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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution pyara(x) is unknown.
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Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ pg(x).

3. Learning is the process of searching for the parameter 6 such that py(x) well approximates
Pdata(x) for any observed x, i.e.

Po (X) ~ pdata(x)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Large Language models




Language model

A language model is a model for how humans generate language.
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Given sequence of words so far (context), predict what comes next.
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Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent
network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using
sequence-aligned recurrent architecture.
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3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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Transformers training

1. The Transformers works slightly differently during training and inference.
2. Input sequence: You are welcome in English.

3. Target sequence: De nada in Spanish
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Transformers inference

1. During Inference, we have only the input sequence and don't have the target sequence to
pass as input to the Decoder

2. The goal is to produce the target sequence from the input sequence alone
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General Architectures of LLMs
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General Architectures of LLMs

1. Language models can be used to perform multiple tasks by learning to predict the next
token or sentence
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Multi-modal Generative models




CLIP model

1. CLIP stands for contrastive language-image pre-training.

2. The core idea of CLIP is to use captioned images scraped from the Internet to create a

model which can predict if text is compatible with an image or not.
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CLIP model

In CLIP uses contrastive learning to learn a text encoder and an image encoder.
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CLIP model

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Generative Al Systems




General Architecture
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Example: Retrieval Augmented Generations

1. The idea is based on utilizing a database of texts and two LLMs (Lewis et al. 2020):
e an encoder-LLM

o a decoder-LLM
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Example: Retrieval Augmented Generations

Retrieval-Augmented Generation (RAG) Architecture
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Example: Speech to Text

1. The goal is to generate a text from an audio signal.
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2. A great example of a Generative Al Systems for transforming speech to text is
Whisper (Radford et al. n.d.).

3. Whisper uses an encoder-decoder transformer with a specific form of the encoder.
4. Whisper model is an automatic speech recognition system with
e a tiny version: 39M weights

o a large version: 1.55B weights
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Example: Speech to Text

English transcription
‘ “Ask not what your country can do for ---"
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Example: Large vision models

1. Large Vision Models (LVMs) are perfect examples of Generative Al Systems:
o Image to text
o Text to image

2. Latent diffusion models are widely used for generating images for a given
prompt (Rombach et al. 2022).
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3. ImaGen uses a Th-based text encoder and a diffusion model together with superresolution
blocks (Saharia et al. 2022).
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Example: Agent-Based Systems

1. The idea of using LLMs as a backbone for Operating Systems and agents as applications
has attracted a lot of attention.

2. Another idea that is pretty hyped these days is Agentic Al
the development of GenAlSys-based agents operating in an autonomous manner

o sophisticated planning,
o select appropriate tools for each component,
o execute operations via well-defined APIs,
o use interim results to inform subsequent reasoning steps, and
o finally synthesize findings into coherent outputs.
3. This approach enables generative Al to tackle problems requiring
o prolonged reasoning,
o external knowledge access, and

o specialized computational capabilities beyond what's possible with standard prompting.
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Example: Agent-Based Systems

Agent-Based Generative Al Architecture
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Summary




Future of Generative Al Systems

1. The idea of using LLMs as a backbone for Operating Systems and agents as applications
has attracted a lot of attention.

2. Another idea that is pretty hyped these days is Agentic Al
the development of GenAlSys-based agents operating in an autonomous manner.

o Microsoft AutoGen

o OpenAl ChatGPT
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Reading

1. Chapter 11 of Deep Generative Modeling (Tomczak 2024).

Hamid Beigy (Sharif University of Technology) 22/23



References i

Lewis, Patrick et al. (2020). “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks”. In: Advances in Neural Information Processing Systems.

Radford, Alec et al. (n.d.). “Robust Speech Recognition via Large-Scale Weak Supervision”. In:
International Conference on Machine Learning. Vol. 202, pp. 28492-28518.

Rombach, Robin et al. (2022). “High-Resolution Image Synthesis with Latent Diffusion
Models". In: IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10674-10685.

Saharia, Chitwan et al. (2022). “Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding”. In: Advances in Neural Information Processing Systems.

Tomczak, Jakub M. (2024). Deep Generative Modeling. Springer.

Vaswani, Ashish et al. (2017). “Attention is All you Need". In: Advances in Neural Information
Processing Systems, pp. 5998-6008.

[=) (=)

Hamid Beigy (Sharif University of Technology) 23/23



Questions?



	Introduction
	Large Language models
	Multi-modal Generative models
	Generative AI Systems
	Summary
	References

