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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution pg(x) is unknown.

d(Pdalav Pn)
—

Pdaln P

0eM

Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters 6
such that x ~ pg(x).

3. Learning is the process of searching for the parameter 6 such that py(x) well approximates
pda(x) for any observed x, i.e.

po(x) ~ pa(x)

4. We wish pg(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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What is Normali

1. Normalizing Flow (NF) models are used for better and more powerful distribution
approximation (Rezende and Mohamed 2015).

2. A normalizing flow transforms a simple distribution into a complex one by applying a
sequence of invertible transformation functions.

‘ P foo ]
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0

“latent” space pixel space

3. Some methods for constructing normalizing flows
o Coupling flows
o Autoregressive flows

o Residual flows
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Residual flows

1. A residual network is a composition of residual connections, which are functions of the
form f(z) =z + F(z).

2. The function F : RP — RP is called the residual block.

3. Under certain conditions on F, the residual connection f becomes invertible.

X

F(x) identity

x + F(x) P

4. Flows composed of invertible residual connections are referred as residual flows.
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Ordinary differential equations

Initial value problem is expressed as

dx
T; = fy(X¢, t) Xty = Xo Xy =7
Solution
ty
X = Xy +/ fo(x¢, t)dt
to
Example
Let
d;
— =2t =2 =7
dt X0 X1
We have

1
X1 :X0+/ 2tdt
0

1
:2—|—t2’
0

=241-0=3
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Ordinary differential equations

Example
Let
d
% — 2xt Xo =2 x1 =1
We have
1
/—dx = / tdt
2x
L | L 2 + ¢
“logx = =
28X 735 0
x; = cet’
Xo = = c=2
xe =2’ = x; =5.436

1. What if ftzl fa(x¢, t)dt can not be analytically integrated?
2. We use approximation to [tzl fa(xt, t)dt , i.e. numerical integration
o Euler method

o Runge-Kutta method
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Euler’'s method

1. Consider an ODE of the form

O _ ty(9).1 V() = 3o

where f(y(s), t) is a known function.

2. The exact solution to this ODE can be expressed in integral form:
t
Y=o+ [ Fly(s).5)ds
0

3. We want to approximate the solution near t = t.
4. We start with two pieces of information that we know about the solution:
o We know the value of solution at t = t; from the initial condition.

o We know the value of derivative at t = t; by plugging the initial condition into the
differential equation.

5. Hence, the derivative equals to
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Euler’'s method

1. These information are enough to write down the equation of tangent line to the solution
at t = tg as

y(t) = yo + f(y0, to) X (t — to)

2. Now, consider the following figure

¥
Tangent Line

\\.

(zo:yo )

t

3. When t; is sufficiently close to tg, point y; on the tangent line should be fairly close to the
actual value of the solution at t7.
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Euler’'s method

1. We can find y; = y(t1) easily by plugging t; in the equation for tangent line as:
y1 =¥+ f(yo,to) x (t1 — to)
2. When y; is accurate approximation of solution, it is used to estimate the tangent line at t;
by constructing a line through the point (t1, y1) that has slope f(y1, t1).

3. This estimation gives

y(t) =y +f(y1, t1) x (t — to)
4. Next, we approximate the solution at t = t, and proceed accordingly.
5. Then, we can obtain the next approximation as

y2=y1+f(y1,t1) X (t2 — t1)
y3=Yy2 4 f(y2, t2) X (t3 — t2)

Ynt1 = Yn + f(}/na tn) X (tn+1 - tn)

6. Assume that step sizes ty, t1, to, ... are of a uniform size of h, i.e. t, 1 — t, = h, for all n.

7. The next approximation is y,+1 = ¥, + h X f(yn, t)
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Euler’'s method

Example

1. Let d{f:) =2 —2y(t) — e*, where y(0) = 1.
2. Also let h=0.1.

3. Then, we approximate values of solution at t = 0.1,0.2,0.3,0.4,0.5 and compare them
with the exact solution of ODE, given by

4. We have f(y(t),t) =2 —2y(t) — e*. Then, we can approximate the solution as

yi = Yo+ hx f(yo,to) =0.900
y3=y1+hx f(yy, t;) = 0.850
y3=y2+hxf(y,t) =0.837
ya =y3+ hx f(ys, t3) = 0.835
Y5 = ys+h x f(ys, ts) = 0.851
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Euler’'s method

Example

Comparison of exact solution (continuous line) and approximation (discrete dots) for h = 0.1.
¥®
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1. Now, extending the method to a vector field. Let ODE of form

M _ (y(2). 1) y(ts) = yo

2. The Euler's method starts from t = 0 and proceeding with a step size of h, so

y(t+h) = f(y(t),t) x h+y(t)
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Ordinary differential equations

Initial value problem is expressed as

— = fy(x¢, t) Xty = Xo Xy =7

Solution

ty
th = Xto +/ f@(xt, t)dt

to

x¢, = ODESolver(fo(x¢,t),X¢,,t0,t1)

b » Final time
: A » Initial time
e e » Initial value
____________________________________ » Differential
e » Any ODE solver
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Neural ODE

1. Initial value problem is expressed as

dxt
W = fb(xt, t) xto = Xp th :?
2. Solution
Exact Numerical
Xy = Xg + ftzl fo(x:, t)dt Xy, = ODESolver(fy(x¢, t), Xy, to, t1)

3. In neural ODE, fy is a neural network parametrized by ¢ (T. Q. Chen et al. 2018).
4. This is a paradigm shift:
o In earlier methods, fy was pre-defined/hand-designed according to the domain.

o In neural ODE, we want to estimate fy that suits our objective.
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Neural ODE

ODE

1.

7.

Initial value problem is expressed as

ar = fo(x¢, t) Xt, = X0

. Using Euler discretization

Xptr1 = Xp + hf:g(Xn, n)
Forward propagation

Xy, = ODESolver(fy(x¢, t), X¢y, to, t1)

Update 6 using gradient-based learning
How to compute gradient of loss
function?

Back-propagate through ODESolver!
High memory cost!!

Better method: Adjoint method

Residual networks
Hamid Beiey THA’ Uiieb e’ SF¥'¥¥%idual block is
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Neural ODE

1. Neural ODEs are reversible models.

Xy fo (xta t) Xt

0

\ 4
\4

Neural ODE

Xty fo(x¢,t) Xt

A
A

Neural ODE

2. They integrate forward/backward in time.
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Continuous flows




Continuous flows

Continuous flows are continuous version of normalizing flows (Grathwohl et al. 2019).

Data distribution

Noise distribution

fa(xht)

D e e— D S —
’ Neural ODE ‘
¥ 4
Sample from target distribution Sample from data distribution

>

Likelihood estimation

Generate Sample
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Continuous flows

1. In residual flows, the transformation is expressed as

Xk = Pr(Xk—1) = Xpe—1 + OV(Xk—1)
for some § > 0 and Lipschitz residual connection v.

2. By rearranging this equation, we obtain

X — Xk—1

V(kal) = 5

3. Setting § = % and K — oo, then ©) = 1) 0 th_10...01 01y is given by ODE:

dx;  Xeps = Xe o Pe(Xe) =X
gt am T = lm i = vixe ),
for t € [0, 1].

4. The flow of ODE 1 : [0,1] x R? +— R? is defined such that

di,
L (o), 1),
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uous flows

1. The flow of ODE is

dipe
D~ (ulo). )

where
@ X; is the state of the system.
o v(x¢,t) is vector field, called velocity field.
2. At the time
o 0: po(xo) is the the standard Gaussian distribution.

o 1: pi(x1) is the distribution of data such. We need to be close to pq(x).

v(xi,t) X1 ~ p1(x1)

%0 ~ Po(Xg

Hamid Beigy (Sharif University of Technology) 19 / 56



Continuous flows

1. The dj;‘ = v(1¢(x0), t) states that transformation ), maps initial condition x to the

solution at time t denoted by x; as:
t
xe £ he(x0) = %o +/ (%, 5)ds (1)
0

2. This ODE is called an initial value problem, controlled by velocity field v(x;, t).
3. Additionally, two important objects in continuous normalizing flow are

o the flow v:(x) and

o the probability path p:(x), which is the distribution of )¢(x)
4. The continuity equation (transport equation) links p;(x) and v(x, t).

5. In probability, continuity equation is analogous to conservation of mass in fluid
dynamics:

9 pr(x)
ot

+ \% 'j(xtv t) = 07

6. j(x¢, t) = v(x¢, t) pe(x) is the probability flux describing flow of probability density.
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Continuous flows

1. The continuity equation maintains conservation of probability:

9 pt(x)
ot

+V -j(xe, t) =0,

2. The divergence of a d-dimensional vector field g:

d
og(x
Vogx)=) %d;(k ) - tr(Jgx))
k=1

where () is the Jacobian of vector field g(x).
3. V - j(x¢, t) measures the rate at which probability density is expanding/contracting in a
given region of space.

4. Multiplying the continuity equation with ﬁ, results in:

1 8Ptf(xt) + 1

V- (v(xe, t) pe(xe)) = O,

pe(x:) Ot pe(x¢)
%gaiptt(xt) + (Vi log pr(x¢), v(xs, t)) + V - v(x¢, t) =0,
ol
(Vs log pu(xe), vixe ) = ~ZEPLD gy
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Continuous flows

1. The continuity equation maintains conservation of probability:

dlo X
(Vilog pulxe), v(xe, 1)) =~ EPLD gy )
2. Calculating the total derivative of ‘mgdi‘;t(x”):
dlog p:(x:) _ 0log p:(xt) Ox;
dt - 8t + <VX |0g pt(xf)7 at >7
dlo X

= OB P 19, log e, vixe ),
_ Olog pe(xt) Olog pe(x¢)
= 3t 81’ V V(Xt,t)
==V - v(x,t)
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Continuous flows

dl .
Ogdi‘t’t(xt) across time:

1. Computing the total change in log-density by integrating

(e (o

2. Simplifying the above integral:
1
ov(xe, t
log p1(x1) = log po(xo) */ tr(ét)>dt-
0 Xt

3. To compute log p:(x;), we can either solve both the time evolution of x; and its log
density log p:(x;) together,

dt “\-v. v(xe, t)

Xt
d
<|Og Pt(xt)> ( v(X¢, t) )
or solve only for x; and then estimate log p:(x;) using quadrature methods.
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Continuous flows

1. Parameterizing the vector field with a neural network with weights 0, vy(x;, t), leads to
neural ODE (T. Q. Chen et al. 2018).

2. Let xg be the initial condition for this ODE.

3. By integrating over time t, we solve it and get the output as given below.

t
xt:/ vo(xs, s)ds
0

Xy fﬂ(xta t) th

0

\4
\4

Neural ODE

Hamid Beigy (Sharif University of Technology) 24 / 56



Example: Gaussian to a Gaussian (1D)

N

How to map a 1D Gaussian to another one with different mean?
We can derive a one-shot (i.e. discrete) flow bridging between two Gaussian distributions.
We want derive a time-continuous flow #(x), corresponding to integration of v(x:,t).

Let

We can continuously bridge with a simple linear transformation ;(xp) = xo + ut as

D

C
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Example: Gaussian to a Gaussian (1D)

1. Every marginal p;(x) is a Gaussian, and also
E o ¥e(x0)] = pt

2. This implies that E ,)[¢1(x0)] = 1t = E () [x1] and

var p, (9 [¢e(x0)] = 1

varpo(x)[wl(xo)] =1= var, (y [x1]

3. The probability path p:(x)]x = N(ut,1) bridges po(x) and pi(x).
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Example: Gaussian to a Gaussian (1D)

1. Now determine the vector field v(x;, t), which satisfies

di; (Xo)
dt

= v(x, t)

2. We can plug ¢(xg, t) = xo + ut in on the left hand side to get

di(xo) _ d(xo + pt)
dt dt
v(xe, t) = v(xo + pt, t)

3. It is easy to see that one such solution is the constant vector field
V(Xt7 t) =p

4. We can also define v(x;, t) such that po(x) v, p1(x) and derive the corresponding

Y(xo) by solving the ODE.
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Training continuous flows

1. To construct flow, we maximize the log-likelihood of p;(x).
2. Maximizing the log-likelihood minimizes Dy ( pa(x) || pe(x))-
3. The log-likelihood of p;(x) can be written as

LL(#) = E,~ pd(x)[log p1(x)]

! ov(xe, t
= ]EXdi(X) |:|Og pO(XO) _/O tr(éxtt)>dt:|,

4. Expectation is taken over data distribution, log p;(x) represents parametric distribution.
5. Maximizing the log-likelihood requires:

o Expensive numerical ODE simulations at training time!

o Estimators for the divergence to scale nicely with high dimension.

6. Change of variables:
dV9

log p1(x) — log po(x) = log det <d>

Xt

7. Instantaneous change of variables:

Olog pe(x) iy v (xt, t)
ot - axt
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Training continuous flows

1. This expectation necessitates expensive numerical ODE simulations during training.

2. This numerical ODE simulations affect the scalability of estimators when dealing with high
dimensions.

3. Continuous normalizing flows are highly expressive because they parameterize a wide
variety of flows and can represent many probability distributions.

4. Training CNFs can be very slow due to the need for ODE integration at each iteration.
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o Blue distribution: Noise distribution po(x).
o Red distribution: Data distribution pi(x) ~ pa(x).

o Dashed distribution: The probability path p:(x).
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Calculating the log-likelihood for CNFs

1. Unlike in discrete time normalizing flows, we do not require invertibility of v,
2. Hence, we cannot invert the transformation to obtain xg for given datapoint x;.

3. Under some conditions, we can uniquely solve the following problem (Grathwohl et al.

2019).
%o 0 Vo(X¢, t)
Ln p1(x1) — In po(Xo)] :/1 l_ tr(a‘/%(;(:,t))] dt

with initial conditions:

X1 _ Xd
In p1(xq) — In p1(x1) 0,

where x; is a datapoint xq.
4. We do the following steps:
o Take a datapoint x; = x4 .
o Solve the above integral by applying a solver to find xo and keeping track of traces over time.

o Calculate the log-likelihood by adding In po(xo) to the sum of negative traces — tr<w>.

Ox¢
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Continuous flows

FFJORD
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Continuous flows

Data j/&32/7gzs

Negative log-likelihood on test data for density estimation models:

POWER GAS HEPMASS MINIBOONE BSDS300‘ MNIST CIFAR10

Real NVP -0.17  -8.33 18.71 13.55 -153.28 1.06%* 3.49%
Glow -0.17  -8.15 18.92 11.35 -155.07 1.05% 3.35%
FFJORD -0.46  -8.59 14.92 10.43 -157.40 | 0.99* (1.05")  3.40%
MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 5.67
MAF -0.24  -10.08 17.70 11.75 -155.69 1.89 4.31
TAN -048  -11.19 15.12 11.01 -157.03 - -

MAF-DDSF| -0.62 -11.96 15.09 8.86 -157.73 - -
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Flow matching




1. The main benefits of continuous flows are

o Constraints are much less than in the discrete case:

for the solution of the ODE to be unique, only needs v to be Lipschitz continuous in x

and continuous in t.
o Inverting the flow can be achieved by solving the ODE in reverse.

o Computing the likelihood does not require inverting the flow, nor to compute a log

determinant;

only the trace of the Jacobian is required, that can be approximated using the
Hutchinson trick. Please study it.

tr(A) = Ec[e"A€]

where € ~ N(0,1).

2. However, training a neural ODE with log-likelihood does not scale well to high-dimensional
spaces, and the process tends to be unstable, likely due

o to numerical approximations and

o to the (infinite) number of possible probability paths.
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Flow matching

1. Flow matching is a simulation-free way to train CNF models.

2. We directly formulate a regression objective w.r.t. vy(x;, t) of the form

/.me(ﬂ) = Er:u(o(,l)) [HVQ(Xt, t) — V(Xt, t)||2]

3. This requires knowledge of a valid v(x;,t) (we assume we know it!).

4. This objective function can not be minimized, due to inaccessibility of v(x;, t), similar to
the basic score matching.

5. This is where Conditional Flow Matching (CFM) comes.
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Conditional Flow Matching

1. CFM was introduced by three simultaneous papers through different approaches:
o conditional matching (Lipman, R. T. Q. Chen, et al. 2023).
o rectifying flows (X. Liu, Gong, and Q. Liu 2023).
o stochastic interpolants (Albergo and Vanden-Eijnden 2023).

2. The transport equation relates a vector field v(x;, t) to a probability path p;(x) as

0 pt(x) _
—5 = =V - v(x¢, t) pr(x)

3. Thus, constructing v(x, t) or p:(x) is equivalent.

Continuity equation

Probability path . Velocity field
Pt D ” ’U(Xt:t)
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Conditional Flow Matching

1. Let z € RY be a random variable sampled from a given distribution p,(z).

2. The conditional ODE becomes

dxt

i v(xt, t | 2)

3. Then, the objective function becomes

£C,c,,,(9) =E t~U(0,1) [HV@(Xt, t) — V(Xt, t | Z)HZ]

x~ pe(x), 2~ pz(z)

Theorem (Lipman, R. T. Q. Chen, et al. 2023)

If for all x € R?, we have p;(x) >0 and t € [0,1], then Lm(0) = Lin(0) + ¢, where c is
independent of 6. Therefore, we have Vg L m(0) = Vo Ln(6).

4. We can use CFM instead of FM.
5. What this conditioning z should be, and what is its distribution?

There are multiple options (Tong et al. 2024).
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Conditional Flow Matching

1. How to obtain conditional distributions p:(x | z)?

2. The continuity equation allows us to calculate the probability path. But, we need to know

the vector field.
3. How to avoid it?
o First, consider the form of p:(x | z).
o Then, use form of p:(x | z) and derive the vector field v(x,t | z).

4. CFM expresses probability path as a marginal over a joint involving a latent variable

z ~ p,(2):

plxe) = [ pula) el | 2z

o Term p;|,(x: | z) is called conditional probability path.

o Term p;|,(x: | z) satisfies some boundary conditions at t = 0 and t = 1 such that p:(x;) be
a valid path interpolating between py(xo) and pa(x).

5. Regarding z, we can think of it as extra information like data x; or anything else like a

class label, a piece of text, an audio signal, or an additional image.
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Conditional Flow Matching

1. Since we have access to samples x; ~ pg4(x), it is good idea to condition on z = x;:
p:(xt) = / pa(X1) pej1(Xe | x1)dx;

2. Conditional probability path p;|1(x: | x1) needs to satisfy the boundary conditions

po(x | x1) = po(x) reference distribution, usually  po(x) = A(0,1)
pr(x | x1) = N(x1,00,,1)
Omin >0 small value

3. Choosing reference distribution as po(x) = N (0,1).

Xo
>4
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Conditional Flow Matching

1. Conditional probability path satisfies transport equation with conditional vector field

V(X? t | Xl)

O pe(x | x1)

o =V (vt x) pelx | x1)

2. Lipman et al. (2023) introduced the notion of conditional flow matching (CFM) uses
v(x,t | x1) to express marginal vector v(x, t) as

V(X, t) = Exlel | t(x)[V(X, t | xl)]

I . Pt(Xle)pd(xl)x
_/ (c, ] xa) P g,

3. We need to show that the marginal vector field v(x, t) satisfies the transport equation:

0 pe(x)
ot

==V - (v(x,t) pt(x))
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Conditional Flow Matching

The % can be written as

al;iX) - %/ Pe(x | x1) pa(x1)dx1
:/%(pf(x | x1)) pa(x1)dx

. / V- (vt | x2) pelx | x1)) palxa)dxs

== [Vt 3l | x0) pato)
=-V. / v(x, t | x1) pe(x | x1) pa(x1)dxq

=-V. (/ v(x,t | xl)m(xlél(l)pd(xl) pe(x) dX1>

— v | [uix i« Pr(x\xl)Pd(Xl)(x «
== | [vtxe 1) PEDO 4y o)

v(x,t)

= -V (v(x t) pe(x))
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Conditional Flow Matching

The relation between 1:(xg) and ¥(xo | x1)

Exl ~ P1
Po(x0) < Poj1 (%0 | x1)
Exl ~ P1
Y1 (x0) < V(%0 | x1)
4 Ey, ~ p1 \/
Di(x;) € Py (X | 1)
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Conditional Flow Matching

Relation between v(xg, t) and v(xg, t | x1)

]E)n ~ P1
Do(X0) < Pop (X0 | x1)

Ex, ~ p1p(. | x)

Solve &= = v(x,t) _ Solve X = y(x,t | x1)
with x(0) = %o with x(0) = x¢
\4 Ey, ~ p1 v
De(x¢) < Den (X | X1)
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Example: Gaussian to Gaussian (2D)

1. Let =10 and

po(x) = N([~p,0],1)
pi(x) = N([+,0],1)
(%o | x1) = (1 — t)xo + tx1

2. Example conditional paths v;(xo | x1)

3. We are interested in learning the marginal paths 1;(x¢) for initial points xo ~ po(x).

4. Then, we use xg to generate samples 11 (xg).
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Example: Gaussian to Gaussian (2D)

1. Example marginal paths 11 (xq):

2. Pick a point xg ~ po(x), and compute a MC estimator for v(x, t) at different t along path
1(xo).-
3. We look at

v(1(x0): 1) = Ep, | (ov(¥1(x0), T | x1)]

1O i , i
S vlile)t ) with x| (o)
i=1

Q

4. In practice we don not have access to the posterior p;|(x1 | 91(x0)).
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Conditional Flow Matching

1. We had

V(Xa t) = EXle \ t(X)[V(Xa t | xl)]

Y . pt(x|xl)pd(x1)x
7/ (,t| 1)—pt(x) d 1

2. Now consider the loss of flow matching as

Lim(0) = Eevvpon [||V9(Xt7 t) — v(xt, t)||2]

x~ pt(x)

3. Using v(x,t) = Ex,wp,,(o[v(x. t [ x1)], we obtain

chm(e) =E t~U(0,1) [HV@(Xt, t) — V(Xt7 t ‘ X1)||2]

x~ pt(x), xp~ pyg(x1)
4. This implies that we can use L.,(60) for training parametric vector field vy(x, t)
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Gaussian probability paths

1. Consider a practical example of conditional vector field and corresponding probability path.

2. Suppose we want conditional vector field which generates a path of Gaussian, i.e.

pe(x [ x1) = N (pe(x1), o7 (xa)1)
for some mean (u:(x1) and standard deviation o;(x1).
3. In general, there is no unique ODE that generates these distributions.

4. However, the following theorem shows that there is a unique vector field that
leads to those!

Theorem (Lipman, R. T. Q. Chen, et al. 2023)

The unique vector field with initial conditions po(x) = N (10, 031) that generates
pe(x | x1) = N(pe(x1), 02(x1)1) has the following form:

oi(xa

Ut(Xl)

~—

v(x,t]x) =

(x = e(xa)) + pi(x1)

where

o 11;(x1) denote the time derivate of ji:(x1).

o o.(x1) denote the time derivate of oi(x1).
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Gaussian probability paths

Result: If we consider a class of conditional probability paths in the form of Gaussian,
we can analytically calculate the conditional vector field as long as the means and the

standard deviations are differentiable.
Proof of theorem (Lipman, R. T. Q. Chen, et al. 2023).

1. Let

Ye(x | x1) = pe(x1) + oe(x1)x

2. We want to determine v(x | x1) such that
d
S 0e(0) = v(¥e(x), t [ x1)

3. The left hand side is

9 e = & pel) + e )
_ due(x1) | doe(x1)
=T T a X

= pp(x1) + op(x1)x
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Gaussian probability paths

1. Thus, we obtain
pre(x1) + op(x1)x = v(ihe(x | x1), t [ x1)

2. Suppose that v(1¢(x | x1),t | x1) is of the form

v(Pe(x | x1), t [ x1) = h(t, ¥e(x), x1)pp(x1) + g(t, ¥e(x), x1)op(x1)
for some functions h and g.

3. In the previous equation, we had
h(t, ¢e(x),x1) = 1 g(t, Ye(x), x1) = x

4. The simplest solution to this equation is

x — p(x1)

h(t,x,x;) =1 g(t,x,x1) = ¢ '(x) = (1)

such that g(t,1:(x),x1) = 1: '(1+(x)) = x, resulting in

~

(T;(Xl

ot(xl)

vix t]xi) = (x = pe(x1)) + i (x1)
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Example: Linear interpolation

1. A simple choice for the mean p:(x1) and standard deviation o(x1) is the linear
interpolation as:

(1>

pe(x1) £ txy pi(x1) = x1
oi(x1) & (1 —t) + tomin or(x1) = =14 Omin

such that

(to(x1) + oo(x1)x1) ~ po(x)
(11 (x1) + o1(x1)x1) ~ p1(x) = N(x1,0%,,1)

2. Also for some 1 > 0, let

po(x) = N([—u,0],1)
p1(x) = N ([+4,0],1)
Pe(xo | x1) = (1 — t)x0 + tx1
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Example: Linear interpolation

1. Writing o¢(x1) as 0¢(x1) = 1 — (1 — 0min), the conditional vector field becomes as

st 1) = o o)+
= m [ = (1= amin)(x = tx1) + (1 = (1 = omin)t)x1]
1

EEDET

_ X1 — (1 — O'm,'n)X
1-— (]. 70’,,7,',,)1’

2. Example paths from pg(x) to p;(x) following

the true vector field v(x, t) the conditional vector field v(x, t | x1)
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Conditional Flow Matching Results

The results from (Lipman, R. T. Q. Chen, et al. 2023)
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Training/Sampling Conditional Flow Matching

Training:

1. Sample t ~ U(0,1) and z ~ p,(z).

Calculate 1:(z) and 04(2)

w N

Sample from x; ~ N (11(z), o2(2)l)
4. Calculate the vector field v(x;,t | z)

5. Calculate Vg Lsn(0) and update 6.

Sampling:

1. Sample xg ~ po(x).

2. Run forward Euler method from t = 0 to t = 1 with step size h

Xerh = X¢ + h X vp(X¢, t)
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Conditional Flow Matching Problems

There are two issues arising from crossing conditional paths.

1. ODE hard to integrate and slow sampling at inference
1)

and x(lz).

2. Consider v(x, t | x;) with two data samples x(1

w

. SGD approximates the CFM loss as:
1 1
Lem(®) = 5 vo(xt”, 1) = vt £ [ XEIP + 5w (xi? 6) = v(x?. ¢, [ )]

4. We are attempting to align vy(x;, t) with two different vector fields.

5. This can lead to increased variance in the gradient estimate, and thus slower convergence.
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