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INTELLIGENCE

 Machine Learning vs. Animal’s Intelligence

= Limited at Some Crucial Feats

-\

= Qut of Distribution Generalization (from one problem SO
to another rather than one data point to another)

= |nterventions in the world

=  Domain Shift

=  Temporal Structure

 lLarge-Scale Pattern Recognition on
suitably collected i.i.d data




X causes y if, were we to intervene and change the value
of x, then the distribution of y would also change as a
result.

x changing doesn’t always change y , but just changes the
probability that y occurs. As we said earlier, it changes the
distribution of y.




For many research questions, in order to identify an answer
to them we need to have an idea of the data generating
process.

If we can think of some variables as causing others, then the
causal relationships between them must be a part of that
data generating process. If x causes y , then x must be a part
of what generates our observations of y.



CAUSALITY AND

CORRELATION (1/2) EVERY SINGLS PERso

WHO CONFUSES
_ _ o CORRELATION AND ~
o Correlation describes a statistical CAUSATION ENDS UP ¢
DYING ; Yy

association between types of variables

o Causation means that changes in one

variable brings about changes in the other

A correlation doesn’t imply causation, but

causation always implies correlation.




CAUSALITY AND
CORRELATION(2/2)

There are two main reasons:
1. The third variable problem
" |ce Cream Sale and Rubbery

\l/
St

2. The directionality problem
= Vitamin D and Depression

B2
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CAUSALITY AND
INTELLIGENCE

Issue 2. Learning Reusable Mechanisms

Infant’s Understanding of Physiscs

Consistency of Rules

Facing New Environment, Using TRUE Previous
Knowledge

Adapting Parameters, NOT the RULES
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CAUSALITY PERSPECTIVE

= Can’t be Fully Described by Boolean Logic or Probabilistic Inference
= Needs Aditional Notion of Intervention

=  Conditional probabilities (“seeing people with open umbrellas suggests
that it is raining”) cannot reliably predict the outcome of active

intervention (“closing umbrellas does not stop the rain”)

=  (Causal relations can be viewed as components of reasoning chain when

prediction based on situations very far from trained distribution

=  Discovering causal relations means acquiring robust knowledge that holds

beyond the support of observed data distribution and set of training tasks.



SO ...

= |n the following slides, we’ll argue that causality, with its focus on representing STRUCTURAL

KNOWLEDGE about data generating process that allows interventions and changes, can

contribute toward understanding and resolving some limitations of current ML methods.



LEVELS OF CAUSAL MODELING

* For natural phenomena, set of differential equations modeling mechanisms

responsible for time evolution to:
v" Reason about the effect of interventions
v Predict statistical dependencies between variables

v Predict future behavior of physical system

dx
—= f(x), x € R4

x(ty) = x, (Initialization)

dx = x(t +dt) —x(t),so : x(t + dt) = x(t) + dt. f(x(t))

12



LEVELS OF CAUSAL MODELING
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* Although differential equation is a rather comprehensive description of a
system, a statistical model can be veiwed as a much more superficial one.

* It often doesn’t refer to dynamic processes, but tells us how some of variables
allow the prediction of the others as long as experimental conditions do not
change. Statistical models learn from observed data and do not have dynamics
of the system.

Model Predict in 1.i.d. | Predict under distr. | Answer counter- Obtain Learn from
setting shift/intervention factual questions | physical insight data
Mechanistic/physical yes yes yes yes ?
Structural causal yes yes yes ? ?
Causal graphical yes yes no ? ?
Statistical yes no no no yes
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PREDICTING IN THE 1.1.D SETTING

Statistical models model the associations of given data and target
labels, P(Y|X):It can be proved these questions can be answered

by observing a sufficiently large amount of i.i.d data from P(X,Y).

Despite the impressive advances of machine learning, causality
offers an underexplored complement: accurate predictions may
not be sufficient to inform decision-making. For example, the
frequency of storks is a reasonable predictor for human birth rates

in Europe.

However, as there is no direct causal link between these two
variables, a change to the stork population would not affect the

birth rates, even though a statistical model may predict so.
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PREDICTING UNDER DISTRIBUTION SHIFTS

Interventions may affect both the value of a subset of causal
variables and their relations. For example, “is increasing the
number of storks in a country going to boost its human birth
rate?” and “would fewer people smoke if cigarettes were more
socially stigmatized?”

As interventions change the joint distribution of the variables of

interest, classical statistical learning guarantees no longer apply.

On the other hand, learning about interventions may allow
training predictive models that are robust against the changes in

distribution that naturally happen in the real world.

Statistical relations may change due to time or mismatch in

train/test. Robustness must be guaranteed in any case.
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ANSWERING COUNTERFACTUAL QUESTIONS

Counterfactual Reasoning in
3-year olds (Harris et al 1986)

'

« Carol her muddy
shoes off and walked over the
sparkling clean floor.

» The floor is all

» |f Carol her shoes off,
the floor be clean or
dirty?

~[clean]

o

(subjunctive) Question

» correct answer
- they can reason

counterfactually (? )C@

Distinction: Reasoning with assumptions counter-to-fact

ESF-LogicCC

deductive abductive

reasoning reasoning
theory theory
world world

counterfactual
reasoning

theory

l

possible world

Harder than Interventions

This may be a key challenge for Al, as an intelligent agent may benefit from
imagining the consequences of its actions and understanding in retrospect

what led to certain outcomes, at least to some degree of approximation.

An interventional question would be “how does the probability of heart
failure change if we convince a patient to exercise regularly?” A
counterfactual one would be “would a given patient have suffered heart

failure if they had started exercising a year earlier?”

Counterfactuals, or approximations thereof, are especially critical in RL.
They can enable agents to reflect on their decisions and formulate
hypotheses that can be empirically verified in a process akin to the

scientific method.



NATURE OF DATA
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-

The data format plays a substantial role in which type of relation can

be inferred. We can distinguish two axes of data modalities:

1. Observational vs. Interventional Data: This is observational in the
sense that the data is only observed passively, but it is

interventional in the sense that there are interventions/shifts,

but unknown to us.

2. Hand-Engineered vs. Raw Data: In classical Al, data are often
assumed to be structured into high level and semantically
meaningful variables, which may partially correspond to the
causal variables of the underlying graph. Raw data, in contrast,
are unstructured and do not expose any direct information

about causality.
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CASUAL MODELS AND INFERENCE

v' Methods Driven by i.i.d. data

v" Reichenbach Principle: From Statistics to Causality

v' Structural Causal Models

v' Differences Between Statistical Models, Causal Graphical Models, and SCMs
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METHODS DRIVEN BY L.1.D. DATA

e Strong universal consistency results from statistical learning
theory apply, guaranteeing convergence of a learning

algorithm to the lowest achievable risks.

 With i.i.d. assumption, the directionality of cause-effect will
be lost.

e Recommending is such an intervention, which takes us
outside the i.i.d. setting. We no longer work with the
observational distribution but a distribution where certain

variables or mechanisms have changed.
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REICHENBACH PRINCIPLE: FROM STATISTICS TO CAUSALITY

The Concept of
Probability

in the Mathematical Representation of Reality

Hans Reichenbach
Translated and edited by
IFrederick Eberhardt and Clark Glymour

Publications of the Archive of Scientific Philosoply

Hillman Library, University of Pittsburgh

Common Cause Principle: If two observables X and Y are
statistically dependent, then there exists a variable Z that
causally influences both and explains all the dependence in
the sense of making them independent when conditioned

on Z.

As a special case, this variable can coincide with X or Y .
Suppose that X is the frequency of storks and Y the human
birth rate. If storks bring the babies, then the correct causal
graph is X = Y. If babies attract storks, it is X < V. If there is
some other variable that causes both (such as economic

development), we have X &< Z > Y.



DIRECTED ACYCLIC GRAPH (DAG)

A graphical structure used to represent causal relationships between variables in a system.

Directed Acyclic

Each edge in the graph has a There are no cycles in the graph,
direction, indicating the direction of meaning you can't follow a
causality. For example, if variable A sequence of edges and return to the
causes variable B, there will be a same node.

directed edge from A to B.



WHY DO WE USE DAG?




STRUCTURAL CAUSAL
MODEL(1/3)

The SCM viewpoint considers a set

If we specify distributions of U; ,

of observables X; , . . ., X, recursive application of the formula

associated with the vertices of a allows us to compute the entailed

directed acyclic graph (DAG) and observational joint distribution P(X, , .

assumes that each observable is the . ., X, ). This distribution has

result of an assignment : structural properties inherited from

X;:= fi(PA,U) (i = 1,...,n) the g.rz.;\ph and satisfies caudal Markov
condition:

fi is a deterministic function
depending on X;’s parents in the
graph (denoted by PA;) and on an
unexplained random variable U;.
the set of noises Uy, . . ., Uy, is
assumed to be jointly independent.

Each node Xj conditioned on its
parents, is independent of its non
descendants.



STRUCTURAL CAUSAL
MODEL(2/3)

By considering the graph structure While many other entangled
and the joint independence of the factorizations are possible, for example:
noises, a canonical factorization of "

the joint distribution can be P(X1, .., Xpn) = np(Xi|Xi+1» oy Xn)
defined, which requires causal i=1

conditions, which we refer to as

causal (or disentangled)

factorization:

n
PCy, - Xo) = | | PCxIPAD
i=1



STRUCTURAL CAUSAL
MODEL(3/3)

do(I3) do(I3)
X

@reee f

Statistical model

i
|
@

Px Px \—'@
[ [
OJoI0 ©©@©
Difference between statistical (left) and causal models (right)
on a given set of three variables. While a statistical model
specifies a single probability distribution, a causal model

represents a set of distributions, one for each possible
intervention.
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CAUSAL LEARNING AND REASONING

The conceptual basis of statistical learning is a joint distribution P(X1,...,Xn), and we make assumptions

about function classes used to approximate.

Causal learning considers a richer class of assumptions and seeks to exploit the fact that the joint

distribution possesses a causal factorization. It involves the causal conditionals P (Xi|PAi), how these

conditionals relate to each other, and interventions or changes that they admit.

Once a causal model is available, either by external human knowledge or a learning process, causal
reasoning allows drawing conclusions on the effect of interventions, counterfactuals, and potential

outcomes. In contrast, statistical models only allow reasoning about the outcome of i.i.d. experiments.



WHY CAUSAL

REPRESENTATION
LEARNING?

be learned from unstructured data predict reliably under real-
such as images and text world data distribution shifts

Statistical models Vv X
Causal models ) ¢ v

Causal representation learning aims to incorporate ideas from
both representation learning and causal inference in order to
learn models from unstructured data which have desirable

properties of causal models, such as robustness to data
distribution shifts.



INTERVENTION(1/6)

The University of Winnipeg study that showed that heavy text messaging in
teens was correlated with “shallowness.” Media outlets jumped on this as
proof that texting makes teenagers more shallow. (Or, to use the language
of intervention, that intervening to make teens text less would make them
less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be
that both shallowness and heavy texting are caused by a common factor—
a gene, perhaps—and that intervening on that variable, if possible, would
decrease both.

28




INTERVENTION(2/6)

The difference between intervening on a variable and conditioning on that
variable should, hopefully, be obvious. When we intervene on a variable in
a model, we fix its value. We change the system, and the values of other
variables often change as a result. When we condition on a variable, we
change nothing; we merely narrow our focus to the subset of cases in
which the variable takes the value we are interested in. What changes,

then, is our perception about the world, not the world itself.

29
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INTERVENTION(3/6)

When we intervene to fix the value of a variable, we curtail the natural
tendency of that variable to vary in response to other variables in nature.
This amounts to performing a kind of surgery on the graphical model,

removing all edges directed into that variable.

Uy Uy

~d=— &

<o
h<




INTERVENTION(4/6)

The notion of an intervention is a defining characteristic of

causal modeling that differentiates it from statistical modeling.

Consider X =2 Y :

* |f weintervene on X, then P (Y | do(X = x)) is the population
distribution of Y if we fix everyone in the population’s X value
to x

 The conditional probability P (Y | X = x) is the distribution of Y
in the subset of the population where X was x

In general, P (Y | do(X = x)) does not equal P (Y | X =x))

31




INTERVENTION(5/6)

1) No intervention: Only observational data are
obtained from the causal model.

2) Hard/perfect: The function in the structural
assignment of a variable (or, analogously, of multiple
variables) is set to a constant (implying that the value
of the variable is fixed), and then, the entailed
distribution for the modified SCM is computed.

32




INTERVENTION(6/6)

3) Soft/imperfect: The structural assignment for a
variable is modified by changing the function or the
noise term (this corresponds to changing the
conditional distribution given its parents).

4) Uncertain: The learner is not sure which
mechanism/variable is affected by the intervention.

33




34

INDEPENDENT CAUSAL MECHANISM

PRINCIPLE (1/2)

The causal generative process of a system’s variables
is composed of autonomous modules that do not
inform or influence each other. In the probabilistic
case, this means that the conditional distribution of
each variable given its causes (i.e., its mechanism)
does not inform or influence the other mechanismes.




INDEPENDENT CAUSAL MECHANISM
PRINCIPLE (2/2)

No flow of influence: intervening upon one
mechanism p(X;|PA;) does not change the

ICM principle other mechanisms p(Xj|PAj),i *
consequences
No flow of information: knowing a

mechanism p(X;|PA;) does not give us
information about another mechanism

p(X;|PA;),i #j
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REPRESENTATION LEARNING

Representation Learning is a process in machine learning where algorithms extract
meaningful patterns from raw data to create representations that are easier to

understand and process.

Representation learning can be divided into:
o Supervised representation learning

o Unsupervised representation learning

Goals of representation learning are:
* Interpretability
* Reveal hidden features

* Be used for transfer learning



CAUSAL
REPRESENTATION
LEARNING



CAUSAL

REPRESENTATION
LEARNING

Causal representation model is a mathematical framework
used to understand causal relationships between variables
in a system. It aims to uncover how changes in one variable

affect other variables over time.



CAUSAL

REPRESENTATION
LEARNING

Due to SCM, noise terms are independent so the disentangled
representation is feasible:

n
PGSy, .S = | | Pesitpay
i=1

Suppose that we seek to reconstruct such a disentangled representation
using independent mechanisms from data, but the causal variables §; are
not provided to us a priori. Rather, we are given (possibly high- dimensional)
X = (Xq,...,X4). we should construct causal variables (n < d) as well as
mechanisms

S; = fi(PA;, U)



CAUSAL
REPRESENTATION
LEARNING

1. Use an encoder g: R —>R" taking X to a latent “bottleneck” representation

comprising the unexplained noise variables U = (Uy, ..., U;,)

2. Map f(U) determined by structural assignments f1, ..., fn

3.  Apply adecoder p: R* —» R¢%

For suitable n, the system can be trained using reconstruction error to satisfy p © f © g. If the
causal graph is known, the topology of a neural network implementing f can be fixed
accordingly; if not, the neural network decoder learns the composition p~ = pof. In practice,
one may not know f and, thus, only learn an autoencoder p° © g, where the causal graph
effectively becomes an unspecified part of the decoder p’, possibly aided by a suitable

choice of architecture.



CAUSAL VAE

DISENTANGLED REPRESENTATION LEARNING VIA NEURAL
STRUCTURAL CAUSAL MODELS

A new Variational Autoencoder (VAE) based
framework named CausalVAE, which includes
a Causal Layer to transform independent
exogenous factors into causal endogenous

ones that correspond to causally related
concepts in data.

VAE + SCM =y Causal VAE ‘




Most existing works of disentangled representation learning
make a common assumption that the real world observations
are generated by countable independent factors.

we argue that in many real world applications, latent factors
with semantics of interest are causally related and thus we
need a new framework that supports causal disentanglement.

Independent variable:

amount of water Dependent variable:

fraction of seeds that sprout

SN /1N

9/10 seeds 0/10 seeds
sprout sprout

ATILEETITEITEN, E—— A0 AW RN, T,
[osied
Experimental Control

group group
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Factor: water

&*ﬁ

Factor: sunlight

Q

Disentangled

Disentangled Causal Causal

Factor: seed type Factor: soil type

90— d4n - A

Disentangled Disenta:ged ﬁ
Causal

Causal




HOW CASUAL VAE WORKS?

CasualVAE is a VAE-based causal disentangled representation learning framework by
introducing a novel Structural Causal Model layer (Mask Layer), which allows it to
recover the latent factors with semantics and structure via a causal DAG.

The input signal passes through an encoder to obtain independent exogenous factors
and then a Causal Layer to generate causal representation which is taken by the
decoder to reconstruct the original input.

additional information is required as weak supervision signals to achieve causal
representation learning. By weak supervision the causal structure of the latent factors
is automatically learned, instead of being given as a prior in.

To train the model, a new loss function used which includes the VAE evidence lower
bound (ELBO) loss and an acyclicity constraint imposed on the learned causal graph to
guarantee its DAGness.

43
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HOW CASUAL VAE WORKS

Leak Information €

(2) Generate

|

(1) Inference




HOW CASUAL VAE WORKS?

FORMALIZED CAUSAL REPRESENTATION

To formalize causal representation, we consider n concepts of interest in data. The concepts
in observations are causally structured by a Directed Acyclic Graph (DAG) with an adjacency

matrix A. Though a general nonlinear SCM is preferred, for simplicity, the Causal Layer exactly
implements a Linear SCM as described in Equation:

z=ATz+e= (I- AT)_le, e~N(0,I) (1)

A is the parameters to be learnt in this layer.€ are independent
Gaussian exogenous factors and z € R" is structured causal
representation of n concepts that is generated by a DAG and thus
A can be permuted into a strictly upper triangular matrix.



HOW CASUAL VAE WORKS?

STRUCTURAL CASUAL MODEL LAYER (1/2)

Once the causal representation z is obtained, it passes through a Mask Layer to
reconstruct itself.

Let z; be the i-th variable in the vector z. The adjacency matrix associated with the
causal graph is A = [A4]...|A;] where 4; € R" is the weight vector such that 4;;
encodes the causal strength from z; to z;. We have a set of mild nonlinear and
invertible functions [g4, g»- .., g, ] that map parental variables to the child variable.
Then we write:

zi=gi(A;0z; n;) + €

O is the element-wise multiplication and n; is the parameter g;(.)



HOW CASUAL VAE WORKS?

STRUCTURAL CASUAL MODEL LAYER (2/2)

we find that adding a mild nonlinear function g; results in
more stable performances. To show how this masking
works, consider a variable z; and A; © z equals a vector
that only contains its parental information as it masks
out all z;’s non-parent variables. By minimizing the
reconstruction error, the adjacency matrix A and the
parameter n; of the mild nonlinear function g; are
trained.



RESULTS OF CAUSALVAE MODEL
ON CELEBA(SMILE).

Intervene GENDER Intervene SMIL
eveEs [ FPEEFEFEFEEFEIEEEEEFE R
. It Lt o . (. [ \e A kd  ~ ke

"Li&;»;&;

, v , 8 Changed
i v I . .

] PERTRIRIENEY

Intervene MOUTH OPEN

GENDER ﬁ ﬂ ﬂ ﬁ a ﬂ ﬁ SMILE
not not
Inﬂuenced | Inﬂuenced
. i_?- ’ 3. b 3 * 8‘ | 1? * 1‘1 ‘ "X \ ul ‘ 'l ' 1\\ ‘ vl

ﬁ]mu@@MMMHWV

The controlled factors are GENDER, SMILE, EYES OPEN and MOUTH OPEN
respectively.
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CONCLUSION

1. Efficiency in Learning Causal Dynamics: Causal representation learning excels in understanding complex
systems by directly modeling causal relationships, enabling efficient learning of dynamic systems' behavior.

2. Robust Decision Making: Causal representations provide a more robust foundation for decision-making in
uncertain environments by capturing the underlying causal mechanisms driving observed phenomena.

3. Generalization Across Contexts: Unlike disentangled representations, causal representations generalize
well across diverse contexts, facilitating transfer learning and adaptation to new environments without
extensive retraining.

4. Interpretability and Explainability: Causal representations offer interpretable and explainable models,
allowing humans to understand why certain predictions or actions are made, which is crucial in critical
applications like healthcare and finance.

5. Counterfactual Reasoning: Causal representations enable sophisticated counterfactual reasoning,
allowing systems to understand the consequences of different actions and interventions, essential for
planning and policy-making.

6. Discovering Latent Variables: Causal representation learning can automatically discover latent variables
and their causal relationships, leading to a more compact and informative representation of complex data.

7. Robustness to Distribution Shifts: Causal representations are more robust to distribution shifts and
changes in the data generating process, making them suitable for real-world applications where data
distribution may vary over time.
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