
Deep Generative Models

Variational Autoencoder

Hamid Beigy

Sharif University of Technology

March 7, 2025

Table of contents

1. Introduction

2. Latent Variable Model

3. Variational autoencoder

4. Variants of VAE

5. References

Hamid Beigy (Sharif University of Technology) 1 / 63

Introduction

Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples

Hamid Beigy (Sharif University of Technology) 2 / 63

Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pd(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pd(x) for any observed x, i.e.

pθ(x) ≈ pd(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
Hamid Beigy (Sharif University of Technology) 3 / 63

Maximum Likelihood and Mini-batch SGD

1. The most common criterion for probabilistic models is maximum log-likelihood.

2. Maximization of the log-likelihood criterion is equivalent to minimization of a KL

divergence between the data and model distributions.

3. We attempt to find the parameters θ that maximize the sum of the log-probabilities.

θ = arg maxθ log pθ(D) = arg maxθ

n∑

i=1

log pθ(xi)

4. We can efficiently compute gradients of this objective function.

5. We can use such gradients to iteratively hill-climb to a local optimum of the the objective

function.

6. If we compute such gradients using all data points, ∇θ log pθ(D), then this is known as

batch gradient descent.

7. Computation of this derivative is an expensive operation for large dataset.

Hamid Beigy (Sharif University of Technology) 4 / 63

Maximum Likelihood and Mini-batch SGD

1. A more efficient method for optimization is stochastic gradient descent(SGD).

2. The SGD uses randomly drawn mini-batches of data B ⊆ D of size nB .

3. With mini-batches, we can form an unbiased estimator of the log-likelihood as

1

n
log pθ(D) ≈ 1

nB
log pθ(B) =

1

nB

∑

x∈B
log pθ(x)

4. Symbol ≈ means that one of the two sides is an unbiased estimator of the other side.

5. The unbiased estimator 1
nB

log pθ(B) is differentiable, yielding the unbiased stochastic

gradients:

1

n
∇θ log pθ(D) ≈ 1

nB
∇θ log pθ(B) =

1

nB

∑

x∈B
∇θ log pθ(x)

6. These gradients can be plugged into stochastic gradient-based optimizer.

Hamid Beigy (Sharif University of Technology) 5 / 63

Latent Variable Model

Latent Variable Model

1. In economics, we are often interested in measuring things such as quality of life, moral,

happiness, etc.

2. This things cannot be directly measured and are latent.

3. The idea is to link these latent variables to observed ones.

4. For example, assume that the quality of life can be inferred from some linear
combination of some observed variables such as

wealth

employment

physical health

education

leisure time

5. Latent variables are part of model, but we cannot observe.

6. Latent variables are another way to represent the data.

Hamid Beigy (Sharif University of Technology) 6 / 63

Latent Variable Model

Example (Generating images of handwritten digits)

1. Consider the following situations:

the left half the right half the character

left half of a 5 left half of a 0 ???
left half of a 0 left half of a 4 ???
left half of a 4 left half of a 1 similar to 4
left half of a 1 left half of a 9 ???
left half of a 9 left half of a 1 similar to 9

2. Assume the model first choose a character to be generated before generating pixels.

3. This form of decision is formally called a latent variable.

Model randomly samples a digit value z ∈ {0, 1, . . . , 9}.
Generate an image based on z .

Hamid Beigy (Sharif University of Technology) 7 / 63

Latent variable model

1. Let X = (x1, . . . , xm)> be a dataset of samples xi ∈ X , and Z = (z1, . . . , zm)> be the

corresponding latent variables zi ∈ Z.

2. We can easily sample z from its distribution p(z).

3. We have a family of deterministic functions x = gθ(z) parametrized by θ.

4. Function gθ(.) is deterministic but z is random and θ is fixed, hence gθ(z) is a random

variable in X .

5. We wish to optimize θ such that

we can sample z from p(z) and,

with high probability gθ(z) will be like one sample in our dataset.

Hamid Beigy (Sharif University of Technology) 8 / 63

Estimating the log-likelihood

Hamid Beigy (Sharif University of Technology) 9 / 63

Principal component analysis (PCA)

1. Let X = (x1, . . . , xn)> ∈ Rn×d be a dataset of samples xi ∈ Rd , and

Z = (z1, . . . , zn)> ∈ Rn×K be the corresponding latent variables zi ∈ RK .

2. The goal of PCA is to learn a linear bidirectional mapping X ←→ Z such that as much

information of X as possible is retained in Z.

3. Let the following linear mapping maps data from latent to observation space.

x̂i = x̄ +
K∑

j=1

zijvj

where x̄ is data mean and V = (v1, . . . , vK) is an orthonormal basis.Principal Component Analysis

PCA Recipe:
I Given a dataset X = {x1, . . . ,xN} of observations xi 2 RD

I Compute the data mean x̄ and scatter matrix S =
PN

i=1(x̄� xi)(x̄� xi)
>

I Compute the eigen decomposition of S

I Select the Q eigenvectors corresponding to the Q largest eigenvalues for V
��

4. The goal is to minimize the L2 reconstruction loss wrt. Z and V.

L(Z,V) =
n∑

i=1

‖x̂i − xi‖2

Hamid Beigy (Sharif University of Technology) 10 / 63

Latent Variable Model

1. Many probabilistic models have latent variables z.

2. In the case of unconditional modeling of observed variable x, the directed graphical model

would then represent a joint distribution pθ(x, z).

Hamid Beigy (Sharif University of Technology) 11 / 63

Latent Variable Model

1. Our aim is to maximize the probability of each x in the training set under the entire

generative process using:

pθ(x) =

∫
pθ(x, z)dz

=

∫
pθ(x | z) p(z)dz

2. Here, gθ(z) was replaced by a distribution pθ(x), which allows us to make the dependence

of x on z explicit by using the law of total probability.

3. When pθ(x | z) is Gaussian,

pθ(x | z) = N (gθ(z), σ2I)

4. The mean iss gθ(z) and covariance is the identity matrix I times some scalar σ (σ is a

hyper-parameter).

5. This replacement is necessary to formalize the intuition that some z needs to result in

samples that are merely like x.

Hamid Beigy (Sharif University of Technology) 12 / 63

Latent Variable Model

1. By using Gaussian distribution, we can use optimization techniques such as GD to increase

p(x) by making gθ(z) approach x for some z.

2. This is not possible if p(x | z) is a Dirac delta function.

3. p(x | z) is not required to be Gaussian.

4. When x is binary vector, then p(x | z) might be a Bernoulli parameterized by gθ(z).

5. Important property is that p(x | z) can be computed, and is continuous in θ.

6. Latent variable model can be represented as the following PGM.

x

z θ

m

Hamid Beigy (Sharif University of Technology) 13 / 63

Latent Variable Model

1. The marginal distribution over the observed variables, pθ(x), is

pθ(x) =

∫
pθ(x, z)dz

=

∫
pθ(x | z) p(z)dz

= Ez∼ p(z)[pθ(x | z)]

2. This is called the marginal likelihood or model evidence when taken as a function of θ.

3. Assume that we cannot calculate the integral exactly.

4. The simplest approach would be to use the Monte Carlo approximation:

pθ(x) =

∫
pθ(x | z) p(z)dz

= Ez∼ p(z)[pθ(x | z)]

=
1

nB

∑

k

pθ(x | zk)

5. In the last line, we use samples from the prior over latents z ∼ p(z).

Hamid Beigy (Sharif University of Technology) 14 / 63

Latent Variable Model

1. The marginal distribution over the observed variables, pθ(x), is

pθ(x) =

∫
pθ(x, z)dz

2. Such an implicit distribution over x can be quite flexible.

If z is discrete and pθ(x | z) is a Gaussian distribution, then pθ(x) is a mixture of Gaussian.

If z is continuous, then pθ(x) can be seen as an infinite mixture, which are potentially more

powerful than discrete mixture.3.2. The Multivariate Gaussian 87

Figure 3.7 Example of a Gaussian mixture distri-
bution in one dimension showing three
Gaussians (each scaled by a coefficient)
in blue and their sum in red.

t

p(t|x)

this proves to be the case, as can be seen from Figure 3.6(b). Such superpositions,
formed by taking linear combinations of more basic distributions such as Gaussians,
can be formulated as probabilistic models known as mixture distributions. In this sec-Chapter 15
tion we will consider Gaussians to illustrate the framework of mixture models. More
generally, mixture models can comprise linear combinations of other distributions,
for example mixtures of Bernoulli distributions for binary variables. In Figure 3.7 we
see that a linear combination of Gaussians can give rise to very complex densities.
By using a sufficient number of Gaussians and by adjusting their means and covari-
ances as well as the coefficients in the linear combination, almost any continuous
distribution can be approximated to arbitrary accuracy.

We therefore consider a superposition of K Gaussian densities of the form

p(x) =

K∑

k=1

πkN (x|µk,Σk), (3.111)

which is called a mixture of Gaussians. Each Gaussian density N (x|µk,Σk) is
called a component of the mixture and has its own mean µk and covariance Σk.
Contour and surface plots for a Gaussian mixture in two dimensions having three
components are shown in Figure 3.8.

The parameters πk in (3.111) are called mixing coefficients. If we integrate both
sides of (3.111) with respect to x, and note that both p(x) and the individual Gaussian
components are normalized, we obtain

K∑

k=1

πk = 1. (3.112)

Also, given that N (x|µk,Σk) ! 0, a sufficient condition for the requirement p(x) !
0 is that πk ! 0 for all k. Combining this with the condition (3.112), we obtain

0 " πk " 1. (3.113)

We can therefore see that the mixing coefficients satisfy the requirements to be prob-
abilities, and we will show that this probabilistic interpretation of mixture distribu-
tions is very powerful.Chapter 15

Hamid Beigy (Sharif University of Technology) 15 / 63

Linear Gaussian Latent Variable Model

1. Let us consider the following situation

Continuous random variables only, i.e., x ∈ Rd and z ∈ RK .

The distribution of z is the standard Gaussian, i.e., p(z) = N (0, I).

The dependency between z and z is linear and we assume a Gaussian additive noise:

x = Wz + b + ε

where ε ∼ N (0, σ2I)

The property of the Gaussian distribution yields:

p(x | z) = N
(
Wz + b, σ2I

)

2. This model is known as the probabilistic PCA.

Hamid Beigy (Sharif University of Technology) 16 / 63

Linear Gaussian Latent Variable Model

1. Then, we use linear combination of two normally-distributed random variables as

p(x) =

∫
p(x | z) p(z)dz

=

∫
Nx(Wz + b, σI)Nz(0, I)dz

= N
(
b,WW> + σ2I

)
.

2. We can calculate the logarithm of the (marginal) likelihood function ln p(x).

3. We can also calculate the true posterior over z.

p(z | x) = N
(
M−1W>(x− µ), σ−2M

)

where M = W>W + σ2I.

Hamid Beigy (Sharif University of Technology) 17 / 63

Deep Latent Variable Model

1. Deep latent variable model (DLVM) is a latent variable model, pθ(x, z), whose distribution

are parameterized by a neural network.

2. When the prior is Gaussian, the model is called deep latent Gaussian model (DLGM).

3. One advantage of DLVM is that even when each factor in the directed model is relatively

simple, the marginal distribution, pθ(x), can be very complex.

4. This makes DLVMs attractive for approximating complicated underlying distribution pd(x).

5. Perhaps the simplest and the most common DLVM is specified as factorization with the

following structure:

pθ(x, z) = pθ(x | z) p(z)

where p(z) and pθ(x | z) are specified.

Hamid Beigy (Sharif University of Technology) 18 / 63

Maximum Likelihood Learning

1. The main objective of DGMs is approximating the distribution pd(x) using pθ(x).

2. Let having a dataset D = {x1, . . . , xm} of i.i.d. and fully-observed samples.

3. We maximize the probability of observing the data with respect to the parameters θ.

4. The maximum likelihood fit is

θ = arg maxθ
1

m

m∑

i=1

log pθ(xi)

5. In latent variable model, we have

pθ(x) =

∫
pθ(x | z) p(z)dz

6. The maximum likelihood fit is

θ = arg maxθ
1

n

n∑

i=1

log

(∫
pθ(x | z) p(z)dz

)

7. The main difficulty of maximum likelihood learning in DLVMs is that the marginal

probability of data under the model is typically intractable.

Hamid Beigy (Sharif University of Technology) 19 / 63

Minimizing KL divergence

arg minθ DKL(pd(x) || pθ(x)) = arg minθ Ex∼ pd(x)

[
log

pd(x)

pθ(x)

]

= arg minθ

∫
pd(x) log

pd(x)

pθ(x)
dx

= arg minθ

∫
pd(x) log pd(x)dx

︸ ︷︷ ︸
Constant term w.r.t θ

−
∫

pd(x) log pθ(x)dx

= arg minθ const −
∫

pd(x) log pθ(x)dx

= arg maxθ

∫
pd(x) log pθ(x)dx

Hence, minimizing KL divergence is equivalent to maximizing the
likelihood.

Measuring how good a distribution is ...
Minimize Kullback–Leibler (KL) divergence:

⇒ Maximize likelihood:

pθ(x)

≈

pdata(x)
tl; dr

Note: consider other criteria than KL?

Credit: Kaiming He
Hamid Beigy (Sharif University of Technology) 20 / 63

Intractability

1. We want to maximize log pθ(x) with

pθ(x) =

∫
pθ(x, z)dz

=

∫
pθ(x | z) p(z)dz

2. There are two sets of unknown: optimizing for θ and can not control p(z).

3. The intractability is due to not having not an analytic solution or efficient estimator.

4. Hence, we cannot differentiate it w.r.t θ and optimize it as in fully observable models.

5. The intractability of pθ(x) is related to the intractability of posterior pθ(x | z).

6. Since pθ(x, z) is efficient to compute, if pθ(x) is tractable then pθ(x | z) is tractable and

vice versa.

pθ(x | z) =
pθ(x, z)

pθ(x)

7. Solution: Introduce a controllable distribution q(z)

Hamid Beigy (Sharif University of Technology) 21 / 63

Latent variable model

log pθ(x) =

∫
q(z) log pθ(x)dz Rewrite using latent z

=

∫
q(z) log

(
pθ(x | z) pθ(z)

pθ(z | x)

)
dz Using Bayes rule

=

∫
q(z) log

(
pθ(x | z) pθ(z)

pθ(z | x)

q(z)

q(z)

)
dz

=

∫
q(z)

(
log pθ(x | z) + log

pθ(z)

q(z)
+ log

q(z)

pθ(z | x)

)
dz

= Ez∼ q(z)[log pθ(x | z)]
︸ ︷︷ ︸

tractable

−DKL(q(z) || pθ(z))︸ ︷︷ ︸
tractable︸ ︷︷ ︸

Evidence lower bound (ELBO)

+ DKL(q(z) || pθ(z | x))︸ ︷︷ ︸
intractable

This equation holds for any distribution q(z).

Hence, log pθ(x) becomes intractable!

Hamid Beigy (Sharif University of Technology) 22 / 63

Latent variable model

1. How to overcome this problem?

2. Solution:

Parametrize q(z) by qφ(z).

Let pθ(z) be a simple known prior p(z).

3. Now maximize ELBO (variational lower bound) or equivalently minimize the following

objective function.

L(θ, φ) = −Ez∼ qφ(z)[log pθ(x | z)]
︸ ︷︷ ︸

Reconstruction loss

+ DKL(qφ(z) || p(z))︸ ︷︷ ︸
Regularization loss

4. The KL divergence is known as the variational gap.

5. How to maximize ELBO?

Hamid Beigy (Sharif University of Technology) 23 / 63

Amortized Variational Inference

1. The problem is how to estimate log q(z | x) in which the posterior distribution is different

for each data point x. This means that we need to learn different variational parameters φ

for each data point x.

2. To overcome this issue, we use amortized variational inference.

3. In amortized variational inference, we train an external neural network to predict the

variational parameters instead of optimizing ELBO per data point.

4. This network is called the inference network and from now on, φ parameters will refer to

the inference network weights.

5. The main model (decoder network) and the inference network are trained simultaneously

by maximizing ELBO with respect to both θ and φ.

6. Once we train the inference network, we can compute the variational posterior for a new

data point by simply feeding the data point to the network.

Hamid Beigy (Sharif University of Technology) 24 / 63

Amortized Variational Inference
2.2. Evidence Lower Bound (ELBO) 17

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 2.1: A VAE learns stochastic mappings between an observed x-space, whose
empirical distribution qD(x) is typically complicated, and a latent z-space, whose
distribution can be relatively simple (such as spherical, as in this figure). The
generative model learns a joint distribution p◊(x, z) that is often (but not always)
factorized as p◊(x, z) = p◊(z)p◊(x|z), with a prior distribution over latent space
p◊(z), and a stochastic decoder p◊(x|z). The stochastic encoder q„(z|x), also called
inference model, approximates the true but intractable posterior p◊(z|x) of the
generative model.

Hamid Beigy (Sharif University of Technology) 25 / 63

Amortized Variational Inference

Credit: Synthesis AI
Hamid Beigy (Sharif University of Technology) 26 / 63

Variational autoencoder

Variational autoencoder

1. We need to maximize ELBO with respect to both the parameters.

2. Variational autoencoder has the following architecture.

3. Example

Encoder

p(z) = N (0, I)

qφ(z | x) = N (µe , σe)

fφ(x)→ (µe , σe)

Decoder

pθ(x | z) = N (gθ(z), σd I)

log pθ(x | z) = 1
2σd
‖x− gθ(z)‖2 + const

4. Hence, loss becomes:

L(θ, φ) = −Ez∼ qφ(z | x)

[
1

2σd
‖x− gθ(z)‖2

]

︸ ︷︷ ︸
Reconstruction loss

+ DKL(N (µe , σe) || N (0, I))︸ ︷︷ ︸
Regularization loss

Hamid Beigy (Sharif University of Technology) 27 / 63

Variational autoencoder

Example

1. Let x ∼ N (µ, σ2) and z ∼ N (0, 1). Now consider the following VAE:

Example. It’s time to consider another trivial example. Suppose that we have a random variable x
and a latent variable z such that

x ⇠ N (x | µ,�2),

z ⇠ N (z | 0, 1).

Our goal is to construct a VAE. (What?! This problem has a trivial solution where z = (x� µ)/� and
x = µ + �z. You are absolutely correct. But please follow our derivation to see if the VAE framework
makes sense.)

By constructing a VAE, we mean that we want to build two mappings “encode” and “decode”. For
simplicity, let’s assume that both mappings are a�ne transformations:

z = encode(x) = ax + b, so that � = [a, b],

x = decode(z) = cz + d, so that ✓ = [c, d].

We are too lazy to find out the joint distribution p(x, z), nor the conditional distributions p(x|z)
and p(z|x). But we can construct the proxy distributions q�(z|x) and p✓(x|z). Since we have the
freedom to choose what q� and p✓ should look like, how about we consider the following two Gaussians

q�(z|x) = N (z | ax + b, 1),

p✓(x|z) = N (x | cz + d, c).

The choice of these two Gaussians is not mysterious. For q�(z|x): if we are given x, of course we want
the encoder to encode the distribution according to the structure we have chosen. Since the encoder
structure is ax + b, the natural choice for q�(z|x) is to have the mean ax + b. The variance is chosen
as 1 because we know that the encoded sample z should be unit-variance. Similarly, for p✓(x|z): if we
are given z, the decoder must take the form of cz + d because this is how we setup the decoder. The
variance is c which is a parameter we need to figure out.

We will pause for a moment before continuing this example. We want to introduce a mathematical
tool.

1.2 Evidence Lower Bound

How do we use these two proxy distributions to achieve our goal of determining the encoder and the decoder?
If we treat � and ✓ as optimization variables, then we need an objective function (or the loss function) so
that we can optimize � and ✓ through training samples. To this end, we need to set up a loss function in
terms of � and ✓. The loss function we use here is called the Evidence Lower BOund (ELBO) [1]:

ELBO(x)
def
= Eq�(z|x)

log

p(x, z)

q�(z|x)

�
. (2)

You are certainly puzzled how on the Earth people can come up with this loss function!? Let’s see what
ELBO means and how it is derived.

© 2024 Stanley Chan. All Rights Reserved. 4

where

z = encode(x) = ax + b φ = {a, b}
x = decode(z) = cz + d θ = {c , d}

2. Consider the following proxy distributions:

qφ(z | x) = N (ax + b, 1)

pθ(x | z) = N (cz + d , c)

3. This problem has a trivial solution, find it.

Hamid Beigy (Sharif University of Technology) 28 / 63

Variational autoencoder

Example

1. Consider the following proxy distributions of the previous example:

qφ(z | x) = N (ax + b, 1)

pθ(x | z) = N (cz + d , c)

2. To determine φ, we need to maximize the regularization term

DKL(qφ(z | x) || p(z)) = DKL(N (ax + b, 1) || N (0, 1))

3. Since E[x] = µ and var[x] = σ2, the KL-divergence is minimized when a = 1
σ , b = −µσ .

4. To determine θ, we need to maximize the reconstruction term:

E qφ(z | x)[log pθ(x | z)] = E qφ(z | x)

[
− (cz + d − µ)2

2c2

]

5. Since E[z] = 0 and var[x] = 1, the term is maximized when c = σ and d = µ.

6. The encoder and decoder parameters are

z = encode(x) =
x− µ
σ

x = decode(z) = az + µ

Hamid Beigy (Sharif University of Technology) 29 / 63

Training and Inference in VAE

1. Training

Figure 4: Implementation of a VAE encoder. We use a neural network to take the image x and estimate the
mean µ� and variance �2

� of the Gaussian distribution.

Remark. For any high-dimensional Gaussian x ⇠ N (x|µ,⌃), the sampling process can be done via
the transformation of white noise

x = µ + ⌃
1
2 w, (8)

where w ⇠ N (0, I). The half matrix ⌃
1
2 can be obtained through eigen-decomposition or Cholesky

factorization. For diagonal matrices ⌃ = �2I, the above reduces to

x = µ + �w, where w ⇠ N (0, I). (9)

Let’s talk about the decoder. The decoder is implemented through a neural network. For notation
simplicity, let’s define it as decode✓ where ✓ denotes the network parameters. The job of the decoder network
is to take a latent variable z and generates an image bx:

bx = decode✓(z). (10)

Now let’s make one more (crazy) assumption that the error between the decoded image bx and the ground
truth image x is Gaussian. (Wait, Gaussian again?!) We assume that

(bx� x) ⇠ N (0,�2
dec), for some �2

dec.

Then, it follows that the distribution p✓(x|z) is

log p✓(x|z) = log N (x | decode✓(z),�2
decI)

= log
1p

(2⇡�2
dec)

D
exp

⇢
�kx� decode✓(z)k2

2�2
dec

�

= �kx� decode✓(z)k2
2�2

dec

� log
q

(2⇡�2
dec)

D

| {z }
you can ignore this term

, (11)

where D is the dimension of x. This equation says that the maximization of the likelihood term in ELBO
is literally just the `2 loss between the decoded image and ground truth. The idea is shown in Figure 5.

Figure 5: Implementation of a VAE decoder. We use a neural network to take the latent vector z and generate
an image bx. The log likelihood will give us a quadratic equation if we assume a Gaussian distribution.

© 2024 Stanley Chan. All Rights Reserved. 8

Figure 4: Implementation of a VAE encoder. We use a neural network to take the image x and estimate the
mean µ� and variance �2

� of the Gaussian distribution.

Remark. For any high-dimensional Gaussian x ⇠ N (x|µ,⌃), the sampling process can be done via
the transformation of white noise

x = µ + ⌃
1
2 w, (8)

where w ⇠ N (0, I). The half matrix ⌃
1
2 can be obtained through eigen-decomposition or Cholesky

factorization. For diagonal matrices ⌃ = �2I, the above reduces to

x = µ + �w, where w ⇠ N (0, I). (9)

Let’s talk about the decoder. The decoder is implemented through a neural network. For notation
simplicity, let’s define it as decode✓ where ✓ denotes the network parameters. The job of the decoder network
is to take a latent variable z and generates an image bx:

bx = decode✓(z). (10)

Now let’s make one more (crazy) assumption that the error between the decoded image bx and the ground
truth image x is Gaussian. (Wait, Gaussian again?!) We assume that

(bx� x) ⇠ N (0,�2
dec), for some �2

dec.

Then, it follows that the distribution p✓(x|z) is

log p✓(x|z) = log N (x | decode✓(z),�2
decI)

= log
1p

(2⇡�2
dec)

D
exp

⇢
�kx� decode✓(z)k2

2�2
dec

�

= �kx� decode✓(z)k2
2�2

dec

� log
q

(2⇡�2
dec)

D

| {z }
you can ignore this term

, (11)

where D is the dimension of x. This equation says that the maximization of the likelihood term in ELBO
is literally just the `2 loss between the decoded image and ground truth. The idea is shown in Figure 5.

Figure 5: Implementation of a VAE decoder. We use a neural network to take the latent vector z and generate
an image bx. The log likelihood will give us a quadratic equation if we assume a Gaussian distribution.

© 2024 Stanley Chan. All Rights Reserved. 8

2. Inference

1.4 Loss Function

Once you understand the structure of the encoder and the decoder, the loss function is easy to understand.
We approximate the expectation by Monte-Carlo simulation:

Eq�(z|x)[log p✓(x|z)] ⇡ 1

L

LX

`=1

log p✓(x`|z(`)), z(`) ⇠ q�(z|x(`)),

where x(`) is the `-th sample in the training set, and z(`) is sampled from z(`) ⇠ q�(z|x(`)). The distribution
q✓ is q�(z|x(`)) = N (z|µ�(x(`)),�2

�(x(`))I).

Training loss of VAE:

argmax
�,✓

(
1

L

LX

`=1

log p✓(x(`)|z(`))� DKL(q�(z|x(`))kp(z))

)
, (12)

where {x(`)}L
`=1 are the ground truth images in the training dataset, and z(`) is sampled from Eqn (7).

The z in the KL divergence term does not depend on ` because we are measuring the KL divergence between
two distributions. The variable z here is a dummy.

One last thing we need to clarify is the KL divergence. Since q�(z|x(`)) = N (z|µ�(x(`)),�2
�(x(`))I) and

p(z) = N (0, I), we are essentially coming two Gaussian distributions. If you go to Wikipedia, you can see
that the KL divergence for two d-dimensional Gaussian distributions N (µ0,⌃0) and N (µ1,⌃1) is

DKL(N (µ0,⌃0), N (µ1,⌃1)) =
1

2

✓
Tr(⌃�1

1 ⌃0)� d + (µ1 � µ0)
T⌃�1

1 (µ1 � µ0) + log
det⌃1

det⌃0

◆
. (13)

Substituting our distributions by considering µ0 = µ�(x(`)), ⌃0 = �2
�(x(`))I, µ1 = 0, ⌃1 = I, we can show

that the KL divergence has an analytic expression

DKL(q�(z|x(`)) k p(z)) =
1

2

⇣
(�2

�(x(`)))d + µ�(x(`))T µ�(x(`))� d log(�2
�(x(`)))

⌘
, (14)

where d is the dimension of the vector z. Therefore, the overall loss function Eqn (12) is di↵erentiable. So,
we can train the encoder and the decoder end-to-end by backpropagating the gradients.

1.5 Inference with VAE

For inference, we can simply throw a latent vector z (which is sampled from p(z) = N (0, I)) into the decoder
decode✓ and get an image x. That’s it; see Figure 6.

Figure 6: Using VAE to generate image is as simple as sending a latent noise code z through the decoder.

Congratulations! We are done. This is all about VAE.

If you would like to read more, we highly recommend the tutorial by Kingma and Welling [1]. A shorter
tutorial can be found at [2]. If you type VAE tutorial PyTorch in Google, you will be able to find hundreds
if not thousands programming tutorials and videos.

© 2024 Stanley Chan. All Rights Reserved. 9

Hamid Beigy (Sharif University of Technology) 30 / 63

Computing the gradient of ELBO

1. We need to maximize ELBO with respect to both the model parameters. This means that

we need to compute the gradients of:

L(θ, φ) = E qφ(z | x)

[
log

pθ(x, z)

qφ(z | x)

]

2. Unbiased gradients of the ELBO with respect to θ are:

∇θ L(θ, φ)(x) = ∇θ E qφ(z | x)[log pθ(x, z)− log qφ(z | x)]

= E qφ(z | x)[∇θ(log pθ(x, z)− log qφ(z | x))]

≈ ∇θ(log pθ(x, z)− log qφ(z | x))

= ∇θ log pθ(x, z)

3. Although exact gradient calculation with respect to the model parameters is possible, a

much better approach is to use Monte Carlo sampling.

4. We generate a handful of samples for the variational posterior and average them. That

way we estimate the gradients instead of calculating them in a closed form.

∇θ L(θ, φ) =
1

K

K∑

k=1

∇θ log pθ(x, zk) where zk ∼ qφ(z | x)

5. Then, use back-propagation algorithm to update the model parameters.
Hamid Beigy (Sharif University of Technology) 31 / 63

Computing the gradient of ELBO

1. Unbiased gradients with respect to the variational parameters φ are more difficult to

obtain, since the ELBO’s expectation is taken with respect to the distribution qφ(z | x),

which is a function φ:

L(θ, φ) = E qφ(z | x)

[
log

pθ(x, z)

qφ(z | x)

]

∇φ L(θ, φ) = ∇θ E qφ(z | x)[log pθ(x, z)− log qφ(z | x)]

6= E qφ(z | x)[∇φ(log pθ(x, z)− log qφ(z | x))]

2. Why cannot we to obtain the above gradient?

3. If we can calculate such a gradient, we can use back-propagation algorithm to update the

variational parameters.

Hamid Beigy (Sharif University of Technology) 32 / 63

Reparameterization trick

1. Problem is transforming a sample from a fixed, known distribution to a sample from

qφ(z | x).

2. If we consider the Gaussian distribution, we can express z with respect to a fixed

ε ∼ N (0, I).

z = µ+ σε where ε ∼ N (0, I)

3. The ε term introduces the stochastic part and it is not involved in the training process.

Hamid Beigy (Sharif University of Technology) 33 / 63

Gradient of expectation under change of variable

1. Given change of variable, expectations can be rewritten in terms of ε:

E qφ(z | x)[f (z)] = E p(ε)[f (z)]

2. Then, the expectation and gradient operators become commutative, and we can form a

simple Monte Carlo estimator

∇φ E qφ(z | x)[f (z)] = ∇φ E p(ε)[f (z)]

= E p(ε)[∇φf (z)]

≈ ∇φf (z)

Hamid Beigy (Sharif University of Technology) 34 / 63

Gradient of ELBO

1. Under the reparameterization, we can replace an expectation with respect to qφ(z | x)

with one with respect to p(ε).

2. The ELBO can be rewritten as:

L(θ, φ)(x) = E qφ(z | x)[log pθ(x, z)− log qφ(z | x)]

= E p(ε)[log pθ(x, z)− log qφ(z | x)]

3. As a result we can form a simple Monte Carlo estimator L̂(θ, φ)(x) of the individual data

ELBO, where we use a single noise sample ε from p(ε):

L̂(θ, φ)(x) = log pθ(x, z)− log qφ(z | x)

4. HW: Show that this gradient is an unbiased estimator of the exact single data ELBO

gradient.

Hamid Beigy (Sharif University of Technology) 35 / 63

Results of VAE

1. Consider the first and third rows of the following figure:

The first line is deterministic autoencoder

The third row is VAE

784

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Figure 21.2: Illustration of unconditional image generation using (V)AEs trained on CelebA. Row 1:
deterministic autoencoder. Row 2: β-VAE with β = 0.5. Row 3: VAE (with β = 1). Generated by
celeba_vae_ae_comparison.ipynb.

of the decoder is the mirror image of the decoder. Each model is trained for 5 epochs with a batch
size of 256, which takes about 20 minutes on a GPU.

The main advantage of a VAE over a deterministic autoencoder is that it defines a proper generative
model, that can create sensible-looking novel images by decoding prior samples z ∼ N (0, I). By
contrast, an autoencoder only knows how to decode latent codes derived from the training set, so
does poorly when fed random inputs. This is illustrated in Figure 21.2.

We can also use both models to reconstruct a given input image. In Figure 21.3, we see that both
AE and VAE can reconstruct the input images reasonably well, although the VAE reconstructions are
somewhat blurry, for reasons we discuss in Section 21.3.1. We can reduce the amount of blurriness
by scaling down the KL penalty term by a factor of β; this is known as the β-VAE, and is discussed
in more detail in Section 21.3.1.

21.2.4 VAEs optimize in an augmented space

In this section, we derive several alternative expressions for the ELBO which shed light on how VAEs
work.

First, let us define the joint generative distribution

pθ(x, z) = pθ(z)pθ(x|z) (21.9)

Draft of “Probabilistic Machine Learning: Advanced Topics”. April 1, 2023

2. Despite success on small scale datasets, when applied to more complex datasets such as

natural images, samples tend to be unrealistic and blurry.

Hamid Beigy (Sharif University of Technology) 36 / 63

Results of VAE

1. Consider an autoencoder

2. The goal of autoencoder is to minimize reconstruction loss given by

min
θ,φ
{‖X− X̂‖2}

3. This means that a good intermediate representation not only can capture latent variables,

but also benefits a full decompression process.

Hamid Beigy (Sharif University of Technology) 37 / 63

Variants of VAE

Introduction

1. How can we interpret the latent vector of VAE?

2. A model trained on photos of human faces might capture

gentle,

skin color,

hair color,

hair length,

emotion,

glasses (if any),

many other relatively independent factors.

3. Such a disentangled representation is very beneficial to facial image generation.

Hamid Beigy (Sharif University of Technology) 38 / 63

Beta-VAE

1. Beta-VAE is a modification of VAE with a special emphasis to discover disentangled latent

factors (Higgins et al. 2017).

2. In β-VAE, we want to maximize the probability of generating real data, while keeping the

distance between the real and estimated posterior distributions small (less than a small

constant δ):

max
φ,θ

Ex∼ pd(x)

[
Ez∼ qφ(z | x) log pθ(x | z)

]
subject to DKL(qφ(z | x) || p(z)) ≤ δ

3. We can rewrite it as a Lagrangian with a Lagrangian multiplier β under the KKT

condition.

4. The above optimization problem with only one inequality constraint is equivalent to

maximizing F(φ, θ, β) as :

F(φ, θ, β) = Ez∼ qφ(z | x) log pθ(x | z)− β(DKL(qφ(z | x) || p(z))− δ)

= Ez∼ qφ(z | x) log pθ(x | z)− β DKL(qφ(z | x) || p(z)) + βδ

≥ Ez∼ qφ(z | x) log pθ(x | z)− β DKL(qφ(z | x) || p(z)) Since β, δ ≥ 0

Hamid Beigy (Sharif University of Technology) 39 / 63

Beta-VAE

1. Hence, the loss function of beta-VAE is defined as

LBETA(φ, θ, β) = −Ez∼ qφ(z | x) log pθ(x | z) + β DKL(qφ(z | x) || p(z))

where the Lagrangian multiplier β is considered as a hyper-parameter.

2. Since −LBETA(φ, θ, β) is the lower bound of the Lagrangian, minimizing the loss is

equivalent to maximizing the Lagrangian.

3. Considering β,

when β = 1, we have standard VAE, and

when β > 1, it applies a stronger constraint on the latent bottleneck and limits the

representation capacity of z.

4. For some conditionally independent generative factors, keeping them disentangled is the

most efficient representation.

5. Therefore a higher β encourages more efficient latent encoding and hence disentanglement.

6. Hence, a higher β may create a trade-off between reconstruction quality and the extent of

disentanglement.

Hamid Beigy (Sharif University of Technology) 40 / 63

Results of Beta-VAE

1. Consider Latent factors learnt by β-VAE on celebA data set.

Under review as a conference paper at ICLR 2017

Figure 3: Manipulating latent variables on 3D faces: Qualitative results comparing disentangling
performance of �-VAE (� = 20), VAE (Kingma & Welling, 2014) (� = 1), InfoGAN (Chen et al.,
2016) and DC-IGN (Kulkarni et al., 2015). InfoGAN traversal is over the [-1, 1] range. All models
learnt to disentangle lighting (b) and elevation (c). DC-IGN and VAE struggled to continuously
interpolate between different azimuth angles (a), unlike �-VAE, which additionally learnt to encode a
wider range of azimuth angles than other models. InfoGAN and DC-IGN images adapted from Chen
et al. (2016) and Kulkarni et al. (2015), respectively. Reprinted with permission.

Figure 4: Latent factors learnt by �-VAE on celebA: traversal of individual latents demonstrates
that �-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.

reconstructions is shown in the bottom five rows of Fig. 6A. The latents z6 and z2 learnt to encode X
and Y coordinates of the objects respectively; unit z1 learnt to encode scale; and units z5 and z7 learnt
to encode rotation. The frequency of oscillations in each rotational latent corresponds to the rotational
symmetry of the corresponding object (2⇡ for heart, ⇡ for oval and ⇡/2 for square). Furthermore,
the two rotational latents seem to encode cos and sin rotational coordinates, while the positional
latents align with the Cartesian axes. While such alignment with intuitive factors for humans is not
guaranteed, empirically we found it to be very common. Fig. 6B demonstrates that the unmodified
VAE baseline (� = 1) is not able to disentangle generative factors in the data as well as �-VAE with
appropriate learning pressures. Instead each latent z (apart from z9, which learnt rotation) encodes at

7

2. This experiment shows that β-VAE discovers some factors in an unsupervised manner that

encode skin colour, transition from an elderly male to younger female, and image

saturation.

Hamid Beigy (Sharif University of Technology) 41 / 63

Beta-VAE

1. Consider the loss function of Beta-VAE

LBETA(φ, θ, β) = −Ez∼ qφ(z | x) log pθ(x | z) + β DKL(qφ(z | x) || p(z))

2. Assume that every pixel xk is conditionally independent given z.Then, the first term

becomes

Ez∼ qφ(z | x) log pθ(x | z) = Ez∼ qφ(z | x) log
∏

k

pθ(xk | z)

= Ez∼ qφ(z | x)
∑

k

log pθ(xk | z)

3. Dividing both sides of LBETA(φ, θ, β) by n produces

LBETA(φ, θ, β) ≈ −Ez∼ qφ(z | x)[Ek [log pθ(xk | z)]] +
β

n
DKL(qφ(z | x) || pθ(z)) (1)

4. We design β-VAE to learn conditionally independent factors of variation in the data.

5. Hence we assume conditional independence of every latent zm given x .

Hamid Beigy (Sharif University of Technology) 42 / 63

Beta-VAE

1. Since our prior p(z) is an isotropic unit Gaussian, we can re-write the second term of

LBETA(φ, θ, β) as:

DKL(qφ(z | x) || p(z)) =

∫

z

qφ(z | x) log
qφ(z | x)

p(z)

=
∑

k

∫

zk

qφ(zk | x) log
qφ(zk | x)

p(zk)

= K Ek

[∫

zk

qφ(zk | x) log
qφ(zk | x)

p(zk)

]

where K is dimensionality of latent variable

2. Combining the above terms produces

LBETA(φ, θ, β) ≈ −Ez∼ qφ(z | x)[Ek [log pθ(xk | z)]] +
Kβ

n
Ek

[∫

zk

qφ(zk | x) log
qφ(zk | x)

p(zk)

]

(2)

3. Hence, βnorm = Kβ
n , which is equivalent to optimising the original β-VAE.

Hamid Beigy (Sharif University of Technology) 43 / 63

Vector Quantized-Variational AutoEncoder

1. In discrete latent varable model, the latent variables are discrete.

Discrete Latent Variables
• model multimodal distributions
• categorical: no particular relation between numbers (SSN, zip code, ...)
• symbolic: language, speech, planning, ...

pdata(x) pθ(x)

qφ(z|x) pθ(x|z)

qφ(z)

2. The VQ-VAE model uses discrete latent variables (Oord, Vinyals, and Kavukcuoglu 2017).

3. This discrete nature allows for more interpretable and sometimes more robust

representations.

4. Discrete representations may be a more natural fit for problems like language, speech,

reasoning.

5. The VQ-VAE model combines benefits of VAEs with vector quantization.

Hamid Beigy (Sharif University of Technology) 44 / 63

Vector Quantized-Variational AutoEncoder

1. Key Components of VQ-VAE

Encoder: Maps the input to a continuous latent space.

Codebook (Embedding Space): A set of discrete latent embeddings (vectors).

Quantizer: Maps the continuous latent vectors to the nearest discrete embedding from the

codebook.

Decoder: Reconstructs the input from the quantized latent vectors.

2. Vector quantisation is a method to map d-dimensional vectors into a finite set of code

vectors.

3. Let E be the latent embedding space, codebook, in VQ-VAE.

4. An individual embedding vector is ei (for i = 1 . . . ,K).

5. These vectors are learned during training and serve as the possible latent representations

for the input data.

Hamid Beigy (Sharif University of Technology) 45 / 63

Vector Quantized-Variational AutoEncoder

1. The encoder outputs E (x) = ze goes through a nearest-neighbor lookup to match to one

of K embedding vectors.

zq(x) = Quantize(E (x)) = ek where k = arg mini‖x− ei‖2

.

e4

Vector quantization

E(x) z Quantization

Code #4

Predict a real-valued vector, like in an ordinary VAE.
Then, “snap” it to a nearest neighbor from a codebook

2. Then, this matched code vector becomes the input for the decoder D(.).

Hamid Beigy (Sharif University of Technology) 46 / 63

Vector Quantized-Variational AutoEncoder

1. The discrete latent variables can have different shapes in different applications; for

example,

1D for speech,

2D for image, and

3D for video

2. Hence, the VQ-VAE becomes .

Hamid Beigy (Sharif University of Technology) 47 / 63

Vector Quantized-Variational AutoEncoder

1. Here, we have

q(z = ek | x) =

{
1 if k = arg mini‖ze(x)− ei‖2
0 otherwise

2. Since argmin is non-differentiable on a discrete space, the gradients LVQ−VAE from

decoder input zq is copied to the encoder output ze (called straight-through gradient

estimation).

3. Loss function for VQ-VAE is

LVQ−VAE = ‖x− D(ek)‖22︸ ︷︷ ︸
reconstruction loss

+ ‖sg [E (x)]− ek‖22︸ ︷︷ ︸
VQ loss

+β‖x− sg [ek]‖22︸ ︷︷ ︸
commitment loss

where sg [.] is the stop gradient operator.

4. The embedding vectors in the codebook is updated through EMA (exponential moving

average).

Hamid Beigy (Sharif University of Technology) 48 / 63

Vector Quantized-Variational AutoEncoder

1. Given a code vector ei , say we have ni encoder output vectors, {zi,j}nij=1, that are

quantized to ei

N
(t)
i = γN

(t−1)
i + (1− γ)n

(t)
i

m
(t)
i = γm

(t−1)
i + (1− γ)

n
(t)
i∑

j=1

z
(t)
i,j

e
(t)
i = m

(t)
i /N

(t)
i

where (t) refers to batch sequence in time. Ni and mi are accumulated vector count and

volume, respectively.

log p(x) ⇡ log p(x|zq(x))p(zq(x)). We empirically evaluate this approximation in section 4. From
Jensen’s inequality, we also can write log p(x) � log p(x|zq(x))p(zq(x)).

3.3 Prior

The prior distribution over the discrete latents p(z) is a categorical distribution, and can be made
autoregressive by depending on other z in the feature map. Whilst training the VQ-VAE, the prior is
kept constant and uniform. After training, we fit an autoregressive distribution over z, p(z), so that
we can generate x via ancestral sampling. We use a PixelCNN over the discrete latents for images,
and a WaveNet for raw audio. Training the prior and the VQ-VAE jointly, which could strengthen our
results, is left as future research.

4 Experiments

4.1 Comparison with continuous variables

As a first experiment we compare VQ-VAE with normal VAEs (with continuous variables), as well as
VIMCO [28] with independent Gaussian or categorical priors. We train these models using the same
standard VAE architecture on CIFAR10, while varying the latent capacity (number of continuous or
discrete latent variables, as well as the dimensionality of the discrete space K). The encoder consists
of 2 strided convolutional layers with stride 2 and window size 4 ⇥ 4, followed by two residual
3⇥ 3 blocks (implemented as ReLU, 3x3 conv, ReLU, 1x1 conv), all having 256 hidden units. The
decoder similarly has two residual 3⇥ 3 blocks, followed by two transposed convolutions with stride
2 and window size 4 ⇥ 4. We use the ADAM optimiser [21] with learning rate 2e-4 and evaluate
the performance after 250,000 steps with batch-size 128. For VIMCO we use 50 samples in the
multi-sample training objective.

The VAE, VQ-VAE and VIMCO models obtain 4.51 bits/dim, 4.67 bits/dim and 5.14 respectively.
All reported likelihoods are lower bounds. Our numbers for the continuous VAE are comparable to
those reported for a Deep convolutional VAE: 4.54 bits/dim [13] on this dataset.

Our model is the first among those using discrete latent variables which challenges the performance
of continuous VAEs. Thus, we get very good reconstructions like regular VAEs provide, with the
compressed representation that symbolic representations provide. A few interesting characteristics,
implications and applications of the VQ-VAEs that we train is shown in the next subsections.

4.2 Images

Images contain a lot of redundant information as most of the pixels are correlated and noisy, therefore
learning models at the pixel level could be wasteful.

In this experiment we show that we can model x = 128⇥ 128⇥ 3 images by compressing them to a
z = 32⇥ 32⇥ 1 discrete space (with K=512) via a purely deconvolutional p(x|z). So a reduction of
128⇥128⇥3⇥8

32⇥32⇥9 ⇡ 42.6 in bits. We model images by learning a powerful prior (PixelCNN) over z. This
allows to not only greatly speed up training and sampling, but also to use the PixelCNNs capacity to
capture the global structure instead of the low-level statistics of images.

Figure 2: Left: ImageNet 128x128x3 images, right: reconstructions from a VQ-VAE with a 32x32x1
latent space, with K=512.

5

2. Left: ImageNet 128× 128× 3 images. Right: reconstructions from a VQ-VAE with a

32× 32× 1 and latent space, with K = 512.
Hamid Beigy (Sharif University of Technology) 49 / 63

Vector Quantized-Variational AutoEncoder

Advantages of VQ-VAE

1. Discrete Latent Space: Produces discrete and interpretable latent representations, which

can be beneficial for tasks such as image generation and classification.

2. Improved Quality: Often generates sharper and more realistic images compared to

traditional VAEs.

3. Scalability: Can be scaled to high-dimensional data and larger datasets.

Applications of VQ-VAE

1. Image Generation: Generating high-quality images from latent representations..

2. Speech Synthesis: Converting text to speech by learning discrete speech representations..

3. Data Compression: Efficiently compressing data by learning compact latent

representations..

Hamid Beigy (Sharif University of Technology) 50 / 63

Variants of VAE

Hierarchical VAE

Hierarchical VAE

1. Some researchers have proposed hierarchical VAEs (Sønderby et al. 2016).

p(x | z) = p(x | z1)
L−1∏

k=1

p(zk | zk+1)

2. There are some VAEs are effectively stacked on top of each other

Hamid Beigy (Sharif University of Technology) 51 / 63

Hierarchical VAE

1. There are two potential advantages of using hierarchical VAEs:

They could improve the Evidence Lower Bound (ELBO) and decrease reconstruction error.

The stack of latent variables zk might learn a feature hierarchy similar to those learned by

convolutional neural networks.

2. It is shown that that if the purpose is to learn structured, hierarchical features, using a

hierarchical VAE has limitations (Zhao, Song, and Ermon 2017).

3. Homework: Drive variational inference for hierarchical VAE.

4. Homework: Read (Sønderby et al. 2016) and (Zhao, Song, and Ermon 2017).

Hamid Beigy (Sharif University of Technology) 52 / 63

Variants of VAE

Conditional VAE

Conditional VAE

1. In a conditional VAE, we have (Kingma, Mohamed, et al. 2014)

a conditional generative model pθ(z, x | c) on latent variables z, data x, conditioned on c

and parameterized by θ and

a conditional inference network qφ(z | x, c) conditioned on c and parameterized by φ.

2. Given a true conditional data distribution p(x | c) for all c, we want to learn (θ, φ) s.t.

pθ(x | c) approximates p(x | c) for all c and

qφ(z | x, c) approximates p(z | x, c) for all x, c.

Hamid Beigy (Sharif University of Technology) 53 / 63

Conditional VAE

Hamid Beigy (Sharif University of Technology) 54 / 63

Conditional VAE

1. The inference process, in which latent representation is extracted from actual samples, is

qφ(x, z, c) = qφ(z | x, c) q(x, c).

2. To obtain a sample (z, x, c) from this joint we simply perform the following:

x, c ∼ q(x, c) ground truth

z ∼ qφ(z | x, c)

where

q(x, c) is the ground truth data distribution,

qφ(z | x, c) is the learnable variational posterior.

3. The generative process, in which samples are generated, is

z, c ∼ p(z, c) prior

x ∼ pθ(x | z, c)

Hamid Beigy (Sharif University of Technology) 55 / 63

Conditional VAE

1. Since joint distribution for both processes are pθ(x, z, c) and qφ(x, z, c), we can derive

their KL distribution.

2. Let DKL(q(.) || p(.)) = DKL(qφ(x, z, c) || pθ(x, z, c)). Thus, we have

arg maxθ,φ{−DKL(q(.) || p(.))} = E qφ(x,z,c)

[
log

pθ(x, z, c)

qφ(x, z, c)

]

= E qφ(z | x,c)

[
log

pθ(x | z, c) p(x, c)

qφ(z | x, c)

]
− E q(x,c)[log q(x, c)]

= E qφ(x,z,c)

[
log

pθ(x | z, c) p(z, c)

qφ(z | x, c)

]
− const.

= E qφ(x,z,c)[log pθ(x | z, c)] + E qφ(z | x,c)

[
log

p(z, c)

qφ(z | x, c)

]

− const.

= E qφ(z,x,c)[log pθ(x | z, c)]− DKL(qφ(z | x, c) || p(z, c))

3. This gives the typical formulation of the ELBO which we see in most VAE papers.

4. Now, we must specify p(z, c). We have two cases

When they are independent

When they are dependent

Hamid Beigy (Sharif University of Technology) 56 / 63

Conditional VAE (When z and c are independent)

1. When z and c are independent, we have p(z, c) = p(z) p(c).

2. This means that the joint distribution of the generative process factorises into:

pθ(x, z, c) = pθ(x | z, c) p(z) p(c)

3. This leads us to the following ELBO

−DKL(qφ(x, z, c) || pθ(x, z, c)) = E qφ(x,z,c)[log pθ(x | z, c)]

+ E qφ(x,z,c)

[
log

p(z)

qφ(z | x, c)

]
+ log p(c)

= likelihood− DKL(qφ(z | x, c) || p(z)) + constants.

4. Here, p(c) is prior for c but it falls out of the KL term since it is a constant.

This factorization is useful to encode if we are seeking to learn

disentangled representations.

This would make for a very controllable generative process where we

could arbitrarily mix and match style and content variables from

different examples to create new ones.

Hamid Beigy (Sharif University of Technology) 57 / 63

Conditional VAE (When z and c are dependent)

1. In general z and c may not be independent, we have p(z, c) = p(z | c) p(c).

2. This means that the joint distribution of the generative process factorises into:

pθ(x, z, c) = pθ(x | z, c) p(z | c) p(c)

3. This leads us to the following ELBO

−DKL(qφ(x, z, c) || pθ(x, z, c)) = E qφ(x,z,c)[log pθ(x | z, c)]

+ E qφ(x,z,c)

[
log

p(z | c)

qφ(z | x, c)

]
+ log p(c)

= likelihood− DKL(qφ(z | x, c) || p(z | c)) + constants.

4. Here, p(c) is prior for c but it falls out of the KL term since it is a constant.

Hamid Beigy (Sharif University of Technology) 58 / 63

The role of the beta term

1. By looking at both versions of the ELBO, we can write them as:

min
θ,φ
{−E qφ(x,z,c)[log pθ(x | z, c)] + β DKL(qφ(z | x, c) || p(z | c))} Dependent case

min
θ,φ
{−E qφ(x,z,c)[log pθ(x | z, c)] + β DKL(qφ(z | x, c) || p(z))} Independent case

2. The first equation is maximizing the likelihood of the data with respect to samples from

the inference network.

3. In order for this to happen, z should encode as much information about x as possible

through the variational posterior qφ(z | x, c), which is our learned encoder.

4. The second term is working against the first, because it is enforcing that each per example

variational posterior must be close to the prior distribution.

5. Since the prior is not a function of x, it implies that some information about x in the

encoding pathway has to be lost.

6. Homework: Please above optimization functions from mutual information perspective,

and describe what happens.

7. Homework: Please read (Rathakumar et al. 2023), (Guo et al. 2024) and (Harvey,

Naderiparizi, and Wood 2022).

Hamid Beigy (Sharif University of Technology) 59 / 63

The results for conditional VAE

Hamid Beigy (Sharif University of Technology) 60 / 63

References

Reading

1. Peper An Introduction to Variational Autoencoders (Kingma and Welling 2019).

2. Chapter 21 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

3. Chapter 4 of Deep Generative Modeling (Tomczak 2024).

Hamid Beigy (Sharif University of Technology) 61 / 63

References i

Guo, Zhiqiang et al. (2024). DualVAE: Dual Disentangled Variational AutoEncoder for

Recommendation.

Harvey, William, Saeid Naderiparizi, and Frank Wood (2022). “Conditional Image Generation

by Conditioning Variational Auto-Encoders”. In: The Tenth International Conference on

Learning Representations.

Higgins, Irina et al. (2017). “Beta-VAE: Learning Basic Visual Concepts with a Constrained

Variational Framework”. In: International Conference on Learning Representations.

Kingma, Diederik P., Shakir Mohamed, et al. (2014). “Semi-supervised Learning with Deep

Generative Models”. In: Advances in Neural Information Processing Systems, pp. 3581–3589.

Kingma, Diederik P. and Max Welling (2019). “An Introduction to Variational Autoencoders”.

In: Foundations and Trends in Machine Learning 12.4, pp. 307–392.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press.

Oord, Aäron van den, Oriol Vinyals, and Koray Kavukcuoglu (2017). “Neural Discrete

Representation Learning”. In: Advances in Neural Information Processing Systems,

pp. 6306–6315.

Rathakumar, Keerth et al. (2023). DualVAE: Controlling Colours of Generated and Real

Images.

Sønderby, Casper Kaae et al. (2016). “Ladder Variational Autoencoders”. In: Advances in

Neural Information Processing Systems, pp. 3738–3746.

Hamid Beigy (Sharif University of Technology) 62 / 63

References ii

Tomczak, Jakub M. (2024). Deep Generative Modeling. Springer.

Zhao, Shengjia, Jiaming Song, and Stefano Ermon (2017). “Learning Hierarchical Features

from Deep Generative Models”. In: International Conference on Machine Learning. Ed. by

Doina Precup and Yee Whye Teh. Vol. 70, pp. 4091–4099.

Hamid Beigy (Sharif University of Technology) 63 / 63

Questions?

Hamid Beigy (Sharif University of Technology) 63 / 63

	Introduction
	Latent Variable Model
	Variational autoencoder
	Variants of VAE
	Hierarchical VAE
	Conditional VAE

	References

