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Introduction



Introduction

1. A Generative model (GM) is a probability distribution p(x).

A statistical GM is a trainable probabilistic model, pθ(x).

A deep GM is a statistical generative model parametrized by a neural network.

2. A generative model needs

Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,

maximum likelihood, divergence), optimization algorithm, etc.

Credit: Aditya Grover
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Density estimation

1. Density estimation is the problem of reconstructing the probability density function using a

set of given data points.

2. Let x1, . . . , xm ∼ p(x) be the training set.

3. The goal is to recover the underlying probability density function generating this dataset.

4. Let x1, . . . , xm be identically independently distributed random variables. Hence,

p(x1, . . . , xm) =
m∏

k=1

p(xk)

5. Density can be estimated using two approaches:

Parametric approach

Non-parametric approach
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Parametric density estimation approach



Parametric density estimation approach

1. Let us to approximate the density function p(x) using density function pθ(x).

2. θ is parameters of pθ(x).

3. There are many approaches for estimating θ such as

maximum likelihood method (ML)

maximum a posteriori probability (MAP)

method of moments

Bayesian estimation method

Example

Let xi be a one-dimensional real valued random variable.

Let pθ(x) = N (µ, σ2) be the target pdf, where θ = {µ, σ2} is its parameters.

The goal is to estimate parameters θ = {µ, σ2}.
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Parametric density estimation approach

1. Let pθ(x) = N
(
µ, σ2

)
. Then θ =

{
µ, σ2

}
.

2. The likelihood equals

L(θ) = pθ(x1, . . . , xn) =
m∏

k=1

pθ(xk)

LL(θ) = ln L(θ) =
m∑

k=1

pθ(xk)

3. By differentiating LL(θ) with respect to θ and setting to zero, we obtain

µ̂m =
1

m

m∑

k=1

xk

σ̂2
m =

1

m

m∑

k=1

(xk − µ̂m)2

4. Then the resulting density function is

pθ(x) =
1√

2πσ̂2
m

e−
1
2 ( x−µ̂m

σ̂m
)
2
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Evaluating estimators

Definition (Bias of an estimator)

Let θ̂ be a point estimator for θ. The bias of point estimator θ̂ is defined by

Bias (θ̂) = E
[
θ̂
]
− θ.

Definition (Unbiased estimator)

Let θ̂ be a point estimator for θ. We say that the point estimator θ̂ is an unbiased estimator

of θ if for all values of θ, we have

Bias (θ̂) = 0.

Example (Unbiased estimator)

Let µ̂m = 1
m

∑m
k=1 xk , then µ̂m is an unbiased estimator.

Bias (µ̂m) = E[µ̂m]− µ = E

[
1

m

m∑

k=1

xk

]
− µ

=
1

m

m∑

k=1

E[xk ]− µ = µ− µ = 0.
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Evaluating estimators

Example (Biased estimator)

Let σ̂2
m = 1

m

∑m
k=1(xk − µ̂m)2, then σ̂2

m is a biased estimator.

Bias (σ̂2
m) = E

[
1

m

m∑

k=1

(xk − µ̂m)2

]
− σ2

=
1

m

m∑

k=1

E





xk −

1

m

m∑

j=1

xj




2

− σ2

=
1

m

m∑

k=1

E


x2k −

2

m
xk

m∑

j=1

xj +
1

m2

m∑

k=1

xk

m∑

j=1

xj


− σ2

=
1

m

m∑

k=1


m − 2

m
E
[
x2k
]
− 2

m

∑

j 6=k

E[xkxj ] +
1

m2

m∑

j=1

∑

k 6=j

E[xkxj ] +
1

m2

m∑

j=1

E
[
x2j
]

− σ2

=
1

m

m∑

k=1

[
m − 2

m

(
µ2 + σ2

)
− 2(m − 1)

m
µ2 +

m(m − 1)

m2
µ2 +

1

m

(
µ2 + σ2

)]
− σ2

=
1

m

m∑

k=1

[(
m − 1

m

)
σ2

]
− σ2 =

(
m − 1

m

)
σ2 − σ2 6= 0.
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Evaluating estimators

Definition (Mean squared error of an estimator)

The mean squared error (MSE) of a point estimator θ̂, shown by MSE (θ̂), is defined as

MSE (θ̂) = E
[(
θ̂ − θ

)2]
.

Example

Let x1, . . . , xm be a random sample from a distribution with mean E[xi ] = θ and variance

var[xi ] = σ2. Consider two estimators for θ

θ̂1 = x1 θ̂2 =
1

m

m∑

k=1

xk .

These two estimators are both unbiased. Hence, we study their MSE:

MSE (θ̂1) = E
[(
θ̂1 − θ

)2]
= E

[
(x1 − E[x1])2

]
= var[x1] = σ2.

MSE (θ̂2) = E
[(
θ̂2 − θ

)2]
= E



(

1

m

m∑

k=1

xk − θ
)2

 =

σ2

m
.

Thus, MSE (θ̂1) > MSE (θ̂2). Hence, θ̂2 is better.
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Evaluating estimators

Theorem

Let θ̂ is a point estimator for θ. Then MSE (θ̂) = var[θ̂] + Bias (θ̂)
2

Proof.

We can write

MSE (θ̂) = E
[(
θ̂ − θ

)2]

= E
[(
θ̂ − E

[
θ̂
]

+ E
[
θ̂
]
− θ
)2]

= E
[(
θ̂ − E

[
θ̂
])2]

︸ ︷︷ ︸
=var[θ̂]

+2
(
θ̂ − E

[
θ̂
])

︸ ︷︷ ︸
=0

·
(
E
[
θ̂
]
− θ
)

+


E

[
θ̂
]
− θ

︸ ︷︷ ︸
Bias (θ̂)




2

= var[θ̂] + Bias (θ̂)
2
.

This decomposition is also known as the bias-variance trade-off.
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Evaluating estimators

Definition (Consistency of an estimator)

Let θ̂1, θ̂2, . . . , θ̂n, . . . be a sequence of point estimators of θ. We say θ̂n is a consistent

estimator of θ, if

lim
n→∞

p(|θ̂n − θ| ≥ ε) = 0, for all ε > 0.

Example (Consistency of sample average)

Let x1, . . . , xm be a random sample from a distribution with mean E[xi ] = θ and variance

var[xi ] = σ2. Consider the following estimator for θ

θ̂m =
1

m

m∑

k=1

xk .

We have found that MSE (θ̂m) = σ2

m . Thus,

lim
m→∞

MSE (θ̂m)→ 0.

Hence, this estimator is consistent.
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Evaluating estimators

Theorem (Consistency of an estimator)

Let θ̂1, θ̂2, . . . be a sequence of point estimators of θ. If limn→∞ MSE (θ̂n) = 0, then θ̂n is a

consistent estimator of θ.

Proof.

We can write

p(|θ̂n − θ| ≥ ε) = p(|θ̂n − θ|2 ≥ ε2)

≤
E
[(
θ̂n − θ

)2]

ε2
Using Markov’s inequality

=
MSE (θ̂n)

ε2
,

which goes to 0 as n→∞ by the assumption.

Note: Let x be a nonnegative random variable and a > 0, then p(x ≥ a) ≤ E[x]
a .
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Evaluating estimators

Definition (Convergence in Probability)

A sequence of random variables z1, z2, . . . converges in probability to a random variable z,

shown by zn
p→ z, if

lim
n→∞

p(|zn − z| ≥ ε) = 0, for all ε > 0.

This implies that the distribution is concentrating at the targeting point.

Lemma

Let θ̂ be an estimator of θ. If Bias (θ̂)→ 0 and var[θ̂]→ 0, then θ̂
p→ θ, i.e. θ̂ is a

consistent estimator of θ.

Hamid Beigy (Sharif University of Technology) 12 / 60



Evaluating estimators

Definition (Convergence in Distribution)

1. Let F1,F2, . . . be the corresponding CDFs of z1, z2, . . ..

2. For a random variable z with CDF F , we say zn converges in distribution to a random

variable z, shown by zn
d→ z, if

lim
n→∞

Fn(x) = F (x),

3. This implies that Fn converge to the CDF of a fixed random variable.
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Stochastic order notations

Definition

For a sequence of numbers an (indexed by n), we write

1. an = o(1) if limn→∞ an → 0. For another sequence bn, we write an = o(bn) if an
bn

= o(1).

2. an = O(1) if for all large n, there exists a constant C such that |an| < C . For another

sequence bn, we write an = O(bn) if an
bn

= O(1).

Example

1. Let an = 2
n . Then an = o(1) and an = O

(
1
n

)
.

2. Let bn = n + 5 + log n. Then bn = O(n) and bn = o(n2) and bn = o(n3).

3. Let cn = 1000n + 10−10n2. Then cn = O(n2) and bn = o(n2 · log n).

The O and o notations give us a way to compare convergence/divergence rate of a sequence of

(non-random) numbers.
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Stochastic order notations

The Op and op are similar notations to O and o but are designed for random numbers.

Definition

For a sequence of random variables xn, we write

1. xn = op(1) if for any ε > 0,

lim
n→∞

p(|xn| > ε)→ 0

Namely, p(|xn| > ε) = op(1) for any ε > 0.

Let an be a nonrandom sequence, we write xn = op(an) if xn
an

= op(1).

2. xn = Op(1) if for any ε > 0, there exists a constant C such that

p(|xn| > C ) < ε.

We write xn = Op(an) if xn
an

= Op(1).
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Analysis of parametric density estimation approach

Is the parametric approach a good one? We analyze the quality of estimation in the

parametric approach for Gaussian distribution.

1. We quantify pθn(x)− p(x).

2. Since the sample mean µ̂
p→ µ = E[x] and the sample variance σ̂2 p→ σ2 = var[x], we

define another density function

pθ(x) =
1√

2πσ2
e−

1
2 ( x−µn

σn
)
2

3. The estimated density function is

pθn(x) =
1√

2πσ̂2
e−

1
2 ( x−µ̂n

σ̂n
)
2
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Analysis of parametric density estimation approach

1. Using pθ(x), we have

pθn(x)− p(x) = pθn(x)− pθ(x) + pθ(x)− p(x)

2. The first difference pθn(x)− pθ(x) is something that converges to 0 because the sample

mean and variance converges to their population counterparts. Namely, we have

pθn(x)
p→ pθ(x).

3. However, the second difference pθ(x)− p(x) never goes to 0 unless the true pdf is

Gaussian.

pθn(x) =
1√

2πσ̂2
e−

1
2 ( x−µ̂n

σ̂n
)
2

4. It can be shown that the convergence rate of pθn(x)− pθ(x) equals to

pθn(x)− pθ(x) = Op

(
1√
n

)
.

5. This will help us understand when a parametric approach may be better than a

nonparametric one.
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Gaussian mixture model

1. Let the parametric model be

pθn(x) =
K∑

k=1

πkN
(
µk , σ

2
k

)

K∑

k=1

πk = 1

2. We compute parameters θ =
{
µ1, . . . , µK , σ

2
1 , . . . , σ

2
K , π1, . . . , πK

}
based on training data.

3. We use EM algorithm to estimate the parameters.

4. The convergence rate of pθn(x)− pθ(x) equals to

pθn(x)− pθ(x) = Op

(
1√
n

)
.
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Product of experts

1. Let p(x) be a high-dimensional probability distribution.

2. We can approximate p(x) using the product of several one-dimensional distributions.

3. This model is called the product of experts (PoE).

4. Let n expert models pθ1(x), . . . , pθm(x), each parameterized by θ1, . . . , θm, respectively.

5. The probability distribution of the PoE can be expressed as:

pθ(x) =

∏
k pθk (x)∑

z

∏
k pθk (z)

. (1)

where θ = {θ1, . . . , θm}.

6. We will study the training algorithm for finding θ = {θ1, . . . , θm} later.
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Histogram

1. For simplicity, we assume that xi ∈ [0, 1]. So p(x) > 0 in interval [0, 1].

2. We also assume that p(x) > 0 is smooth and | p(x)′| ≤ L for all x .

3. In histogram we partition interval [0, 1] into M bins (Bk) of equal widths as

Bk =

[
k − 1

M
,
k

M

]

4. Then, we count the number of samples in a bin as density estimate.

5. Hence, for any point x ∈ Bl , the density estimator from the histogram will be

p̂n(x) =
|Bl |
n
× 1

len (Bl)
=

M

n

n∑

i=1

I[xi ∈ Bl ]

6. The histogram density estimator has the following bounds (Drive the following bounds.)

Bias ( p̂n(x)) ≤ L

M

var[ p̂n(x)] = M
p(x∗)
n

+
( p(x∗))2

n

MSE ( p̂n(x)) ≤ L

M
+ M

p(x∗)
n

+
( p(x∗))2

n
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Histogram

1. To balance the bias and variance, we choose M that minimizes the MSE, which leads to

Mopt =

(
n × L2

p(x∗)

)

Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-3

6.2 Kernel Density Estimator

Here we will talk about another approach–the kernel density estimator (KDE; sometimes called kernel density
estimation). The KDE is one of the most famous method for density estimation. The follow picture shows
the KDE and the histogram of the faithful dataset in R. The blue curve is the density curve estimated by
the KDE.
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Here is the formal definition of the KDE. The KDE is a function

bpn(x) =
1

nh

nX

i=1

K

✓
Xi � x

h

◆
, (6.5)

where K(x) is called the kernel function that is generally a smooth, symmetric function such as a Gaussian
and h > 0 is called the smoothing bandwidth that controls the amount of smoothing. Basically, the KDE
smoothes each data point Xi into a small density bumps and then sum all these small bumps together to
obtain the final density estimate. The following is an example of the KDE and each small bump created by
it:
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Kernel density estimator

1. The KDE is a function of

p̂n(x) =
1

nh

n∑

i=1

K

(
xi − x

h

)

2. K (x) is kernel function and is a smooth, symmetric function such as Gaussian.

K(x) is symmetric.∫
K(x)dx = 1

lim|x|→∞ K(x) = 0

3. h > 0 is called the smoothing bandwidth that controls the amount of smoothing.

6-4 Lecture 6: Density Estimation: Histogram and Kernel Density Estimator
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In the above picture, there are 6 data points located at where the black vertical segments indicate: 0.1, 0.2, 0.5, 0.7, 0.8, 0.15.
The KDE first smooth each data point into a purple density bump and then sum them up to obtain the final
density estimate–the brown density curve.

6.3 Bandwidth and Kernel Functions

The smoothing bandwidth h plays a key role in the quality of KDE. Here is an example of applying di↵erent
h to the faithful dataset:
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0.0
0

0.0
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0.0
3

0.0
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h=1
h=3
h=10

Clearly, we see that when h is too small (the green curve), there are many wiggly structures on our density
curve. This is a signature of undersmoothing–the amount of smoothing is too small so that some structures
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Kernel density estimator

Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-5

identified by our approach might be just caused by randomness. On the other hand, when h is too large (the
brown curve), we see that the two bumps are smoothed out. This situation is called oversmoothing–some
important structures are obscured by the huge amount of smoothing.

How about the choice of kernel function? A kernel function generally has two features:

1. K(x) is symmetric.

2.
R

K(x)dx = 1.

3. limx!�1 K(x) = limx!+1 K(x) = 0.

In particular, the second requirement is needed to guarantee that the KDE bpn(x) is a probability density
function. Note that most kernel functions are positive; however, kernel functions could be negative 1.

In theory, the kernel function does not play a key role (later we will see this). But sometimes in practice,
they do show some di↵erence in the density estimator. In what follows, we consider three most common
kernel functions and apply them to the faithful dataset:
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The top row displays the three kernel functions and the bottom row shows the corresponding density esti-

1Some special types of kernel functions, known as the higher order kernel functions, will take negative value at some regions.
These higher order kernel functions, though very counter intuitive, might have a smaller bias than the usual kernel functions.
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Kernel density estimator

1. The bias of KDE is

Bias ( p̂n(x0)) =
1

2
h2

d2 p(x0)

dx2
µK + o(h2) µK =

∫
y2K (y)dy

2. This means that when we allow h→ 0, the bias is shrinking at a rate O
(
h2
)
.

3. The upper bound of variance of KDE is

var[ p̂n(x0)] =
1

nh
p(x0)σ2

K + o

(
1

nh

)
σ2
K =

∫
K 2(y)dy

4. Putting both bias and variance together, we obtain MSE of KDE:

MSE ( p̂n(x0)) = O
(
h4
)

+ O

(
1

nh

)

5. The optimal bandwidth equals to

hopt = C1n
− 1

5

6. This choice of smoothing bandwidth leads to a MSE at rate

MSE ( p̂n(x0)) = O
(
n−

1
5

)

Hamid Beigy (Sharif University of Technology) 24 / 60



Structured density



The number of parameters of density estimators

1. Let x = {x1, . . . , xd} be an d−dimensional random variable where xi ∈ {0, 1}.

2. How many parameters do we need to estimate the density function?

Sample xd xd−1 . . . x2 x1

1 0 0 . . . 0 0

2 0 0 . . . 0 1

3 0 0 . . . 1 0

4 0 0 . . . 1 1

...

2d 1 1 . . . 1 1

3. How can we decrease the number of parameters?
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How to find the structure of density functions?

1. One way is to use probabilistic graphical models.

2. A (probabilistic) graphical model defines a family of probability distributions over a set of

random variables, by means of a graph.

3. These models offer several useful properties:

They provide a simple way to visualize the structure of a probabilistic model and can be used

to design and motivate new models.

Insights into the properties of the model, including conditional independence properties, can

be obtained by inspection of the graph.

Complex computations, required to perform inference and learning in sophisticated models,

can be expressed in terms of graphical manipulations, in which underlying mathematical

expressions are carried along implicitly.
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Graph

1. A graph G = (V ,E ) comprises nodes (vertices) V connected by links (edges or arcs) E .

Each node represents a random variable (or group of random variables).

Each link express probabilistic relationships between these variables.

The graph captures joint distribution over random variables and can be decomposed into a

product of factors each depending only on a subset of the variables.

x1

x2 x3

x4 x5

x6 x7
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Probabilistic graphical model

1. Some types of probabilistic graphical models:

Bayesian networks,

Markov random fields,

Factor graphs

2. Important problems in probabilistic graphical models:

Structure learning,

Constraint-based approach

Score-based approach

Hybrid-approach

Parameter learning

Probabilistic inference : Compute marginal probabilities p(x | )
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Structured density function

Sprinkler

Grass wet

Rain

Sprinkler

Rain T F

F 0.4 0.6

T 0.01 0.99

Sprinkler

T F

0.2 0.8

Grass wet

Sprinkler rain T F

F F 0.4 0.6

F T 0.01 0.99

T F 0.01 0.99

T T 0.01 0.99
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Structured density

Bayesian networks



Bayesian networks

1. Let p(a, b, c) be joint distribution over three variables a, b, and c .

2. By application of the product rule of probability, we can write the joint distribution as

p(a, b, c) = p(c | a, b) p(a, b)

p(a, b, c) = p(c | a, b) p(b | a) p(a)

3. This decomposition holds for any choice of the joint distribution.

a

b c

4. An interesting point: p(a, b, c) is symmetrical with respect to a, b, and c , whereas

p(c | a, b) p(b | a) p(a) is not.

5. Generalization to K variables:

p(x1, . . . , xK ) = p(xK | x1, . . . , xK−1) . . . p(x2 | x1)
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Bayesian networks

1. Consider the following Bayesian networks

x1

x2 x3

x4 x5

x6 x7

2. The joint distribution of all x1, . . . , x7 variables is

p(x1, . . . , x7) = p(x1) p(x2) p(x3) p(x4 | x1, x2, x3) p(x5 | x1, x3) p(x6 | x4) p(x7 | x4, x5).

3. For a graph with K nodes, the joint distribution is

p(x1, . . . , xK ) =
K∏

k=1

p(xk | pak).
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Conditional independence

1. An important concept for probability distributions over multiple variables is conditional

independence.

2. For three variables a, b, c , and suppose p(a | b, c) does not depend on the value of b.

p(a | b, c) = p(a | c)

3. a is conditionally independent of b given c .

p(a, b | c) = p(a | b, c) p(b | c)

= p(a | c) p(b | c).

4. A shorthand notation for conditional independence a ⊥⊥ b | c

c

a b

p(a, b, c) = p(a | c) p(b | c) p(c)

p(a, b | c) =
p(a, b, c)

p(c)

= p(a | c) p(b | c).

Obtaining the conditional independence prop-

erty a ⊥⊥ b | c .
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Polynomial regression

1. Consider the regression model in which

x = (x1, . . . , xm) is set of m iid observations

t = (t1, . . . , tm) is the corresponding target values

tk is actual value plus a Gaussian noise value with precision β.

2. Let y(x ,w) be the predicted function and the goal is to make predictions of target variable

t for new input x .

p(t | x ,w, β) = N
(
t | y(x ,w), β−1

)

3. Using training data {x, t}, we can determine w and β by MLE.

p(t | x,w, β) =
K∏

k=1

N
(
tk | y(xk ,w), β−1

)
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Polynomial regression

1. Let introduce a prior distribution over parameters w as

p(w | α) = N
(
w | 0, α−1I

)

where α is the precision of the distribution.

2. The posterior distribution for w can be estimated using MAP as

p(w | x, t, α, β) ∝ p(t | x,w, α, β) p(w | α).

3. In Bayesian regression model, for a new point x , we need to predict value t as

p(t | x , x, t) =

∫
p(t | x ,w) p(w | x, t)dw .

where we assume that parameters α and β are fixed and known in advance.

4. The random variables are parameters w and observed data t = (t1, . . . , tm).

5. In addition, this model contains input data x = (x1, . . . , xm) and parameters α and β.
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Polynomial regression

1. By focusing only on random variables, the joint distribution is

p(t,w) = p(w)
m∏

k=1

p(tk | w).

2. The conditional distributions p(tk | w) (for k = 1, . . . ,m) is

w

t1 t2 tm

3. The random variables in this model are t

the vector of coefficients w

the observed data t = (t1, . . . , tm).

4. Other parameters are not random variables

the input data x = (x1, . . . , xm)

the noise precision β and the hyper-parameter α.

Hamid Beigy (Sharif University of Technology) 35 / 60



Polynomial regression

1. The joint distribution p(t,w) is

p(t,w) = p(w)
m∏

k=1

p(tk | w).

2. Sometimes it is helpful to make the parameters of a model, as well as its random

variables, explicit.

p(t,w | x, α, β) = p(w | α)
m∏

k=1

p(tk | w, xk , β).

3. We can represent it in graphical notations.

tk w

m

tkβ

xk

w

α

m
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Polynomial regression

1. Having observed values {tk} we can evaluate the posterior distribution of w

tkβ

xk

w

α

m

p(w | t) ∝ p(w)
m∏

k=1

p(tk | w)

2. Let new input x̂ is given and we wish to find the corresponding probability distribution for

t̂ conditioned on the observed data.

3. The joint distribution of all random variables conditioned on deterministic parameters

is

p(t̂, t,w | x̂ , x, α, β) =

[
m∏

k=1

p(tk | xk ,w, β)

]
p(w | α) p(tk | x̂ ,w, β)
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Polynomial regression

1. The joint distribution of all random variables conditioned on deterministic parameters is

p(t̂, t,w | x̂ , x, α, β) =

[
m∏

k=1

p(tk | xk ,w, β)

]
p(w | α) p(tk | x̂ ,w, β)

2. The corresponding graphical model is

tk

β

xk

w

t̂ x̂

α

m

p(t̂ | x̂ , x, α, β) =

∫
p(t̂, t,w | x̂ , x, α, β)dw

3. We are implicitly setting the random variables in t to the specific values observed in the

data set.
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Generative models

1. In some situations we wish to draw samples from a given probability distribution.

2. Let p(x1, . . . , xd) be the joint distribution over d variables.

3. The goal is to draw a sample (x1, . . . .xd) from the joint distribution.

4. To do this (suppose that the variables have been ordered such that there are no links from

any node to any lower numbered node),

4.1 Start with the lowest-numbered node and draw a sample from p(x1), and call x̂1.

4.2 For a node xk , draw a sample from the conditional distribution p(xk | pak)

4.3 Continue until the last variable is being sampled.

x1

x2 x3

x4 x5

x6 x7
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Generative models

1. To obtain a sample from some marginal distribution corresponding to a subset of the

variables:

1.1 we simply take the sampled values for the required nodes and

1.2 ignore the sampled values for the remaining nodes.

x1

x2 x3

x4 x5

x6 x7
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Generative models

1. Consider the following graphical model: Is it generative?

tkβ

xk

w

α

m

2. This model is not generative because there is no probability distribution associated

with the input variable x .

3. So it is not possible to generate synthetic data points from this model.

4. Can we make the above model generative?

5. We could make it generative by introducing a suitable prior distribution p(x), at the

expense of a more complex model.
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Inference

1. Consider the following graphical model.

y

x1 x2

x3 x4

x5 x6

2. How do you compute p(y | x5)?

3. The joint distribution p(y , x1, x2, x3, x4, x5, x6) equals to

p(y , x1, x2, x3, x4, x5, x6) = p(y) p(x1 | y) p(x2 | x1, y) p(x3 | x2, y)

p(x4 | x2, y) p(x5 | x4, y) p(x6 | x4, y)
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Variable Elimination

p(y | x5) ∝
∑
x1

∑
x2

∑
x3

∑
x4

∑
x6

p(y) p(x1 | y) p(x2 | x1, y) p(x3 | x2, y) p(x4 | x2, y) p(x5 | x4, y) p(x6 | x4, y)

=
∑
x1

∑
x2

∑
x4

p(y) p(x1 | y) p(x2 | x1, y) p(x4 | x2, y) p(x5 | x4, y)
∑
x3

p(x3 | x2, y)
∑
x6

p(x6 | x4, y)︸ ︷︷ ︸
=1︸ ︷︷ ︸

=1

= p(y)
∑
x1

p(x1 | y)
∑
x2

p(x2 | x1, y)
∑
x4

p(x4 | x2, y) p(x5 | x4, y)︸ ︷︷ ︸
m4(x2)

= p(y)
∑
x1

p(x1 | y)
∑
x2

p(x2 | x1, y)m4(x2)︸ ︷︷ ︸
m2(x1)

= p(y)
∑
x1

p(x1 | y)m2(x1)︸ ︷︷ ︸
m1

= p(y)m1.

The order of summations is important.
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Variable Elimination

Consider ordering x4, x1, x2, y , x3.

p(x3 | x5) ∝
∑
y

p(y)
∑
x2

p(x3 | x2, y)
∑
x1

p(x2 | x1, y) p(x1 | y)
∑
x4

p(x4 | x2, y) p(x5 | x4, y)︸ ︷︷ ︸
m4(x2,y)

=
∑
y

p(y)
∑
x2

p(x3 | x2, y)
∑
x1

p(x2 | x1, y) p(x1 | y)m4(x2, y)︸ ︷︷ ︸
m1(x2,y)

=
∑
y

p(y)
∑
x2

p(x3 | x2, y)m1(x2, y)︸ ︷︷ ︸
m2(y)

=
∑
y

p(y)m2(y)︸ ︷︷ ︸
my

.
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Structured density

Markov Random Fields



Markov random field

1. A Markov random field, also known as a Markov network or an undirected graphical

model, has

a set of nodes each of which corresponds to a variable or group of variables and

a set of links each of which connects a pair of nodes.

2. The links are undirected, that is they do not carry arrows.

3. In above undirected graph every path from any node in set A to any node in set B passes

through at least one node in set C . Hence,

A ⊥⊥ B | C
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Factorization properties

1. We need a factorization rule for undirected graphs that correspond to the conditional

independence test.

2. Consider two nodes xi and xj that are not connected by a link, then these variables must

be conditionally independent given all other nodes in the graph.

3. This conditional independence property can be expressed as

p(xi , xj | x\{i,j}) = p(xi | x\{i,j}) p(xj | x\{i,j})

4. The factorization of the joint distribution must be such that xi and xj do not appear in the

same factor in order for the conditional independence property to hold for all possible

distributions belonging to the graph.

5. This leads us to consider a graphical concept called a clique.

6. A maximal clique is a clique such that it is not possible to include any other nodes from

the graph in the set without it ceasing to be a clique.

8.3. Markov Random Fields 385

Figure 8.28 For an undirected graph, the Markov blanket of a node
xi consists of the set of neighbouring nodes. It has the
property that the conditional distribution of xi, conditioned
on all the remaining variables in the graph, is dependent
only on the variables in the Markov blanket.

If we consider two nodes xi and xj that are not connected by a link, then these
variables must be conditionally independent given all other nodes in the graph. This
follows from the fact that there is no direct path between the two nodes, and all other
paths pass through nodes that are observed, and hence those paths are blocked. This
conditional independence property can be expressed as

p(xi, xj |x\{i,j}) = p(xi|x\{i,j})p(xj |x\{i,j}) (8.38)

where x\{i,j} denotes the set x of all variables with xi and xj removed. The factor-
ization of the joint distribution must therefore be such that xi and xj do not appear
in the same factor in order for the conditional independence property to hold for all
possible distributions belonging to the graph.

This leads us to consider a graphical concept called a clique, which is defined
as a subset of the nodes in a graph such that there exists a link between all pairs of
nodes in the subset. In other words, the set of nodes in a clique is fully connected.
Furthermore, a maximal clique is a clique such that it is not possible to include any
other nodes from the graph in the set without it ceasing to be a clique. These concepts
are illustrated by the undirected graph over four variables shown in Figure 8.29. This
graph has five cliques of two nodes given by {x1, x2}, {x2, x3}, {x3, x4}, {x4, x2},
and {x1, x3}, as well as two maximal cliques given by {x1, x2, x3} and {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.

We can therefore define the factors in the decomposition of the joint distribution
to be functions of the variables in the cliques. In fact, we can consider functions
of the maximal cliques, without loss of generality, because other cliques must be
subsets of maximal cliques. Thus, if {x1, x2, x3} is a maximal clique and we define
an arbitrary function over this clique, then including another factor defined over a
subset of these variables would be redundant.

Let us denote a clique by C and the set of variables in that clique by xC . Then

Figure 8.29 A four-node undirected graph showing a clique (outlined in
green) and a maximal clique (outlined in blue). x1

x2

x3

x4
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Factorization properties

1. Consider the following graph

8.3. Markov Random Fields 385

Figure 8.28 For an undirected graph, the Markov blanket of a node
xi consists of the set of neighbouring nodes. It has the
property that the conditional distribution of xi, conditioned
on all the remaining variables in the graph, is dependent
only on the variables in the Markov blanket.

If we consider two nodes xi and xj that are not connected by a link, then these
variables must be conditionally independent given all other nodes in the graph. This
follows from the fact that there is no direct path between the two nodes, and all other
paths pass through nodes that are observed, and hence those paths are blocked. This
conditional independence property can be expressed as

p(xi, xj |x\{i,j}) = p(xi|x\{i,j})p(xj |x\{i,j}) (8.38)

where x\{i,j} denotes the set x of all variables with xi and xj removed. The factor-
ization of the joint distribution must therefore be such that xi and xj do not appear
in the same factor in order for the conditional independence property to hold for all
possible distributions belonging to the graph.

This leads us to consider a graphical concept called a clique, which is defined
as a subset of the nodes in a graph such that there exists a link between all pairs of
nodes in the subset. In other words, the set of nodes in a clique is fully connected.
Furthermore, a maximal clique is a clique such that it is not possible to include any
other nodes from the graph in the set without it ceasing to be a clique. These concepts
are illustrated by the undirected graph over four variables shown in Figure 8.29. This
graph has five cliques of two nodes given by {x1, x2}, {x2, x3}, {x3, x4}, {x4, x2},
and {x1, x3}, as well as two maximal cliques given by {x1, x2, x3} and {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.

We can therefore define the factors in the decomposition of the joint distribution
to be functions of the variables in the cliques. In fact, we can consider functions
of the maximal cliques, without loss of generality, because other cliques must be
subsets of maximal cliques. Thus, if {x1, x2, x3} is a maximal clique and we define
an arbitrary function over this clique, then including another factor defined over a
subset of these variables would be redundant.

Let us denote a clique by C and the set of variables in that clique by xC . Then

Figure 8.29 A four-node undirected graph showing a clique (outlined in
green) and a maximal clique (outlined in blue). x1

x2

x3

x4

Two-nodes cliques

{x1, x2}

{x2, x3}

{x3, x4}

{x4, x2}

{x1, x3}

Two maximal cliques

{x1, x2, x3}

{x2, x3, x4}
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Factorization properties

1. We can define the factors in the decomposition of the joint distribution to be functions of

the variables in the cliques.

2. We can consider functions of the maximal cliques, because other cliques must be subsets

of maximal cliques.

3. If {x1, x2, x3} is a maximal clique and we define an arbitrary function over this clique, then

including another factor defined over a subset of these variables would be redundant.

4. Let us denote a clique by C and the set of variables in that clique by xC .

5. The joint distribution is written as a product of potential functions ψ(xC ) > 0 over the

maximal cliques of the graph.

p(x) =
1

Z

∏

C

ψ(xC )

6. The quantity Z , called the partition function, is a normalization constant given by (for

discrete variables)

Z =
∑

x

∏

C

ψ(xC )

to ensure the distribution p(x) is correctly normalized.
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Relation between directed and undirected graphs

1. Consider the following graphs

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)

2. For the directed graph, we have

p(x) = p(x1) p(x2 | x1) p(x3 | x2) . . . p(xN | xN−1)

3. For the undirected graph, we have

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N(xN−1, xN)
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Variational inference

1. Let D be the data set.

2. Let p(x) , p(x | D) be the true but intractable distribution.

3. Let qθ(x) be some approximation chosen from some tractable family Q such as

multi-variate Gaussian.

4. We assume qθ(x) has some free parameters which we want to optimize so as to make

qθ(x) ”similar to” p(x).

5. An obvious cost function is to try minimize the difference between qθ(x) and p(x).
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Variational inference

1. An obvious cost function is to try minimize the KL divergence between qθ(x) and p(x).

DKL( p(x) || qθ(x)) =
∑

x

p(x) log
p(x)

qθ(x)

= E p(x)

[
log

p(x)

qθ(x)

]

2. This is hard to compute, since E p(x) is assumed to be intractable.
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Variational inference

1. A natural alternative is the reverse KL divergence.

DKL( qθ(x) || p(x)) =
∑

x

q(x) log
qθ(x)

p(x)

= E qθ(x)

[
log

qθ(x)

p(x)

]

2. The main advantage of the objective function is that computing E qθ(x) is tractable.

3. Equation E qθ(x)

[
log qθ(x)

p(x)

]
is not tractable because evaluating p(x) point-wise is hard

since it requires Z =
∫

x p(x).

4. Using un-normalized distribution p̃(x) , p(x | D) = p(x)Z , it is tractable to compute.

5. Then, we define the objective function as

J( qθ(x)) = DKL( qθ(x) || p̃(x))
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Variational inference

1. Then, we define the objective function as

J( qθ(x)) = DKL( qθ(x) || p̃(x))

2. The above KL was abused because p̃(x) is not a valid distribution.

J( qθ(x)) =
∑

x

q(x) log
q(x)

p̃(x)

=
∑

x

q(x) log
q(x)

Z p(x)

=
∑

x

q(x) log
q(x)

p(x)
− logZ

= DKL( qθ(x) || p(x))− logZ

3. Z is a constant, by minimizing J( qθ(x)), we will force qθ(x) to become close to p(x).
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Variational inference

1. Since KL divergence is always non-negative, J( q(x)) is an upper bound on logZ .

J( qθ(x)) = DKL( qθ(x) || p(x))− logZ

≥ −logZ

2. The value of logZ is called evidence lower bound (ELBO).

3. Alternatively, we can try to maximize the following quantity, called energy functional.

L( qθ(x)) = −J( qθ(x))

= −DKL( qθ(x) || p(x)) + logZ

≤ logZ .

Hamid Beigy (Sharif University of Technology) 54 / 60



Alternative interpretation of J( qθ(x))

1. The objective function J( qθ(x)) can be written as

J( qθ(x)) = E qθ(x)[log qθ(x)] + E qθ(x)[log p̃(x)]

= H( qθ(x)) + E qθ(x)[E (x)]

where E (x) = − log p̃(x) is energy.

2. Thus, J( qθ(x)) is expected energy minus Entropy of the system.

3. In statistical physics, J( qθ(x)) is called the variational free energy or the Helmholtz free

energy.
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Computing KL divergence

1. Let p(x) and q(x) be two k-dimensional Gaussian distribution.

p(x) =
1

(2π)k/2|Σp|1/2
exp

(
−1

2
(x− µp)TΣ−1p (x− µp)

)

q(x) =
1

(2π)k/2|Σq|1/2
exp

(
−1

2
(x− µq)TΣ−1q (x− µq)

)

2. Then, KL divergence can be written as

DKL( p(x) || q(x)) = E p(x)[log p(x)− log q(x)]

= E p(x)

[
1

2
log
|Σq|
|Σp|

− 1

2
(x− µp)TΣ−1p (x− µp) +

1

2
(x− µq)TΣ−1q (x− µq)

]

=
1

2
E p(x)

[
log
|Σq|
|Σp|

]
− 1

2
E p(x)

[
(x− µp)TΣ−1p (x− µp)

]

+
1

2
E p(x)

[
(x− µq)TΣ−1q (x− µq)

]

=
1

2
log
|Σq|
|Σp|

− 1

2
E p(x)

[
(x− µp)TΣ−1p (x− µp)

]

+
1

2
E p(x)

[
(x− µq)TΣ−1q (x− µq)

]

3. (x−µp)TΣ−1p (x−µp) is scaler: tr
(
(x− µp)TΣ−1p (x− µp)

)
= tr

(
(x− µp)(x− µp)TΣ−1p

)
.
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Computing KL divergence

1. The expectation and trace can be interchanged to get,

=
1

2
tr
(
E p(x)

[
(x− µp)(x− µp)TΣ−1p

])

=
1

2
tr
(
E p(x)

[
(x− µp)(x− µp)T

]
Σ−1p

)

2. We know Σp = E p(x)

[
(x− µp)(x− µp)T

]
. Simplifying it to

1

2
tr
(
E p(x)

[
(x− µp)(x− µp)T

]
Σ−1p

)
=

1

2
tr
(
ΣpΣ−1p

)

=
1

2
tr(Ik) =

k

2

3. By using matrix cookbook, the third term is also equals to

E p(x)

[
(x− µq)TΣ−1q (x− µq)

]
= (µp − µq)TΣ−1q (µp − µq) + tr

(
Σ−1q Σp

)

4. Combining all this we get,

DKL( p(x) || q(x)) =
1

2

{
log
|Σq|
|Σp|

− k + (µp − µq)TΣ−1q (µp − µq) + tr
(
Σ−1q Σp

)}

5. What happens if we have not distributions explicitly?
Hamid Beigy (Sharif University of Technology) 57 / 60



Mean field variational inference

1. In mean field variational inference, we assume that the variational family factorizes,

q(x1, . . . , xd) =
d∏

j=1

p(xj)

2. The goal is to solve this optimization problem:

min
q1,...,qd

DKL(q || p)

3. We optimize over the parameters of each marginal distribution qi .

4. The standard way of performing this optimization problem is via coordinate descent over

the qj .

5. Interestingly, the optimization problem for one coordinate has a simple closed form

solution.
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1. Chapter 21 of Machine Learning: A Probabilistic Perspective (Murphy 2012).

2. Chapter 10 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

3. Chapter 8 of Pattern Recognition and Machine Learning (C. M. Bishop 2006).

4. Chapter 11 of Deep Learning: Foundations and Concepts (C. M. Bishop and H. Bishop

2024).

5. Chapter 7 of All of Statistics: A Concise Course in Statistical Inference (Wasserman 2010).
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Questions?
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