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Introduction



oduction

1. A Generative model (GM) is a probability distribution p(x).
o A statistical GM is a trainable probabilistic model, p,(x).
o A deep GM is a statistical generative model parametrized by a neural network.
2. A generative model needs
o Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

o Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,
maximum likelihood, divergence), optimization algorithm, etc.
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Density estimation

1. Density estimation is the problem of reconstructing the probability density function using a
set of given data points.

2. Let xq,...,%Xm ~ p(x) be the training set.
3. The goal is to recover the underlying probability density function generating this dataset.

Xm be identically independently distributed random variables. Hence,

)

m
p(xla s 7xm) = H P(Xk)
k=1
5. Density can be estimated using two approaches:

o Parametric approach

o Non-parametric approach
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Parametric density estimation approach



Parametric density estimation approach

1. Let us to approximate the density function p(x) using density function py(x).
2. 0 is parameters of py(x).
3. There are many approaches for estimating ¢ such as

e maximum likelihood method (ML)

e maximum a posteriori probability (MAP)

o method of moments

o Bayesian estimation method

Example
o Let x; be a one-dimensional real valued random variable.
o Let pyp(x) = N(u,0?) be the target pdf, where 6 = {1, 0%} is its parameters.

o The goal is to estimate parameters 6 = {u, o>}.
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Parametric density estimation approach

1. Let py(x) = N(p,0?). Then 6 = {p, 02} .
2. The likelihood equals

L(B) = po(x1,.. . xn) = H Po(xk)

m

LL(O) = InL(0) = 3 po(xe)

k=1

3. By differentiating LL(6) with respect to 0 and setting to zero, we obtain

m

. 1
in= 53
M=
1 m
3,2,7 = — Z(Xk — [im)
m
k=1
4. Then the resulting density function is
1 x—fim?
po(x) = e~ 3(5557)
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Evaluating estimators

Definition (Bias of an estimator)

Let 0 be a point estimator for f. The bias of point estimator 0 is defined by

Bias (0) = E[é} —0.

Definition (Unbiased estimator)

Let 0 be a point estimator for . We say that the point estimator 0 is an unbiased estimator
of 0 if for all values of @, we have

~

Bias () = 0.

Example (Unbiased estimator)

Let [im = = Y"1, X«, then [in, is an unbiased estimator.

Bias (1im) = E[tim] — = E l; Zxk] —p

l m
= Z]E[xk]—,u,:,u—y,zo.
k=1

m
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Evaluating estimators

Example (Biased estimator)
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Evaluating estimators

Hamid

Definition (Mean squared error of an estimator)

The mean squared error (MSE) of a point estimator f, shown by MSE (5) is defined as

MSE (8) = IE{(@—H)Z}

Example

Let x1,...,X,, be a random sample from a distribution with mean E[x;] = 6 and variance
var[x;] = 0. Consider two estimators for

~ ~ 1
91:X1 62:EZxk.

These two estimators are both unbiased. Hence, we study their MSE:

MSE (0;) = E{(@l - 9)2} - E[(xl - E[xl]f] — var[xi] = o2.

2

MSE (52)_1@{(52—9)1_113 (;ixk—e>2 :%.

Thus, MSE (51) > MSE (672) Hence, 0, is better.

Beigy (Sharif University of Technology)
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Evaluating estimators

Theorem

~ ~ ~ 2
Let 0 is a point estimator for §. Then MSE (0) = var[0] + Bias (0)

Proof.

MSE (9) = E;(é— 9)2}
E_(é\f E[6] + E[d] 9)2]
— | (7 £[f])"| +2 (5 2[f)) (=[5] - ) + | £[f] -0

— —
:var[(/i\] =0 Bias (0)

= var[f] + Bias (é\)2

This decomposition is also known as the bias-variance trade-off.
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Evaluating estimators

Definition (Consistency of an estimator)
Let 51, 52, cee 5,,, ... be a sequence of point estimators of . We say 0, is a consistent

estimator of 0, if

lim p(|6, — 6] > €) =0, for all € > 0.

n— o0

Example (Consistency of sample average)

Let x1,...,X;, be a random sample from a distribution with mean E[x;] = 6 and variance
var[x;] = 0. Consider the following estimator for

1 m
= Z
We have found that MSE (6,,) = Z. Thus,
lim MSE (8,,) — 0.

m—00

Hence, this estimator is consistent.
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Evaluating estimators

Theorem (Consistency of an estimator)

Let 51, 9\2, ... be a sequence of point estimators of 0. If lim,_,.. MSE (5,,) =0, then 5,, isa
consistent estimator of 6.

Proof.

We can write

p(|0n — 6] > €) = p(|8, — 02 > ¢?)

MSE (6,)
2 Y

Using Markov's inequality

€

which goes to 0 as n — oo by the assumption. ]

Note: Let x be a nonnegative random variable and a > 0, then p(x > a) < @

Hamid Beigy (Sharif University of Technology)
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Evaluating estimators

Definition (Convergence in Probability)
A sequence of random variables z1,2z,, ... converges in probability to a random variable z,
shown by z, > z, if

Ii)m p(lzn — 2| > €) =0, for all € > 0.

This implies that the distribution is concentrating at the targeting point.

Lemma

-~

Let 6 be an estimator of 6. If Bias (f) — 0 and var[f] — 0, then 6 0, i.e. 6 is a
consistent estimator of .
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Evaluating estimators

Definition (Convergence in Distribution)

1. Let F1, F,, ... be the corresponding CDFs of z1,2z,, .. ..
2. For a random variable z with CDF F, we say z, converges in distribution to a random
variable z, shown by z, i> z, if

lim F, (x) = F(x),

n—oo

3. This implies that F, converge to the CDF of a fixed random variable.
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Stochastic order notations

Definition
For a sequence of numbers a, (indexed by n), we write
1. a, = o(1) if lim,— a, — 0. For another sequence b,, we write a, = o(b,) if Z—: = o(1).
2. a, = O(1) if for all large n, there exists a constant C such that |a,| < C. For another
sequence b, we write a, = O(b,) if Z—Z = 0(1).

Example
1. Let a, = % Then a, = o(1) and a, = O(%)
2. Let b, = n+5+logn. Then b, = O(n) and b, = o(n?) and b, = o(n?).
3. Let ¢, = 1000n + 1071%02. Then ¢, = O(n?) and b, = o(n? - log n).

The O and o notations give us a way to compare convergence/divergence rate of a sequence of
(non-random) numbers.
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Stochastic order notations

The O, and o, are similar notations to O and o but are designed for random numbers.

Definition
For a sequence of random variables x,,, we write
1. x, = 0p(1) if for any ¢ > 0,

nILngo p(|x,| >€) =0
Namely, p(|x,| > €) = o0p(1) for any € > 0.

Let a, be a nonrandom sequence, we write x, = 0,(a,) if 3> = op(1).
2. x, = Op(1) if for any € > 0, there exists a constant C such that

p(|xp| > C) <e.

We write x, = Op(an) if 32 = Op(1).
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Analysis of parametric density estimation approach

Is the parametric approach a good one? We analyze the quality of estimation in the
parametric approach for Gaussian distribution.

1. We quantify pp,(x) — p(x).

sl

2. Since the sample mean /i > 77 = E[x] and the sample variance 52 % 7 = var[x], we
define another density function
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Analysis of parametric density estimation approach

1. Using py(x), we have
po,(x) = p(x) = po,(x) = Pg(x) + Po(x) — p(x)

2. The first difference py,(x) — Py(x) is something that converges to 0 because the sample
mean and variance converges to their population counterparts. Namely, we have
P
Po,(x) = Pp(x).
3. However, the second difference py(x) — p(x) never goes to 0 unless the true pdf is
Gaussian.

po, (x) = e 3(5m)’

\V2mo?

4. It can be shown that the convergence rate of py,(x) — Pg(x) equals to

pr.) — ) = 05 (=)

5. This will help us understand when a parametric approach may be better than a
nonparametric one.
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Gaussian mixture model

1. Let the parametric model be

K
po,(x) =Y mN (ux, 0%)

k=1

K
Z’/Tk =1
k=1

2. We compute parameters 0 = {ji1,....jik,0%,...,0%,71,...,Tk } based on training data.
3. We use EM algorithm to estimate the parameters.

4. The convergence rate of py,(x) — Py(x) equals to

pa () = o) = 0o =)
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Product of experts

Let p(x) be a high-dimensional probability distribution.

We can approximate p(x) using the product of several one-dimensional distributions.
This model is called the product of experts (PoE).

Let n expert models py,(x),..., py, (x), each parameterized by 01, ..., 0, respectively.
The probability distribution of the PoE can be expressed as:

— Hk Po, (X)
) = ST, o2

where § = {01, ...,0,}.

We will study the training algorithm for finding 6 = {61,...,0,,} later.
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Nonparametric density estimation approach




Histogram

1. For simplicity, we assume that x; € [0,1]. So p(x) > 0 in interval [0, 1].
2. We also assume that p(x) > 0 is smooth and | p(x)’| < L for all x.

3. In histogram we partition interval [0, 1] into M bins (By) of equal widths as

k—1 k
Bi=|—,—
=[5
4. Then, we count the number of samples in a bin as density estimate.
5. Hence, for any point x € B, the density estimator from the histogram will be
. |B| 1 M
n = — X = — I[x; € B
P (X) n len (B’) n Z [X /]

i=1

6. The histogram density estimator has the following bounds (Drive the following bounds.)

IN

Bias (Br(x)) < +-

ol Buo)] — MPCE) (P

MSE (5y(x)) < %jLMP(X*) (p(x"))?
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1. To balance the bias and variance, we choose M that minimizes the MSE, which leads to
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Kernel density estimator

1. The KDE is a function of
1 & (x,- — x>

2. K(x) is kernel function and is a smooth, symmetric function such as Gaussian.

o K(x) is symmetric.

o [K(x)dx=1

° |im‘x‘*,oo K(X) =0
3. h> 0 is called the smoothing bandwidth that controls the amount of smoothing.

T
o.8

T T
0.4 0.6

=
s 5 T T
0.0 0.2
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Kernel density estimator

Gaussian Kernel Uniform Kernel Epanechnikov Kernel
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Kernel density estimator

1. The bias of KDE is

2
Bias ( Fn(x0)) = 5122 e + (1) i = [ V()

2. This means that when we allow h — 0, the bias is shrinking at a rate O(h?).

3. The upper bound of variance of KDE is

i)l = Lol + o ) d= [ K

4. Putting both bias and variance together, we obtain MSE of KDE:

MSE (Ba(x0)) = O(h*) + O<1h>

5. The optimal bandwidth equals to

_1
hopt - C]_n 5

6. This choice of smoothing bandwidth leads to a MSE at rate

MSE (Pa(x0)) = O(n)
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Structured density




The number of parameters of density estimators

1. Let x = {x1,..., X4} be an d—dimensional random variable where x; € {0, 1}.

2. How many parameters do we need to estimate the density function?

Sample x4 X4_-1 ... X2 X1
1 0 0 0 o0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
2d 1 1 ... 1 1

3. How can we decrease the number of parameters?
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How to find the structure of density functions?

1. One way is to use probabilistic graphical models.

2. A (probabilistic) graphical model defines a family of probability distributions over a set of
random variables, by means of a graph.

3. These models offer several useful properties:

o They provide a simple way to visualize the structure of a probabilistic model and can be used
to design and motivate new models.

o Insights into the properties of the model, including conditional independence properties, can
be obtained by inspection of the graph.

o Complex computations, required to perform inference and learning in sophisticated models,
can be expressed in terms of graphical manipulations, in which underlying mathematical
expressions are carried along implicitly.
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1. A graph G = (V, E) comprises nodes (vertices) V' connected by links (edges or arcs) E.
o Each node represents a random variable (or group of random variables).
o Each link express probabilistic relationships between these variables.

o The graph captures joint distribution over random variables and can be decomposed into a
product of factors each depending only on a subset of the variables.

Hamid Beigy (Sharif University of Technology)
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Probabilistic graphical model

1. Some types of probabilistic graphical models:
o Bayesian networks,
o Markov random fields,
o Factor graphs
2. Important problems in probabilistic graphical models:
o Structure learning,
m Constraint-based approach
m Score-based approach
m Hybrid-approach
o Parameter learning

o Probabilistic inference : Compute marginal probabilities p(x |)
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Structured density function
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Structured density

Bayesian networks



Bayesian networks

1. Let p(a, b, c) be joint distribution over three variables a, b, and c.

2. By application of the product rule of probability, we can write the joint distribution as

p(a,b,c) = p(c | a, b)p(a, b)
p(a,b,c) = p(c | a,b)p(b|a)p(a)

3. This decomposition holds for any choice of the joint distribution.

4. An interesting point:  p(a, b, ¢) is symmetrical with respect to a, b, and ¢, whereas
p(c | 2,b) p(b | ) p(a) s not.

5. Generalization to K variables:
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Bayesian networks

1. Consider the following Bayesian networks

2. The joint distribution of all xq, ..., x7 variables is
p(x1;. .., x7) = p(xa) p(x2) p(x3) p(xa | X1, %2, x3) p(xs | x1,x3) P(X6 | Xa) p(x7 | X4, X5).

3. For a graph with K nodes, the joint distribution is

K
p(xa,- - x) = [ [ PO | pay).
k=1
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Conditional independence

1. An important concept for probability distributions over multiple variables is conditional
independence.

2. For three variables a, b, ¢, and suppose p(a | b, ¢) does not depend on the value of b.
p(al b,c)=p(a]c)

3. ais conditionally independent of b given c.

p(a,b|c)=p(a|b,c)p(b]c)
= p(alc)p(b]c).

4. A shorthand notation for conditional independence a Il b | ¢

© pla,b,c) = pla| ) p(b | ) plc)

able) = p(a, b, c)

— plalc)p(b]| ).

Obtaining the conditional independence prop-

erty a ll b|c.
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Polynomial regression

1. Consider the regression model in which
o X = (x1,...,Xm) is set of m iid observations
o t=(t1,...,tm) is the corresponding target values
o ty is actual value plus a Gaussian noise value with precision .

2. Let y(x,w) be the predicted function and the goal is to make predictions of target variable
t for new input x.

p(t | x,w,B8) =N(t|y(x,w),3")

3. Using training data {x,t}, we can determine w and /3 by MLE.

K
p(t | X,W,ﬂ) = HN(tk | y(Xk7w))Bil)

k=1

Hamid Beigy (Sharif University of Technology)
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Polynomial regression

1. Let introduce a prior distribution over parameters w as
-1
p(w|a)=N(w|0,a ')

where « is the precision of the distribution.

2. The posterior distribution for w can be estimated using MAP as
p(w | x,t,, ) x p(t]x,w,a,s)p(w]|a).

3. In Bayesian regression model, for a new point x, we need to predict value t as
p(t | x,x,t) = / p(t | x,w) p(w | x,t)dw.

where we assume that parameters o and 3 are fixed and known in advance.
4. The random variables are parameters w and observed data t = (t1,..., tp).

5. In addition, this model contains input data x = (xg, ..., x,,) and parameters « and 3.
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Polynomial regression

1. By focusing only on random variables, the joint distribution is
p(t,w) = p(w Hp(tkIW)

2. The conditional distributions p(tx | w) (for k=1,...,m)is

010, O,

3. The random variables in this model are t
o the vector of coefficients w
o the observed data t = (t1,..., tm).

4. Other parameters are not random variables
o the input data x = (x1,.. ., xm)

o the noise precision [ and the hyper-parameter «.
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Polynomial regression

1. The joint distribution p(t,w) is

p(t.w) = p(w) [ p(te | w).

k=1

2. Sometimes it is helpful to make the parameters of a model, as well as its random
variables, explicit.

m
plt.w | x,a,8) = p(w | o) [ p(te | w,xi. B).
k=1

3. We can represent it in graphical notations.

® ®

m

O |-@f

®
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Polynomial regression

1. Having observed values {tx} we can evaluate the posterior distribution of w

)

3

pw [ t) oc p(w) | | p(tx [ w)

x
Il
—

O— @t

m

e ———

2. Let new input X is given and we wish to find the corresponding probability distribution for
t conditioned on the observed data.

3. The joint distribution of all random variables conditioned on deterministic parameters

is

p(tt,w| X% a,5) = [H Ptk | xe, w ,/6)] p(w | ) p(tx | X, w, 5)
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Polynomial regression

1. The joint distribution of all random variables conditioned on deterministic parameters is
p(ttW‘XXO(B [Hpthka aﬂ)] p(WIOé) (tk‘;(\,W,ﬁ)

2. The corresponding graphical model is

SE—

\4
()—(w) bl 52x.0.6) = [ p(Etw] 5ox.05)a

3. We are implicitly setting the random variables in t to the specific values observed in the
data set.
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Generative models

1. In some situations we wish to draw samples from a given probability distribution.

2. Let p(xi,...,xq) be the joint distribution over d variables.
3. The goal is to draw a sample (xq,....xy) from the joint distribution.
4. To do this (suppose that the variables have been ordered such that there are no links from

any node to any lower numbered node),
4.1 Start with the lowest-numbered node and draw a sample from p(x1), and call Xi.
4.2 For a node xi, draw a sample from the conditional distribution p(xx | pa,)

4.3 Continue until the last variable is being sampled.
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Generative models

1. To obtain a sample from some marginal distribution corresponding to a subset of the
variables:

1.1 we simply take the sampled values for the required nodes and

1.2 ignore the sampled values for the remaining nodes.
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Generative models

1. Consider the following graphical model: Is it generative?

)

O— @t

2. This model is not generative because there is no probability distribution associated

with the input variable x.
3. So it is not possible to generate synthetic data points from this model.
4. Can we make the above model generative?

5. We could make it generative by introducing a suitable prior distribution p(x), at the
expense of a more complex model.
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Inference

1. Consider the following graphical model.

2. How do you compute p(y | x5)?
3. The joint distribution p(y, x1, x2, X3, X1, X5, Xg) equals to

p(.yaxl,x27X37X47X57X6) :p(y) p(Xl | y) p(X2 | Xl,}/) p(X3 | X2ay)
P(X4 | X27.y) P(X5 | X47)/) p(X6 | X47.y)
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Variable Elimination

ply [xs)oc D > 3> ply)pla | y) pxe | x1,¥) p(xs | xe,y) PO | x2,y) P(xs | xa,y) p(xs | X2, )

X1 X2 X3 X4 Xg

=> 33 py)pCa | y) pla | x1,y) plxa | x0,¥) p(xs | xa,y) D p(xs | x2,y) D plxe | xa,y)

X1 X2 Xa X3 X6

=1

=p()>_ pCa I y)> ple | x,¥) > plxa | x,y) plxs | xa,y)

my(x2)

= p(y) > p(x | y)z p(x2 | x1,y)ma(x2)

X1

mp(x1)

= p(y)>_ pla | y)ma(x) = p(y)mi.

The order of summations is important.
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Variable Elimination

Consider ordering x;, x1, X2, ¥, X3.

p(xs | x5) o< > p(y) D p0xs [ x,) D ple | x,y)pa | y) Y plxa | x2,y) P06 | x4, y)

y

my(x2,y)

=> P> Pl | x,y) Y ple | x,y) plxa | y)ma(x, y)

my(x2,y)

=> " p) > plxs | %2, ¥)mi(x, y)

ma(y)

=> " p(y)ma(y).

my
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Structured density
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Markov random field

1. A Markov random field, also known as a Markov network or an undirected graphical

model, has
o a set of nodes each of which corresponds to a variable or group of variables and

o a set of links each of which connects a pair of nodes.

2. The links are undirected, that is they do not carry arrows.

1
/

\‘s—’/A
3. In above undirected graph every path from any node in set A to any node in set B passes

through at least one node in set C. Hence,
AllB|C
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Factorization properties

1. We need a factorization rule for undirected graphs that correspond to the conditional
independence test.

2. Consider two nodes x; and x; that are not connected by a link, then these variables must
be conditionally independent given all other nodes in the graph.

3. This conditional independence property can be expressed as
PO | x\ijy) = PO [ x\gijy) PO [ x\gijy)

4. The factorization of the joint distribution must be such that x; and x; do not appear in the
same factor in order for the conditional independence property to hold for all possible
distributions belonging to the graph.

5. This leads us to consider a graphical concept called a clique.

6. A maximal clique is a clique such that it is not possible to include any other nodes from
the graph in the set without it ceasing to be a clique.
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Factorization properties

1. Consider the following graph

Two-nodes cliques

o Lao} Two maximal cliques
o Lea) o {x1,x,x3}

o Do) o {x2,x3,xa}

o {xs,x2}

o {x1,x3}
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Factorization properties

1. We can define the factors in the decomposition of the joint distribution to be functions of
the variables in the cliques.

2. We can consider functions of the maximal cliques, because other cliques must be subsets
of maximal cliques.

3. If {x1,x2,x3} is a maximal clique and we define an arbitrary function over this clique, then
including another factor defined over a subset of these variables would be redundant.

4. Let us denote a clique by C and the set of variables in that clique by xc.

5. The joint distribution is written as a product of potential functions ¢)(xc) > 0 over the
maximal cliques of the graph.

p(x) = 3 [T vxe)
C

6. The quantity Z, called the partition function, is a normalization constant given by (for
discrete variables)

2= 1I¥xe)
x C

to ensure the distribution p(x) is correctly normalized.
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Relation between directed and undirected graphs

1. Consider the following graphs

X1 X9 ITN—-1 TN
X1 X2 TN TN-1

2. For the directed graph, we have
p(x) = p(x1) pOx2 | x1) p(xs | x2) - p(xw | Xn—1)
3. For the undirected graph, we have

p(x) = %wl,z(xl, x2)2.3(x2,x3) . . . n—1,n(XN-1, XN)
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Variational inference

1. Let D be the data set.
2. Let p(x) £ p(x | D) be the true but intractable distribution.

3. Let gy(x) be some approximation chosen from some tractable family @ such as

multi-variate Gaussian.

4. We assume ¢gp(x) has some free parameters which we want to optimize so as to make

go(x) "similar to” p(x).

5. An obvious cost function is to try minimize the difference between gy(x) and p(x).
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Variational inference

1. An obvious cost function is to try minimize the KL divergence between gy(x) and p(x).

p

Dre(p(x) || go(x)) = zx: p(x)log CZ((?)

p(x) ]

& 0(x)

E()[

2. This is hard to compute, since [ ,(,) is assumed to be intractable.

Hamid Beigy (Sharif University of Technology) 51/ 60



Variational inference

1. A natural alternative is the reverse KL divergence.

Dki(qa(x) || p(x)) = Z q(x) log qo(x)

- p(x)
= Zauo o8 5 |

2. The main advantage of the objective function is that computing [, () is tractable.

90(x)
p(x)
since it requires Z = [ p(x).

3. Equation E ;,(x [Iog ] is not tractable because evaluating p(x) point-wise is hard

4. Using un-normalized distribution p(x) = p(x | D) = p(x)Z, it is tractable to compute.

5. Then, we define the objective function as

J(q6(x)) = Drke(ao(x) || p(x))
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Variational inference

1. Then, we define the objective function as
J(go(x)) = Dre(qo(x) || p(x))

2. The above KL was abused because p(x) is not a valid distribution.

Hao() =3 q(x)log L)

” p(x)

_ q(x)
= Z 9(x) log 7 x)
= Z Iog ) — logZ

= Die(qo(x) [| p(x)) —log Z

3. Z is a constant, by minimizing J( go(x)), we will force gy(x) to become close to p(x).
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Variational inference

1. Since KL divergence is always non-negative, J( g(x)) is an upper bound on log Z.

J(q0(x)) = Die(ao(x) [| p(x)) — logZ
> —logZ

2. The value of log Z is called evidence lower bound (ELBO).

3. Alternatively, we can try to maximize the following quantity, called energy functional.

L(gs(x)) = —J(qs(x))
= —Dxc(ao(x) || p(x)) + logZ
<logZ.
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Alternative interpretation of J( gy(x))

1. The objective function J( gp(x)) can be written as
J( qo(x)) = qu(x)[log qg(X)] + qu(x)[log 5(X)]
= H(q6(x)) + E g () [E(x)]
where E(x) = —log p(x) is energy.
Thus, J( go(x)) is expected energy minus Entropy of the system.

In statistical physics, J( go(x)) is called the variational free energy or the Helmholtz free
energy.
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Computing KL divergence

1. Let p(x) and g(x) be two k-dimensional Gaussian distribution.

p(x) = (27r)k/21|2p|1/2 exp (—;(x - NP)TZ;l(X - :“p))

1 1 Ty—1
00) = iy @9 50— )Tk  )

2. Then, KL divergence can be written as

Die(p(x) || g(x)) = E px)[log p(x) — log q(x)]

= Eoix { log ;p: - %(X*MP)TZ;I(XWPH %(xfuqfigl(qu)
:%]E( [I :;q” 1EP(X)[(X*UP)TZ;1(X*HP)]

+ %E o) [(x = 110) TZ5 (% = 1g)]

= '° :;q:— ;Ep(x) [(x = p1p) T2 (x = 1p)]

1 _
+ 2 E p(x) [(x - Nq)TZq 1(X - Nq)]

30 (x—pp) TESH(x — pup) is scaler: tr((x — pp) TE (% — pp)) = tr((x — pp)(x — pp) TES).

Hamid Beigy (Sharif University of Technology) 56 / 60



Computing KL divergence

1. The expectation and trace can be interchanged to get,
= S tr(E pge [(x = 1p) (x — 1) "Z, 1)

= S tr(E g [(x = mp)(x = 1) T35
2. We know ¥, = E 0 [(x — ) (x — 11) "|. Simplifying it to

%tr(]Ep(X) [(x = 1) (x = 1) ] 357) =

3. By using matrix cookbook, the third term is also equals to

E p(x) [(x - Nq)TZJI(X - Mq)] = (kp — Mq)TZJI(MP — Hq) + tr(zglzp)
4. Combining all this we get,

Dre(p(x) || q(x)) = {log Izp: k+ (pp — Hq)TZJI(NP — Hq) + tr(Z;lzp)}

5. What happens if we have not distributions explicitly?
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field variational inference

1. In mean field variational inference, we assume that the variational family factorizes,

q0xa, ., xa) =[] p(x)

j=1
2. The goal is to solve this optimization problem:
min Dyc(q [ p)
q1;---,qd

3. We optimize over the parameters of each marginal distribution g;.

4. The standard way of performing this optimization problem is via coordinate descent over
the g;.

5. Interestingly, the optimization problem for one coordinate has a simple closed form
solution.
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