition contains data-points of
similar type.

Computationally, one may consider the problem of finding an optimal,
or a suboptimal (sub)partition or one may consider the problem of
finding the optimal or a suboptimal overall-similarity cost function.

These alternatives will give rise to a variety of interesting practical
and theoretical problems!
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A naive generalization: the normalized cut problem

Given a weighted graph G = (V,E, c,w) and integer k (2 ≤ k ≤ |V|),
find a k-partition of V(G), (A1, . . . ,Ak) that attains the following
parameters:

A naive generalization of Cheeger’s constant (a ‖.‖∞ version):

ι̃M
k

(G)
def
= min
{Ai}k

1∈Pk(V)
max

1≤i≤k

c(Ai)

w(Ai)
.

The normalized cut cost function (a ‖.‖1 version):
[SHI, MALIK 1997-2000] (# CITATION > 2000!)

ι̃m
k

(G)
def
= min
{Ai}k

1∈Pk(V)

1
k

(
k∑

i=1

c(Ai)

w(Ai)

)
,

We refer to both problems as the normalized cut problem.
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An example

All edge and vertex weights are equal to 1, k = 4.

ι̃M4 = max{1
3
,

3
10
,

3
9
,

1
6
} =

1
3
.

ι̃m4 =
1
4

(
1
3

+
3
10

+
3
9

+
1
6

)
=

17
60
.
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Some notations

Acronyms:

NCP : The Normalized Cut Problem.

Superscript m (resp. M): mean (resp. max) version.

Subscript k:
appears when k is a constant,
disappears when k is part of the input.

Example:

NCPm
k :

CONSTANTS: An integer k.
INPUTS: A weighted graph G = (V,E,w, c) and a positive
integer N.
QUERY: Is it true that ι̃mk (G) ≤ N?
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Computational Hardness of the
Normalized Cut Problem

GENERAL REFERENCES FOR FURTHER READING:

Daneshgar, Amir; Javadi, Ramin, On the complexity of isoperimetric problems on trees, Discrete Appl. Math. 160
(2012), no. 1-2, 116-131.

Mohar, Bojan, Isoperimetric numbers of graphs, J. Combin. Theory Ser. B 47 (1989), no. 3, 274-291.

Nagamochi, Hiroshi; Ibaraki, Toshihide, Algorithmic aspects of graph connectivity, Encyclopedia of Mathematics and
its Applications, 123. Cambridge University Press, Cambridge, 2008.
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Known Complexity Results

[MOHAR 1989] NCP2 is NP-complete for unweighted graphs with
multiple edges.

[PAPADIMITRIU 2000] NCP2 is NP-complete for weighted planar
bipartite graphs.

[MOHAR 1989] There is a linear time algorithm that computes ι̃2 for
trees.

[JAVADI, D. 2010]

NCPk (for both max and mean versions) is NP-complete for
unweighted (simple) graphs.

NCPM is NP-complete for unweighted trees.
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Known Complexity Results

A problem with numerical parameters is said to be NP-complete in
the strong sense if it is so, even when all of its numerical parameters
are bounded by a polynomial in the length of the input.
In other words, a problem that is NP-complete even when the inputs
are given in unary codes (instead of binary codes).

[JAVADI, D. 2010] For weighted trees:
NCPm is NP-complete.
NCPM is NP-complete in the strong sense.
ι̃Mk is computable in time O(n2k2−6k−3).
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A couple of open problems

Is it true that NCPm
k is polynomial time solvable for weighted

trees?

What can we say about the strong NP-completeness of NCPm?
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Real relaxation: Federer-Fleming-type results
Computational hardness of the isoperimetry problem
Euclidean ‖.‖2 setting: eigenstructure of the Laplacian
Metric embedding, Clustering, and More

Approximations of the Isoperimetry Problem

GENERAL REFERENCES FOR FURTHER READING:

Abraham, Ittai; Bartal, Yair; Neiman, Ofer, Advances in metric embedding theory, Adv. Math. 228 (2011), no. 6,
3026-30126.
Arora, Sanjeev; Rao, Satish; Vazirani, Umesh, Expander flows, geometric embeddings and graph partitioning, J. ACM
56 (2009), no. 2, Art. 5, 37 pp.
Daneshgar, Amir; Javadi, Ramin, On the complexity of isoperimetric problems on trees, Discrete Appl. Math. 160
(2012), no. 1-2, 116-131.
Daneshgar, Amir; Hajiabolhassan, Hossein; Javadi, Ramin, On the isoperimetric spectrum of graphs and its
approximations, J. Combin. Theory Ser. B 100 (2010), no. 4, 390-412.
Daneshgar, Amir; Javadi, Ramin; Miclo, Laurent, On nodal domains and higher-order Cheeger inequalities of finite
reversible Markov processes, Stochastic Process. Appl. 122 (2012), no. 4, 1748-1776.
Kolla, Alexandra, Merging Techniques for Combinatorial Optimization: Spectral Graph Theory and SemideÂ¯nite
Programming, PhD Thesis UC Berkeley 2009.
Lee, James R.; Oveis Gharan, Shayan; Trevisan, Luca, Multi-way spectral partitioning and higher-order Cheeger
inequalities, STOC’12-Proceedings of the 2012 ACM Symposium on Theory of Computing, 1117-1130, ACM, New
York, 2012. http://arxiv.org/abs/1111.1055
von Luxburg, Ulrike; Belkin, Mikhail; Bousquet, Olivier, Consistency of spectral clustering, Ann. Statist. 36 (2008),
no. 2, 555-586. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9803
Naor, Assaf, L1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry, Proceedings of the
International Congress of Mathematicians. Volume III, 1549-1575, Hindustan Book Agency, New Delhi, 2010.
Sinop, Ali Kemal, Graph Partitioning and Semi-definite Programming Hierarchies, PhD Thesis Carnegie Mellon
University 2012.
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The gradient operator

Let Fw(G) and Fc(G) be the set of all real functions on V(G) and
E(G), respectively, equipped with the corresponding weighted
inner-products. Define the gradient as

∇ : Fw(G) −→ Fc(G), ∇f (uv)
def
= f (v)− f (u).

Gradient of characteristic functions

If f = 1
w(A)χA is the normalized characteristic function of a subset

A ⊆ V(G) then

‖∇f‖1,c =
c(A)

w(A)
=
‖∇χA‖1,c

‖χA‖1,w

.
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A real relaxation of parameters

Define

O+
k

(G)
def
=
{
{fi}

k

1
| {fi}

k

1
is positive orthonormal

}
,

Õ+
k

(G)
def
=
{
{fi}

k

1
∈ O+

k
(G) | {supp(fi)}

k

1
∈ Pk(G)

}
.

and the relaxed parameters,

γm
k

(G)
def
= inf
{fi}

k
1
∈O+

k (G)

1
k

(
k∑

i=1

‖∇fi‖1,c

)
,

γ̃m
k

(G)
def
= inf
{fi}

k
1
∈Õ+

k (G)

1
k

(
k∑

i=1

‖∇fi‖1,c

)
.

γM
k

(G) and γ̃M
k

(G) are defined similarly!
21 / 94



Prologue
Hardness

Approximation
Inequalities

Epilogue

Real relaxation: Federer-Fleming-type results
Computational hardness of the isoperimetry problem
Euclidean ‖.‖2 setting: eigenstructure of the Laplacian
Metric embedding, Clustering, and More

The isoperimetric constants

A k-subpartition consists of k nonempty and disjoint subsets of V(G).

Let Dk(G) be the class of all k-subpartitions of V(G).

Define the kth isoperimetric constants of G as,

The maximum (i.e. ‖.‖∞) version:

ιM
k

(G)
def
= min
{Ai}k

1∈Dk(V)
max

1≤i≤k

c(Ai)

w(Ai)
.

The mean (i.e. ‖.‖1) version:

ιm
k

(G)
def
= min
{Ai}k

1∈Dk(V)

1
k

(
k∑

i=1

c(Ai)

w(Ai)

)
,

We use the acronym IPP for the corresponding problems.
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Justifications for definitions

[JAVADI, HAJIABOLHASSAN, D. 2010]
For both max and mean versions, γk(G) = γ̃k(G) = ιk(G).

The intrinsic inequality

By definitions, in general, we have ιk(G) ≤ ι̃k(G), where the
inequality can be strict (in both maximum and mean versions)!

To the best of my knowledge, the correctness of definitions for
subpartitions has been first indipendently observed in [MICLO 2007],
[HAJIABOLHASSAN, D. 2008], AND [HELFFER,
T. HOFFMANN-OSTENHOF, TERRACINI 2008].
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Justifications for definitions

Test function approximation

The equality γk(G) = γ̃k(G) = ιk(G) shows that ιk(G) can be
effectively approximated by test functions.

Subpartitions are richer
Computationally, a move from partitions to subpartitions usually
makes the problem easier!
(e.g. the polynomial time algorithm for minimum k-subpartition
problem [NAGAMOCHI, KAMIDOI 2007])

Subpartition residues [JAVADI, SHARIATRAZAVI, D. 2011]
There is evidence supporting the fact that subpartition residues
contain nontrivial information. Hence, the subpartition setup makes it
possible to gain more information in an easier way!
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The isoperimetric spectrum

The isoperimetric spectrum of a graph G is defined as

0 = ι1(G) ≤ ι2(G) ≤ . . . ≤ ι|V(G)|(G).

[JAVADI, D. 2010]
For every weighted graph G we have ι2(G) = ι̃2(G).

For every connected weighted graph G and each 3 ≤ k ≤ |V|,

ιMk (G) ≤ ι̃Mk (G) < (k − 1) ιMk (G),

ιmk (G) ≤ ι̃mk (G) < 2(1− 1
k

) ιmk (G).
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Geometric graphs

Geometric graphs

A graph G is said to be k-geometric, if ιk(G,K) = ι̃k(G,K).
A graph G is said to be supergeometric, if it is k-geometric for every
2 ≤ k ≤ |V(G)|.

[R. JAVADI] (PERSONAL COMMUNICATION)
A couple of partial results are available. Characterization of
supergeometric graphs is essentially an open problem (in both
maximum and mean cases)!
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A minimal example

(All edge and vertex weights are equal to 1.)
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A minimal example

(All edge and vertex weights are equal to 1.)

ιm3 (G) = 1
3(1

3 + 1
3 + 1

3) = 1
3
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A minimal example

(All edge and vertex weights are equal to 1.)

ι̃m3 (G) = 1
3(1

3 + 2
4 + 1

3) = 14
24
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Computational hardness of the isoperimetry problem
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Known Complexity Results

[MOHAR 1989] IPP2=NCP2 is NP-complete for unweighted graphs
with multiple edges.

[PAPADIMITRIU 2000] IPP2=NCP2 is NP-complete for weighted
planar bipartite graphs.

[MOHAR 1989] There is a linear time algorithm that computes
ι2 = ι̃2 for trees.

[JAVADI, D. 2010]

IPPk is NP-complete for unweighted simple graphs.

IPPm is NP-complete for weighted trees.

IPPM is polynomial (actually linear) time solvable for weighted trees
(even with potentials)!.
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Known Complexity Results

[JAVADI, D. 2010]

There exists an algorithm that computes ιmk for every weighted tree, in
time O(nb(3k−3)/2c).

[JAVADI, SHARIATRAZAVI, D. 2011]

There exists an algorithm that given a weighted tree with rational
weights (and potentials!) on n vertices and an integer k, computes ιMk
and a minimizer in (n log n)-time.

Question!
What can we say about the strong NP-completeness of IPPm?

Can you find a fast algorithm to compute ιmk as well as a
minimizer at the same time for weighted trees?
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Euclidean ‖.‖2 setting:
eigenstructure of the Laplacian
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A second step for approximation

Considering ιk = γk one may be curious about the following,

Question

Is it possible to approximate
‖∇f‖1,c
‖f‖1,w

by the normalized energy-form
‖∇f‖2,c
‖f‖2,w

?

An answer
The miracle of Laplacian provides an affirmative answer to this
question!
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The symmetrization technique

Divergence as the adjoint of the gradient is defined as

(∇∗f )(x)
def
=

1
w(x)

 ∑
e:(e+=x)

c(e)f (e)−
∑

e:(e−=x)

c(e)f (e)

 .

Then the Laplacian is defined as

(Lf )(x)
def
= (∇∗∇f )(x) =

1
w(x)

∑
y:(x∼y)

c(xy)(f (x)− f (y)).

i.e. L = W−1(D− C).
And we have the Green formula as

‖∇f‖2

2,c
= 〈∇f ,∇f 〉c = 〈∇∗∇f , f 〉w = 〈Lf , f 〉w.
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Approximating eigenvalues using energy-forms

Courant-Fischer-Weyl min-max principle:

Let
0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ,

be the eigenvalues of L. Then, for any 0 ≤ k < n,

λk = min
W∈Wk

max
0 6=f∈W

{
〈Lf , f 〉w
‖f‖2

2,w

}
= max

W∈W⊥
k−1

min
0 6=f∈W

{
〈Lf , f 〉w
‖f‖2

2,w

}
,

in which
Wk

def
= {W ≤ L2(w) | dim(W) ≥ k},

W⊥
k

def
= {W ≤ L2(w) | dim(W⊥) ≤ k}.
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Approximating eigenvalues using energy-forms

Ky-Fan-Wielandt’s min-max principle:

Let
0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn ,

be the eigenvalues of L. Then, for any 0 ≤ k < n,

λk

def
=

1
k

k∑
i=1

λi =
1
k

min
U∈Mn×k (U∗U=Ik )

tr(U∗LU)

=
1
k

min
{fi}k

i=1(orthonormal)

k∑
i=1

〈Lfi, fi〉w

=
1
k

min
{fi}k

i=1(orthogonal)

k∑
i=1

〈Lfi, fi〉w
‖f‖2

2,w

.
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Some classical consequences!

|L| def
= maxx L(x, x) = maxx

deg(x)
w(x) is the normalized maximum

degree.

A couple of basic norm inequalities

‖∇f‖1,c ≤ ‖c‖
1
2 ‖∇f‖2,c

‖∇f 2‖1,c
‖f 2‖1,w

≤
√

2|L|
‖∇f‖2,c
‖f‖2,w

.

Now, using the min-max principles one may easily verify that,
1
2
λk ≤ ιMk and λk ≤ ιmk .

The miracle of determinants
Determinants makes it possible to compute the eigenstructure of a
matrix effectively in polynomial time!
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Cheeger’s inequality

Therefore, the following inequality can be considered as an effective
approximation of the isoperimetric constant ιM2 = ι̃M2 .

Classical Cheeger’s inequality 1969 (this version [ALON 1984] and
[LAWLER, SOKAL 1988])

λ2

2
≤ ιM2 ≤

√
2|L|λ2

(For an improved version (factor 2 in rhs removed!) with a different
proof see [MONTENEGRO AND TETALI 2006].)

Question!
Can we similarly approximate higher isoperimetric constants for each
k > 2?
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Clustering And More
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Isoperimetry: a global picture

Data

A set V along with a measure w : V → R+ and a shortest path metric
whose data is given by edge weights of a graph structure G as
c : E −→ R+.
(Gromov-Milman:The whole story is told in the universe of metric measure spaces

and what we are going to do is to compare the metric and the measure appropriately!)

The maps

One may define IM
k : Dk(V)→ R+ as

IM
k ({Ai}k

1)
def
= max

1≤i≤k

c(Ai)

w(Ai)
.

Also, define Im
k similarly.
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Isoperimetry: a global picture

Observations
The metric appears within this comparison through its atomic
presentations as edge-weights indirectly.

These maps are too nonsmooth which make the minimization
problems extremely hard.

Questions
Is it possible to change the metric measure space as σ : V → X
in a way that the minimum is almost preserved, leading to a
simpler optimization problem in each case?

We are going to discuss some aspects of this!
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Generalized Rayleigh quotient

Given (V, c̃, w̃) and a map σ : V → Rn, define

The Rayleigh quotient of σ w.r.t A ⊆ V

RA(σ)
def
=

∑
x,y∈A

c̃(xy)‖σ(x)− σ(y)‖2

2∑
x∈A

w̃(x)‖σ(x)‖2

2

We will see that different choices of c̃(xy) will give rise to many
interesting results!
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A special case

c̃(xy) = w(x)w(y)

Given σ : V → Rn, w : V → R+ and A ⊆ V , let c̃(xy)
def
= w(x)w(y)

and

m def
=

∑
x∈A w(x)σ(x)∑

x∈A w(x)
.

Then,∑
x∈A

w(x)‖σ(x)−m‖2

2
=

1
2w(A)

∑
x,y∈A

w(x)w(y)‖σ(x)− σ(y)‖2

2
.
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The case of unit sphere!

An important observation!
[LEE, OVEIS GHARAN, TREVISAN 2012]:
On the unite sphere i.e., when

∀ x ‖σ(x)‖2 = 1,

we have,∑
x∈A

w(x)‖σ(x)−m‖2

2
=

1
2w(A)

∑
x,y∈A

w(x)w(y)‖σ(x)− σ(y)‖2

2

=

∑
x,y∈A

w(x)w(y)‖σ(x)− σ(y)‖2

2

2
∑
x∈A

w(x)‖σ(x)‖2

2

=
1
2
RA(σ).
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A symmetrization

Let’s discuss an embedding of the graph structure G(c,w) on a vertex
set V of size n into Rn with Euclidean inner-product.
Define the positive semidefinite matrix Φ

def
= (λ∗I − L)W−1 where λ∗

is the greatest eigenvalue of the Laplacian L and W is the diagonal
weight matrix. Then we have

Φ(x, y) =


c(xy)

w(x)w(y) x ∼ y,
λ∗

w(x) −
deg(x)
w(x)2 x = y,

0 otherwise.

The embedding
Hence, since Φ is symmetric and positive semidefinite there is a
factorization Φ = PtP and one may define an embedding σ : V → Rn

for which σ(x) is the xth column of P.
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An embedding

Observation! (c̃(xy) = w(x)w(y))

For this embedding σ based on Φ
def
= (λ∗I − L)W−1 = PtP,∑

x∈A

w(x)‖σ(x)−m‖2

2
=
∑
x∈A

w(x)‖σ(x)‖2

2
− 1

w(A)

∑
x∈A

w(x)2‖σ(x)‖2

2

− 1
w(A)

∑
x 6=y∈A

w(x)w(y)〈σ(x), σ(y)〉 = λ∗(|A| − 1)− trA(L) +
c(A)

w(A)
.

Definition: k-means cost function (A∗ is the residual of {Ai}k
1.)

Cσ,wk ({Ai}k
1)

def
= 1

k

 k∑
i=1

∑
x∈Ai

w(x)‖σ(x)−mi‖
2

2
+
∑
x∈A∗

w(x)‖σ(x)‖2

2

 .
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Isoperimetry vs. k-means

Given σ : V → Rn based on Φ
def
= (λ∗I − L)W−1 = PtP define

Cσ,wk : Dk(V)→ R+ as

Definition

µk(σ,w)
def
= min
{Ai}k

1∈Dk (V)
Cσ,wk ({Ai}k

1),

µ̃k(σ,w)
def
= min
{Ai}k

1∈Pk (V)
Cσ,wk ({Ai}k

1).

Easy to verify!

µ̃k(σ,w) = (n
k − 1)λ∗ − tr(L)

k + ι̃mk .

µk(σ,w) = (n
k − 1)λ∗ − tr(L)

k + ιmk .

Therefore, not only k-means is equivalent to normalized cut but its relaxed
version (call it k-means with outliers) is equivalent to mean isoperimetry!
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Mystery of [NG, JORDAN, WEISS 2002] algorithm!

[NG, JORDAN, WEISS 2002] algorithm

Solve the generalized eigenvalue problem (D− C)f = λWf
(eq. Lf = W−1(D− C)f = λf ),

Choose f1 , . . . .fk corresponding to the first k smallest

eigenvalues, and define F(x)
def
= (
√

w(x)f1(x), . . . ,
√

w(x)fk(x)),

Define the normalized embedding as σ : V → Sk−1 ⊂ Rk as
σ(x)

def
= F(x)
‖F(x)‖2

,

Apply the k-means algorithm to σ.

Questions!
Can we theoretically justify this algorithm?

Can we use the idea of this algorithm to approximate the
maximum version parameters ιM and ι̃M?
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Mystery of [NG, JORDAN, WEISS 2002] algorithm!

Remarks!

(D− C)f = λWf ⇔ Lf = W−1(D− C)f = λf
⇔ W−1/2(D− C)W−1/2g = λg, (g = W1/2f )

Let U be the matrix whose columns are the eigenfunctions fx and
also let Λ be the diagonal matrix of the corresponding
eigenvalues. Then, LW−1 = (WU)Λ(WU)−1.

Question!
What are the connections between the standard embedding in terms of
P using Φ = PtP = (λ∗I − L)W−1 and the NJW embedding in terms
of U?
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Mystery of [NG, JORDAN, WEISS 2002] algorithm!

An important experimental observation
[NG, JORDAN, WEISS 2002]

If you have a good embedding σ : V → Rd, then projecting all vectors
to the unit sphere (i.e. normalizing all vectors to have unit length)
must still work!

We already know that on the unit sphere the k-means cost function
coincides with the Rayleigh quotient, i.e.,

∑
x∈A

w(x)‖ σ(x)

‖σ(x)‖2

−m‖2

2
=

∑
x,y∈A

w(x)w(y)‖ σ(x)

‖σ(x)‖2

− σ(y)

‖σ(y)‖2

‖2

2

2
∑
x∈A

w(x)‖ σ(x)
‖σ(x)‖2

‖2

2

=
1
2
RA(σ).

We will come back to this subject!
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[LEE, OVEIS GHARAN, TREVISAN 2012]

This gives rise to the following important observation:

[LEE, OVEIS GHARAN, TREVISAN 2012]
Study the distance ∥∥∥∥ σ(x)

‖σ(x)‖2

− σ(y)

‖σ(y)‖2

∥∥∥∥
2

and the generalized Rayleigh quotient in Rd.

We will come back to this subject!
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Metric Embedding And Approximations
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Approximating uniform sparsest cut

Isoperimetric (Cheeger) inequalities again
Since the eigenstructure of a matrix is polynomially computable any
Cheeger-type inequality provides a polynomial O( 1√

ι
) approximation

algorithm!

Another fascinating aspect of the subject is that graph partitioning (in
a general sense) is among problems which are computationally not
quite well-understood and resists approximations!

In this talk we concentrate on the case of uniform sparsest cut (USC
for short) since it is

among the most simple cases

is still intriguing!

has influenced the main ideas and best results so far.
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Approximating uniform sparsest cut

Given a simple graph G(V,E) (i.e. all weights are equal to 1), recall
the definition of the uniform sparsest cut as

Φ∗
def
= min

A⊆V(G)

|E(A,Ac)|
|A||Ac|

= min
A⊆V(G)

1
n

(
|E(A,Ac)|
|A|

+
|E(A,Ac)

|Ac|

)
=

2
n
ιm2 (G)

[PAPADIMITROU 1997]
NCPk (for both max and mean versions) is NP-complete for
unweighted (simple) graphs.

What about approximations?!
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An L1 relaxation

L1 relaxation of the USC

Φ∗
def
= min

A⊆V(G)

|E(A,Ac)|
|A||Ac|

= min
{fx∈L1 (Ω) : x∈V}

∑
xy∈E

‖fx − fy‖1∑
x,y∈V

‖fx − fy‖1

Here Ω can be a finite set or [0, 1] with the Lebesgue measure.

LP Approximation (first step!) (also see [LEIGHTON, RAO 1999])
Using homogeneity relax to the case of semimetrics as
M∗ def

= min
∑
xy∈E

dxy

s.t.
∑

x,y∈V

dxy = 1, ∀ x, y dxx = 0, dxy ≥ 0, dxy = dyx ,

∀ x, y, z dxy ≤ dxz + dzy .

Note: also see [LEIGHTON, RAO 1999].
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An L1 relaxation

LP Approximation (first step!)

Clearly M∗ ≤ Φ∗ and can be computed in polynomial time!

What is the approximation factor?

Clearly we have to somehow relate the solution of the LP relaxation
d∗ to the L1 distance function, i.e., we must seek a relation such as

∀ y, z d∗ . ‖fy − fz‖1 . Cd∗,

for some set {fx ∈ L1(Ω) : x ∈ V} and a constant C that turns out to
be the approximation factor!
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Metric embeddings

Embeddings and distortion

A metric space (X, dX) is said to bi-Lipschitz embed with distortion
C ≥ 1 into a metric space (Y, dY) if there exists a mapping σ : X → Y
and a scaling factor s ≥ 0 such that

∀ y, z ∈ X s dX(y, z) ≤ dY(σ(y), σ(z)) ≤ C s dX(y, z)

Also cY (X)
def
= inf C where the infimum is taken over all bi-Lipschitz

embeddings of X into Y with distortion C.

L1(Ω, µ) has a nice metric structure!

The space L1(Ω, µ) with the metric
√
‖f − g‖L1 (Ω,µ)

is isometric to

the Hilbert space L2(Ω×R, µ×λ) where λ is the Lebesgue measure.
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Bourgain’s embedding theorem

[BOURGAIN 1985]
For every finite metric space (X, dX) with n points we have
c2(X) . log n.

Note: The embedding is effectively constructible.

[DVORETZKY 1961]
For every infinite dimensional Banach space Y and every n ∈ N we
have cY (`

n

2
) = 1.

Corollary: For every finite metric space (X, dX) with n points we have
cY (X) ≤ c2(X) . log n.

[LINIAL, LONDON, RABINOVICH 1995]
Even the weaker inequality c1(X) . log n is asymptotically sharp!
Note: Leaves no hope for better LP-based approximation c1!
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SDP approximation (second step!)

have to add more feasible constraints!

Metrics of negative type

A metric space (X, dX) is said to be of negative type if the metric
space (X,

√
dX) admits an isometric embedding into a Hilbert space.

Note: See [SCHOENBERG 1938] for the terminology.

Note: L1(Ω, µ) is of negative type!

Idea: [GOEMANS AND LINIAL 1997,2002]

M∗∗ def
= min

∑
xy∈E

dxy

s.t.
∑

x,y∈V

dxy = 1, and d is a semimetric of negative type, i.e.,

∀ x, y, z dxx = 0, dxy ≥ 0, dxy = dyx , dxy ≤ dxz + dzy ,
∃ A symmetric positive semidefinite s.t. dxy = axx + ayy − 2axy . 58 / 94
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SDP approximation (second step!)

Clearly M∗ ≤ M∗∗ ≤ Φ∗.

It works! [ARORA, RAO, VAZIRANI 2004]
Φ∗

M∗∗ .
√

log n. No simple proof yet!

Note: see [NAOR, RABANI, SINCLAIR 2005] for a more structured
proof.

A lower bound! [DEVANUR, KHOT, SAKET, VISHNOI 2006]

(log log n) . Φ∗

M∗∗ .
√

log n.

Note: Also see [NAOR ICM2010] for the history.
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An inapproximability result

[KHOT AND VISHNOI 2005]
[CHAWLA, KRAUTHGAMER, KUMAR, RABANI, SIVAKUMAR 2006]

If there exists a polynomial constant factor approximation algorithm
for the (general) sparsest cut problem then the Unique Games
Conjecture is not true!

Note: Also see [KHOT ICM2010] for more on this subject.
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Higher Isoperimetric Inequalities

GENERAL REFERENCES FOR FURTHER READING:

Chung, Fan; Grigor’yan, Alexander; Yau, Shing-Tung, Higher eigenvalues and isoperimetric inequalities on
Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), no. 5, 969-1026.

Daneshgar, Amir; Hajiabolhassan, Hossein; Javadi, Ramin, On the isoperimetric spectrum of graphs and its
approximations, J. Combin. Theory Ser. B 100 (2010), no. 4, 390-412.

Daneshgar, Amir; Javadi, Ramin; Miclo, Laurent, On nodal domains and higher-order Cheeger inequalities of finite
reversible Markov processes, Stochastic Process. Appl. 122 (2012), no. 4, 1748-1776.

Lee, James R.; Oveis Gharan, Shayan; Trevisan, Luca, Multi-way spectral partitioning and higher-order Cheeger
inequalities, STOC’12-Proceedings of the 2012 ACM Symposium on Theory of Computing, 1117-1130, ACM, New
York, 2012. http://arxiv.org/abs/1111.1055

Tanaka, Mamoru, Multi-way expansion constants and partitions of a graph,
http://arxiv.org/abs/1112.3434.
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Basic objective

Our basic objective is the following:

Higher Cheeger (isoperimetric) inequalities
1
2λk ≤ ιMk ≤

√
τ(k) |L| λk [LEE, OVEIS GHARAN, TREVISAN 2012]

λk ≤ ιmk ≤
√
ξ(k) |L| λk STILL OPEN!

in which τ(k) and ξ(k) are constants only depending on k.
The conjecture/theorem is deeply related to the geometry of
metric-measure spaces and theory of computation.

Note that lower bounds are easy! In what follows we concentrate on
the existing techniques and results in relation to the proof of the
max-version’s upper bound.
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Basic objective

Our basic objective is to explain the following:

Two different approaches
There are at least two different approaches leading to higher
Cheeger-type inequalities:

Miclo’s approach: Define intermediate parameters depending on

subdomains, then handle singularities by moving to a continuous setting and

proving the inequality for the generic case.

Lee-Oveis Gharan-Trevisan’s approach: Use embedding and

dimension reduction (as in NJW algorithm) and then try to construct a suitable

test function using the first k eigenvectors.

Both of these approaches somehow depend on localizing the problem
on subdomains. Hence, we first review the basics of this approach.
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Localization and Dirichlet eigenvalues
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A localization procedure: discrete case

Let A ⊂ V be a subset with the vertex-boundary δ(A), and L be
the Laplacian operator. Then a pair (λ, f 6= 0) satisfies the
Dirichlet boundary problem{

(Lf )(x) = λf (x) ∀ x ∈ A,
f (x) = 0 ∀ x ∈ δ(A),

if and only if (λ, f 6= 0) is an eigenpair of L|A.

Also, variational principles are generally valid by adding the
restriction that all functions must be equal to zero outside A,
specially

λ1(A) = min
0 6=f=0 on Ac

{
〈Lf , f 〉w
‖f‖2

2,w

}
.
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The continuous setting: quantum graphs

Given a weighted graph G = (V,E,w, c)

Metric graph:
Each edge e = xy ∈ E is replaced by a seg-
ment [x, y] of length 1/c(xy).

Quantum graph:
A metric graph along with a natural Laplacian
operator L.

We use notations G , f ,A for metric setting in contrast to G, f ,A for
discrete setting.
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Measures on a quantum graph

ρx,y: Natural Lebegue measure on [x, y].

ρ B
∑
xy∈E

ρx,y.

We have ρ([x, y]) = 1/c(xy), so we call ρ the resistance measure.

Also define an atomic measures on G as follows

ω B
∑
x∈V

ω(x) δx.
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F0(G): Set of all absolutely continuous real functions on G .

f

∀f ∈ F0(G), E(f ) B

∫
(f ′)2 dρ.
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F0(G): Set of all absolutely continuous real functions on G .

g

E(g) =
∑
xy∈E

c(xy) |g(x)− g(y)|2.
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Dirichlet eigenvalues

For A ⊂ G , the principal Dirichlet eigenvalue is defined as,

λ1(A) B inf
f ∈F0(A)

‖f ‖2
2,ω
6=0

E(f )

‖f ‖2

2,ω

.

We denote the minimizer by fA which is unique up to a factor,
provided A is connected.

D1(G) B {A ⊂ G : A is open and connected ,A ∩ V 6= 0},

Dk(G) B {{A1, . . . ,Ak} : Ai ∈ D1(G), Ai ∩ Aj = ∅}.
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Dirichlet eigenvalues

For A ⊂ G , the principal Dirichlet eigenvalue is defined as,

λ1(A) B inf
f ∈F0(A)

‖f ‖2
2,ω
6=0

E(f )

‖f ‖2

2,ω

.

We denote the minimizer by fA which is unique up to a factor,
provided A is connected.

D1(G) B {A ⊂ G : A is open and connected ,A ∩ V 6= 0},

Dk(G) B {{A1, . . . ,Ak} : Ai ∈ D1(G), Ai ∩ Aj = ∅}.
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Weights and the Laplacian in the continuous setting

Define c̃ : V × G → R as

c̃(x, a)
def
=

{
1

ρ([x,a]) a 6= x & ∃ xy ∈ E : a ∈ [x, y],

0 otherwise.

Now, for any A ∈ D1 define A def
= V ∩ A and

∀ x, y ∈ A L̂A(x, y)
def
=


L(x, y) x 6= y,

1
w(x)

( ∑
a∈A∩∂A

c̃(x, a)

)
x = y.
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A localization procedure: continuous case

For any A ∈ D1 there is a unique and positive function fA that
attains the minimum

inf
f ∈F0(A)

‖f ‖2
2,ω
6=0

E(f )

‖f ‖2

2,ω

= λ1(A)

with ‖f ‖2

2,ω
= 1. Also, λ1(A) is the smallest eigenvalue of L̂A

with L̂A fA = λ1(A) fA where fA = fA |A . Moreover, fA is the affine
extension of fA on A .
λ1 is strictly decreasing on D1, i.e.,

A,B ∈ D1(G) & A  B ⇒ λ1(B) < λ1(A).
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Dirichlet connectivity spectrum

For any quantum graph (G ,L) define,

Dirichlet connectivity constants [MICLO 2007]

Λk
def
= inf
{Ai}k

1∈Dk(G)

(
max

1≤j≤k
λ1(Aj)

)
.

Using the variational principle for eigenvalues and norm inequalities
one can prove that

For any quantum graph (G ,L) and any k we have λk ≤ Λk.
1

2|L|(ι
M
k )2 ≤ Λk.
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Miclo’s conjecture

Miclo’s conjecture [MICLO 2007]

For each k, there exists a universal constant τ(k) > 0 such that for all
weighted graphs,

Λk ≤
1
2
τ(k) λk.

Note that,

Miclo implies Cheeger
Assuming that Miclo’s conjecture is true,

1
|L|

(ιMk )2 ≤ Λk ≤ τ(k) λk

Which is the hard side of Cheeger’s inequality!
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Nodal domains
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Miclo’s approach

Hence, in Miclo’s approach one should study the minimizers of the
map

Dk(G) 3 {Ai}k
1 7−→ max

1≤j≤k
λ1(Aj)

and compare them to λk .

[JAVADI, MICLO, D. 2012]
To prove Miclo’s and Cheeger’s conjectures it is sufficient to prove
them for connected graphs.

A natural question!

Is it possible to find a subset A for which λ1(A) = λk ?

The answer is Yes and this is the main motivation to study nodal
domains! The ideas leading to this concept are quite old and goes
back to Hilbert and Courant (1943).

75 / 94



Prologue
Hardness

Approximation
Inequalities

Epilogue

Localization and Dirichlet eigenvalues
Nodal domains
Trees and cycles
General weighted graphs

(strong) Nodal domains: discrete case

Definition
For a graph (G,V), a strong positive nodal domain of a function f is a
connected component of the set {x ∈ V : f (x) > 0}.
Strong negative nodal domains are defined similarly. The total
number of strong nodal domains are denoted by S.

+ +

0

-

0

0 0

-
-

-

The sign pattern of an eigenfunction corresponding to λ2.
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(strong) Nodal domains: discrete case
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Nodal domains: continuous case

Definition
For a metric graph G ,

A nodal domain of a function f is a connected component of the
set G − {x ∈ G : f (x) = 0}.
A continuous nodal domain of a discrete function f defined on V
is a nodal domain of the affine extension of f on G .

The number of continuous nodal domain of a discrete function f
is denoted by N.

Continuous nodal domains are natural!
Let f 6= 0 be an eigenfunction of L for the eigenvalue λ and let A be
one of its continuous nodal domains. Then λ1(A) = λ and f is
proportional to the minimizer fA on A = A ∩ V .
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A strategy that fails!

Strategy!

For every given graph G and any integer k ≤ |V|, if one is able to find
a function f with N(f ) ≥ k then Miclo’s conjecture is positively
solved!

Hence the number of nodal domains is an extremely important subject
to be studied!

Simple observations
If f1 and f2 are, respectively, the first and the second eigenfunctions of
the Laplacian of a connected graph G, by Perron-Frobenius theorem
we have

N(f1) = 1, N(f2) ≥ 2.

This is the verification of conjectures for the case k = 2!
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A strategy that fails!

What about k > 2?

On the number of nodal domains
[COURANT-HILBERT 1943, MANY OTHERS!]
If f is an eigenfunction of the kth eigenvalue λk of L with multiplicity
r, then S(f ) ≤ k + r − 1.

On the number of nodal domains [JAVADI, D. 2011]
Given a graph G with a Laplacian L whose cycle-space is d
dimensional, if d ≤ k ≤ |V| and f is a nowherezero eigenfunction of
the kth eigenvalue λk , then k − d ≤ S(f ) ≤ k.

The result has first appeared in [BERKOLAIKO 2008] for simple
eigenvalues.
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Trees and cycles
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Nodal domains of trees

Since a tree T has no cycle we have S(f ) = k for any nowherezero
eigenfunction. In this case we have a slightly better result.

[BIYIKOĞLU 2003]
If f is a nowherezero eigenfunction of the kth eigenvalue of the
Laplacian matrix of a tree, then the eigenvalue is simple and
S(f ) = k.

Hence, Miclo’s and consequently Cheegre’s higher inequalities are
valid on a tree when we have a nowherezero eigenfunction of a simple
eigenvalue. Hence, we have to handle two problems:

Two majour problems
Study the structure of nodal domains of nowherezero
eigenfunctions (and generalize if possible!).

Handle the case of eigenvalues with multiplicities.

[MICLO 2007]
Miclo’s approach consist of the following solutions:

Introducing the concept of a handy subpartition.

Using perturbation to get a generic case.
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Handy subpartitions

A k-subpartition (A1, . . . ,Ak) ∈ Dk(G) is said to be handy, if

∀i 6= j, a ∈ ∂Ai ∩ ∂Aj ⇒ deg(a) ≤ 2.

We are not going to delve into the details, but let’s just point out that:

Comments!
L is said to be handy if any eigenvalue with multiplicity m admits
m independent handy eigenfunctions. For instance, if there exists
a complete set of orthogonal eigenfunctions that do not vanish on
V , then all eigenvalues are simple and L is handy!

Fix a weight function w and a simple graph G. Consider the open
and convex set of w-selfadjoint operators L(G,w) whose graph
is G with the pointwise topology. We say that a property is
generically true if it is true for a dense subset of L(G,w).
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What we know!

[JAVADI, MICLO, D. 2012]
Given a handy k-subpartition A ∈ Dk(G), then it corresponds to the
nodal domains of an eigenfunction of L if and only if it is uniform,
rectifiable and bipartite.

[JAVADI, MICLO, D. 2012]
Let A ∈ Dk(G) be a minimizing subpartition for Λk. If A is handy,
then A is a uniform and rectifiable partition in Pk(G).
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A conjecture

[MICLO 2007]
For any tree and any k we have Λk = λk .
Hence, Miclo’s and consequently Cheegre’s higher inequalities are
valid for trees with the universal constant τ(k) = 2.

Conjecture [JAVADI, MICLO, D. 2012]
The following properties are generically true:

Any minimizing subpartition for Λk is handy.

Any generator L ∈ L(G,w) is handy.

Correctness of these conjectures imply the effectiveness of Miclo’s
approach!
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Cycles

The case of cycles is more intricate!

We are happy that all subpartitions are handy!

One can eventually prove:

[JAVADI, MICLO, D. 2012]
When G is a cycle, we have,

Λk ≤
{
λk , if k = 1 or k is even
24 λk , if k ≥ 3 is odd.

Hence, Miclo’s and consequently Cheegre’s higher inequalities are
valid for cycles with the universal constant τ(k) = 48.
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A Sketch of

[LEE, OVEIS GHARAN, TREVISAN 2012]’S

Proof
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Generalized Rayleigh quotient

Let σ : V ⊇ A→ Rd and definition

The Rayleigh quotient of σ

σ(2) : A→ R, σ(2)(x)
def
= ‖σ(x)‖2

2

def
= (|σ|(x))2,

∇σ : A× A→ Rd, ∇σ(x, y)
def
= σ(y)− σ(x),

RA(σ)
def
=

∑
x,y∈A

c̃(xy)‖σ(x)− σ(y)‖2

2∑
x∈A

w̃(x)‖σ(x)‖2

2

=
‖|∇σ|‖2

2,̃c

‖|σ|‖2

2,w̃

,
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A Generalized Inequality

Some basic facts
∃ A ⊆ support(σ),

c̃(A)

w̃(A)
≤
‖∇σ(2)‖1,̃c

‖σ(2)‖1,w̃

≤
√

2|L|
‖|∇σ|‖2,̃c

‖|σ|‖2,w̃

=
√

2|L|RA(σ),

There exists a coordinate i ∈ {1, . . . , d} such that for the
projection σi : A→ R we have

RA(σi) ≤ RA(σ).

Hence, the basic strategy is to control the generalized Rayleigh
quotient!
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Radial projection distance

[LEE, OVEIS GHARAN, TREVISAN 2012]

Given an embedding σ : V → Rd study the distance

dσ
def
=

∥∥∥∥ σ(x)

‖σ(x)‖2

− σ(y)

‖σ(y)‖2

∥∥∥∥
2

and the induced shortest-path pesudo-metric d̂σ .
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Radial projection distance

[LEE, OVEIS GHARAN, TREVISAN 2012]

Let σ be an `2(w)-orthonormal k-dimensional embedding. Then

Eσ(V)
def
=
∑
x∈V

w(x)‖σ(x)‖2

2
= k,

For any unit vector v we have
∑
x∈V

w(x)〈v, σ(x)〉2 = 1,

For any A ⊆ V with diam(A, dσ) ≤ ∆ we have

Eσ(A)
def
=
∑
x∈A

w(x)‖σ(x)‖2

2
≤ 1

1−∆2 .

Main idea is to control the induced energy on a subset by its diameter
with respect to dσ !
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Reduction to partitioning!

[LEE, OVEIS GHARAN, TREVISAN 2012]

Let σ be an `2(w)-orthonormal k-dimensional embedding, c̃ = c and
w̃ = w. Then if for some β, δ > 0 and r ∈ N there exists r disjoint
subsets A1 , . . . ,Ar such that d̂σ(Ai ,Aj) ≥ β for i 6= j and

∀ 1 ≤ i ≤ r Eσ(Ai) ≥ δ Eσ(V),

then there exists disjointly supported real-functions ψ1 , . . . , ψr such
that

∀ 1 ≤ i ≤ r RV(ψi) ≤
2

δ(r − i + 1)

(
1 +

4
β

)2

RV(σ).

Hence the problem is reduced to partitioning in the pesudo-metric
space (V, d̂σ)! 91 / 94
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The sketch of proof

[LEE, OVEIS GHARAN, TREVISAN 2012]

Let σ be the `2(w)-orthonormal k-dimensional embedding
produced by the eigenstructure of the Laplacian L, c̃ = c and
w̃ = w.

Use standard results in random partition theory to obtain suitable
subsets A1 , . . . ,Ar in (V, d̂σ).

Choose the parameters appropriately to getRV(ψi) ≤ O(k6) λk .

[LEE, OVEIS GHARAN, TREVISAN 2012] use a more detailed
analysis to show that

RV(ψi) ≤ O(k2) λk .

Hence, Miclo’s and Cheeger’s inequalities are valid in the Max i.e.
‖.‖∞ case!
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A general setup

Given a weighted graph G = (V,E, c,w), define the maps
Ip

k : Dk(V)→ R+ as

Ip
k ({Ai}k

1)
def
= ‖( c(Ai)

w(Ai)
)

k

i=1
‖p

and study their extremal values min Ip
k ({Ai}k

1) from a computational
point of view. Specially compare these values with ‖(λi)

k

i=1
‖p where

λi’s are the eigenvalues of a natural Laplacian on G.

In particular, determine those graphs for which the extremal value can
be attained on partitions.
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It seems that everything is about estimates of
connectedness and density!!!

Thank you!

Comments and Criticisms are Welcomed

daneshgar@sharif.ir
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