
Deep Generative Models

Energy-Based Models

Hamid Beigy

Sharif University of Technology

May 2, 2025

Table of contents

1. Introduction

2. Probabilistic Graphical Models

3. Energy-Based Models

4. Training Energy-Based Models

5. Hybrid Modeling

6. Summary

7. References

Hamid Beigy (Sharif University of Technology) 1 / 64

Introduction

Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples

Hamid Beigy (Sharif University of Technology) 2 / 64

Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pd(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pd(x) for any observed x, i.e.

pθ(x) ≈ pd(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Hamid Beigy (Sharif University of Technology) 3 / 64

Deep generative models

Autoregressive models

1. Tractable density

2. Density is estimated as

p(x; θ) =
m∏

j=1

p(xj | x<j ; θ)

3. Tractable likelihood

4. No inferred latent factors

Latent variable models

1. Approximated density

2. Density is estimated as

p(x; θ) =

∫
p(x, z; θ)dz

3. Intractable likelihood

4. Latent feature representation

Normalizing flow models

1. Exact density

2. Density is estimated as

pθ(x) = pz(z)|det (Jf)|
where z = f (x)

3. Tractable likelihood

4. Latent feature representation

Generative adversarial networks

1. Implicit density

2. Can optimize f-divergences and Wasserstein distance

min
G

max
D

Ex∼ pd(x)[logD(x)] + Ez∼ pz(z)[log(1− D(G (z)))]

3. Latent feature representation

4. Very flexible model architectures, unstable training, hard

evaluation, mode collapse

Hamid Beigy (Sharif University of Technology) 4 / 64

Energy-based models

1. EBMs capture dependencies between variables by associating a scaler energy to each

configuration.

The model

2. Learning in EBMs consists in finding energy function in which observed configurations are

given lower energies than unobserved ones.

3. Inference in EBMs consists of finding the observed variables and finding the remaining

variables that minimize the energy.

Hamid Beigy (Sharif University of Technology) 5 / 64

Energy-based models

When xi is an image and yi is its label from set {Human,Animal ,Airplan,Car ,Truck}, then

the model can be represented as

YX

E(Y, X)

E(Y, X)

Figure 1: A model measures the compatibility between observed variables X and variables to
be predicted Y using an energy function E(Y,X). For example, X could be the pixels of an
image, and Y a discrete label describing the object in the image. Given X, the model produces
the answer Y that minimizes the energy E.

1.1 Energy-Based Inference
Let us consider a model with two sets of variables, X and Y , as represented in Fig-
ure 1. Variable X could be a vector containing the pixels from an image of an object.
Variable Y could be a discrete variable that represents the possible category of the ob-
ject. For example, Y could take six possible values: animal, human figure, airplane,
truck, car, and “none of the above”. The model is viewed as an energy function which
measures the “goodness” (or badness) of each possible configuration of X and Y . The
output number can be interpreted as the degree of compatibility between the values of
X and Y . In the following, we use the convention that small energy values correspond
to highly compatible configurations of the variables, while large energy values corre-
spond to highly incompatible configurations of the variables. Functions of this type are
given different names in different technical communities; they may be called contrast
functions, value functions, or negative log-likelihood functions. In the following, we
will use the term energy function and denote it E(Y, X). A distinction should be made
between the energy function, which is minimized by the inference process, and the loss
functional (introduced in Section 2), which is minimized by the learning process.

In the most common use of a model, the inputX is given (observed from the world),
and the model produces the answer Y that is most compatible with the observed X .
More precisely, the model must produce the value Y ∗, chosen from a set Y , for which
E(Y, X) is the smallest:

Y ∗ = argminY ∈YE(Y, X). (1)

When the size of the set Y is small, we can simply compute E(Y, X) for all possible
values of Y ∈ Y and pick the smallest.

3

Hamid Beigy (Sharif University of Technology) 6 / 64

Energy-based models

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

Figure 2: Several applications of EBMs: (a) face recognition: Y is a high-cardinality discrete
variable; (b) face detection and pose estimation: Y is a collection of vectors with location
and pose of each possible face; (c) image segmentation: Y is an image in which each pixel
is a discrete label; (d-e) handwriting recognition and sequence labeling: Y is a sequence of
symbols from a highly structured but potentially infinite set (the set of English sentences). The
situation is similar for many applications in natural language processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).

4

Hamid Beigy (Sharif University of Technology) 7 / 64

What questions can an EBM answer?

An EBM may be used to answer questions of several types:

1. Prediction, classification, and decision-making:

“Which value of yi is most compatible with this x?’

2. Ranking:

“Is y1 or y2 more compatible with this x?”

3. Detection:

“Is Is this value of y compatible with x?”

4. Conditional density estimation:

“What is the conditional probability distribution over y given x?”

Hamid Beigy (Sharif University of Technology) 8 / 64

Energy-based models

1. The EBM approach provides a common theoretical framework for many learning models

including:

Traditional discriminative approaches

Traditional generative approaches

Graph-Transformer networks

Conditional random fields

Maximum margin Markov networks

Several manifold learning methods

2. Energy-based models have

Very flexible model architectures

Stable training

Relatively high sample quality

Flexible composition

Hamid Beigy (Sharif University of Technology) 9 / 64

Probabilistic Graphical Models

Introduction

1. PGMs provide a general framework for describing and applying probabilistic models in the

probabilistic approach.

2. Consider a graph G = (V ,E) with vertex set V and edge set E ⊆ V × V .

3. A graphical model is a family of probabilistic distributions defined in terms of a directed or

undirected graph.

1 2

34

1 2

34

4. The nodes are random variables and joint probability distributions are defined by taking

products over functions defined on connected subsets of nodes.

5. Graphical models can be defined over different types of graphs:

Directed graphical models

Undirected graphical models

Mixed graphical models

Hamid Beigy (Sharif University of Technology) 10 / 64

Directed graphical models

1. Let G = (V ,E) be a directed acyclic graph and x = (x1, . . . , xn) be a collection of random

variables indexed by nodes of G .

2. For each node v ∈ V , let pa(v) be the parents of node v and xpa(v) be a vector of random

variables indexed by parents of v .

A directed graphical model consists of a family of distributions that factorize as.

p(x) =
∏

v∈V
p(xv | xpa(v))

3. Consider the following directed graphical model:

1 2

34

4. The joint distribution that this directed graphical model describes is

p(x1, x2, x3, x4) = p(x1) p(x2 | x1) p(x3 | x2) p(x4 | x1, x3)

Hamid Beigy (Sharif University of Technology) 11 / 64

Neural Network Based Classifier

1. Traditionally, each conditional probability distribution p(xv | xpa(v)) is parameterized by a

lookup table or a linear model.

Sprinkler

Grass wet

Rain

Sprinkler

Rain T F

F 0.4 0.6

T 0.01 0.99

Sprinkler

T F

0.2 0.8

Grass wet

Sprinkler rain T F

F F 0.4 0.6

F T 0.01 0.99

T F 0.01 0.99

T T 0.01 0.99
Hamid Beigy (Sharif University of Technology) 12 / 64

Neural Network Based Classifier

1. A more flexible way to parametrize such conditional distribution is to use neural networks.

2. This neural networks takes xpa(v) as input and produces the distributional parameters over

the variables:

θ = NN(xpa(v))

p(xv | xpa(v)) = pθ(xv)

3. As an example, if xv is a continuous variable, θ could denote the mean and variance

parameters.

4. Consider a multi-class classifier, whose input is x = (x1, . . . , xn) and the class label is

y ∈ {1, . . . ,K}.

5. The graphical model representation of this classifier is

x y

Hamid Beigy (Sharif University of Technology) 13 / 64

Neural Network Based Classifier

1. The classic multi-class logistic regression is to use a single layer to obtain the logits zk .

2. Then, feed the logits zk into a softmax layer to calculate the class posterior:

p(y = k | x) =
exp(zk)

∑K
j=1 exp(zj)

zk = wᵀ
k x + bk for k = 1, . . . ,K

= Linear(x; wk , bk)

3. Instead of a linear layer, we can use a deep network.

4. In this way, the multi-layer neural network could be viewed as a non-linear feature

extractor.

Hamid Beigy (Sharif University of Technology) 14 / 64

Undirected Graphical Model

1. Let G = (V ,E) be an undirected graph and x = (x1, . . . , xn) be the random variables.

2. Let C denote the set of cliques of graph.

3. Let φc(xc) ≥ 0 be the potential function associated with each clique c ∈ C.

4. Consider the following undirected graphical model

A D

B C

5. The total potential function of the graph is defined as

Φ(x) =
∏

c∈C
φc(xc) φc(xc) ≥ 0.

where xc is an arbitrary instantiation of of the set of random variables denoted by clique c .

6. For the above graph, the potential function can be factorized as

Φ(x) = φA,B,C (a, b, c)× φA,D(a, d).

Hamid Beigy (Sharif University of Technology) 15 / 64

Undirected Graphical Model

1. Consider the following undirected graphical model

A D

B C

2. Let {A,D} be binary random variables, the potential function corresponding to this clique

could be represented by a table

φ{A,D}(a = 0, d = 0) = +4.00

φ{A,D}(a = 0, d = 1) = +0.23

φ{A,D}(a = 1, d = 0) = +5.00

φ{A,D}(a = 1, d = 1) = +9.45

3. Like other models in machine learning, the potential function can be parametrized as

Φ(x; θ) =
∏

c∈C
φc(xc ; θ) φc(xc ; θ) ≥ 0.

4. Potential functions show how likely a given state is. So, the higher the potential,

more likely that state is.
Hamid Beigy (Sharif University of Technology) 16 / 64

Undirected Graphical Model

1. An undirected graphical model consists of a family of distributions that factorizes as

p(x) =
1

Z

∏

c∈C
φc(xc ; θ).

where Z is a normalizing constant(partition function) given by

Z =
∑

x

∏

c∈C
φc(xc ; θ).

2. Consider the following UGM

1 2

34

3. The joint distribution that this model describes is

p(x1, x2, x3, x4) =
1

Z
φ(x1, x2)φ(x2, x3)φ(x3, x4)φ(x1, x4)

4. In contrast with joint distributions, the potential functions do not need to be

self-normalized.
Hamid Beigy (Sharif University of Technology) 17 / 64

Energy-Based Models

Representing probability distributions

1. Probability distributions pθ(x) are a key building block in generative modeling.

2. They have the following properties

Non-negative: pθ(x) ≥ 0

Sum to one:
∑

x pθ(x) = 1 or
∫

x
pθ(x)dx = 1

3. Making non-negativeness is easy and we can choose any of the following function:

gθ(x) = fθ(x)2

gθ(x) = exp(fθ(x))

gθ(x) = |fθ(x)|
gθ(x) = log(1 + exp(fθ(x)))

4. In general Zθ =
∑

x gθ(x) 6= 1.

5. Hence, gθ(x) is not a valid probability mass function or density.

Hamid Beigy (Sharif University of Technology) 18 / 64

Representing probability distributions

1. The maintaining gθ(x) ≥ 0 is easy but making
∑

x pθ(x) = 1 is a hard problem.

2. A solution is to normalize gθ(x) by its volume as

pθ(x) =
gθ(x)

Volume(gθ)
=

gθ(x)∫
x gθdx

3. Then, by definition we have
∫

x pθ(x)dx = 1.

4. We can calculate the volume analytically if we choose some analytical functions such as

Density function Volume

g(µ,σ)(x) = e−
(x−µ)2

2σ2
∫
x
e−

(x−µ)2

2σ2 dx =
√

2πσ2

gλ(x) = e−λx
∫∞

0
e−λxdx = 1

λ

gθ(x) = h(x) exp(θT (x)) exp
(
log
∫
h(x) exp(θT (x))dx

)

5. The above functional forms seem to be restrictive but they are very useful as building

blocks for more complex distributions.

Hamid Beigy (Sharif University of Technology) 19 / 64

Representing probability distributions

1. Problem: The maintaining gθ(x) ≥ 0 is easy but it might not be normalized.

2. Solution: A solution is to normalize gθ(x) by its volume as

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
x gθdx

gθ(x)

3. Typically, we choose gθ(x) in such a way that the volume is known analytically.

4. By combining some building blocks, we obtain more complex models.

5. Autoregressive: Products of normalized functions pθ1 (x) pθ2(x)(y)

∫

x

∫

y

pθ1 (x) pθ2(x)(y)dxdy =

∫

x

pθ1 (x)

∫

y

pθ2(x)(y)dy

︸ ︷︷ ︸
=1

dx =

∫

x

pθ1 (x)dx = 1

6. Latent variables: Convex combination of normalized functions α pθ1 (x) + (1− α) pθ2 (y)
∫

x

α pθ1 (x) + (1− α) pθ2 (y)dx = α + (1− α) = 1

7. How about using models where the volume of gθ(x) is not easy to compute analytically?
Hamid Beigy (Sharif University of Technology) 20 / 64

Representing probability distributions

1. By restricting potential functions to be strictly positive, it is convenient to express them as

φc(xc) = exp[−Ec(xc)]

where Ec(xc) is called an energy function (Alternatively, happiness, H(x) = −E (x), is

used).

2. Hence, the negative log-potential is called energy.

3. The high-probability states correspond to low-energy configuration

4. The parametrized versions of the probability density functions

pθ(x) =
1

Zθ
exp

(
−
∑

c∈C
Ec(xc ; θ)

)

=
1

Zθ
exp(−Eθ(x))

5. Distributions of this exponential forms are called energy-based models, also known as

Gibbs (Boltzmann) distributions.

6. A benefit of EBM is that

energy functions are not constrained to be non-negative.

energy functions can be very flexible parametrized.
Hamid Beigy (Sharif University of Technology) 21 / 64

Representing probability distributions

An energy function and its corresponding probability distributions

Hamid Beigy (Sharif University of Technology) 22 / 64

Energy-Based Models

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

Eθ(x) (the energy) is a nonlinear regression function with parameters θ.

Zθ denotes the normalizing constant (partition function):

Zθ =

∫
exp(−Eθ(x))dx

Zθ is constant w.r.t x and is a function of θ.

2. Why exponential form?

Want to capture very large variations in probability. we want to work with log-probability.

Exponential families. Many common distributions can be written in this form.

These distributions arise under fairly general assumptions in statistical physics.

Hamid Beigy (Sharif University of Technology) 23 / 64

Representing probability distributions

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. Pros:

Extreme flexibility: can use any function Eθ(x) you want

3. Cons:

Sampling from pθ(x) is hard.

Evaluating and optimizing likelihood pθ(x) is hard (learning is hard).

No feature learning (but we can add latent variables)

4. Problem: A fundamental problem is that computing Zθ numerically scales exponentially

in the number of dimensions of x.

Hamid Beigy (Sharif University of Technology) 24 / 64

Representing probability distributions

1. For two vectors x and z, evaluating pθ(x) and pθ(z) requires Zθ

2. However, in some tasks such as ranking and anomaly detection, we do not require

knowing Zθ.

3. In these tasks, we need require relative comparisons of pθ(x) and pθ(z) such as their ratio:

pθ(x)

pθ(z)
= exp(Eθ(z)− Eθ(x))

does not involve computing Zθ.

Hamid Beigy (Sharif University of Technology) 25 / 64

Ising model

1. Let y ∈ {0, 1}3×3 be the true image and x ∈ {0, 1}3×3 be a corrupted image.

2. Corrupted image x ∈ {0, 1}3×3 is given and we must recover the true image y ∈ {0, 1}3×3.

3. We model the joint probability distribution p(x, y) as

p(x, y) =
1

Z
exp

∑

i

ψi (xi , yi) +
∑

(i,j)∈E
ψi,j(yi , yj)

where

ψi (xi , yi): the i-th corrupted pixel depends on the i-th original pixel

ψi,j(yi , yj): neighboring pixels tend to have the same value

4. How did the original image y look like? Solution: maximize p(y | x).
Hamid Beigy (Sharif University of Technology) 26 / 64

Product of Experts

1. Let n expert models pθ1 (x), . . . , pθm(x), each parameterized by θ1, . . . , θm, respectively.

2. The probability distribution of the product of experts (PoE) can be expressed as:

pθ(x) =

∏
k pθk (x)

Zθ
=

∏
k pθk (x)∑

z

∏
k pθk (z)

where θ = {θ1, . . . , θm}.

Image Source: (Du, Li, and Mordatch 2020)
Hamid Beigy (Sharif University of Technology) 27 / 64

Product of Experts

Image Source: (Du, Li, and Mordatch 2020)
Hamid Beigy (Sharif University of Technology) 28 / 64

Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units divided into visible and hidden.

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from

3. BMs are theoretically capable of learning any given distribution.

4. BMs set strengths of connections between units to capture their correlations to build a

generative network capable of producing new examples of the same distribution.

5. Since all variables in a BM are not directly observed, it gives us a handle to control the

sampling of new examples.

6. The model can take in an incomplete example and use it to output the complete version.

Hamid Beigy (Sharif University of Technology) 29 / 64

Boltzmann Machine (BM)

1. BM is a network with an energy defined for the overall network.

2. For a BM with only observed units, the energy is defined as

Eθ(x) = −x>Wx− b>x

3. Learning algorithms for BMs are usually based on maximum likelihood.

4. All BMs have an intractable partition function, so the maximum likelihood gradient must

be approximated.

5. A BM admits the following likelihood for points x1, . . . , xm.

L(x) =
n∏

i=1

p(xi)

6. We will work with the log-likelihood instead of the true likelihood.

7. The gradient w.r.t weights becomes

∇wi,j logL(x) = Ex∼ pθ(x)[xixj]− Ex∼ pθ(x)[xixj]

8. The gradient w.r.t biases becomes

∇bi logL(x) = Ex∼ pθ(x)[xi]− Ex∼ pθ(x)[xi]

Hamid Beigy (Sharif University of Technology) 30 / 64

Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:

Pick the hidden states from p(h).

Pick the visible states from p(v|h).

Fig. 1. A Boltzmann Machine with 5 visible units (in blue) and 5 hidden
units (in red).

learn complex distributions. However, they have not proven
useful on a practical level. Similar to Hopfield networks,
Boltzmann machines are fully connected networks of binary
units that use the same energy function. However, unlike
Hopfield networks, Boltzmann machines are not memory
driven and try to capture the inner structure and regularities
instead. The power of the binary Boltzmann Machine lies
in the hidden units that allow it to extend the simple linear
interactions to higher-order ones and give it the possibility to
model virtually any probabilistic distribution. The Energy of
the binary Boltzmann Machine is given by:

E(x) = −(
1

2

∑

ij

wijxixj +
∑

i

bixi) (1)

Where x = (x1, x2, . . . , xd) ∈ {0, 1}d, W = (wij)ij is the
weight matrix and B = (b1, x2, . . . , bd) is the bias vector.

The joint probability of the network is given by:

P (x) =
1

Z(b)
exp(−E(x)) (2)

Where Z(b) is the partition function that ensures P (x) ≤ 1.
Boltzmann machines are theoretically capable of learning

any given distribution simply by being shown examples sam-
pled from it. Essentially, the network sets the strengths of
the connections between the units to capture the correlations
that tie them together in order to build a generative network
capable of, among other things, producing new examples of
the same distribution. And since not all the variables (units)
in a Boltzmann machine are directly observed, it gives us a
handle to control the sampling of new examples. Furthermore,
the model can take in an incomplete example and use it to
output the complete version.

Learning in Boltzmann machines is of a Hebbian nature,
meaning to update a weight, we only need information
from the neighboring neurons. This means that learning in

Boltzmann machines is more biologically plausible. Hebbian
learning is one of the oldest learning algorithms. It can be
summarized as “Cells that fire together wire together.” [12]
In practice, neurons choose to either strengthen their link or
weaken it based on how often they agree in their outputs.
If two neurons would more often than not have the same
output, the learning algorithm puts more weight on their link.
Similarly, if they disagree most often, the link between them is
weakened. This learning process is said to be more biologically
plausible because it does not require any backlinks to be
maintained by the network to receive gradient information,
and every weight update relies only on the neighboring units.

2) Restricted Boltzmann Machine: The tractability of the
joint distribution is one of the biggest drawbacks of Boltzmann
machines. Restricted Boltzmann Machines (formally Harmo-
nium) [13] are a special type of Boltzmann machines with two
layers: One visible and one hidden layer, that was designed to
solve this problem. The RBM is a graphical model of binary
units. However, real-valued generalization is straightforward
[14] [15]. The connections in an RBM are undirected and
there are no visible-visible or hidden-hidden connections (fig.
2). Among other things, this bipartite architecture allows us
to have more control over the joint distribution by casting it
into a sum of conditional probabilities. RBMs are a powerful
replacement for fully connected Boltzmann machines when
building a deep architecture because of the independence of
units within the same layer, which allows for more freedom
and flexibility.

Fig. 2. A Restricted Boltzmann Machine with 3 visible units (in blue) and 4
hidden units (in red).

RBMs can be trained using the traditional techniques of
maximum likelihood [16]. Sampling from an RBM can be
done using Gibbs sampling method or any other Markov Chain
Monte Carlo (MCMC) [17] method.

3) Deep Boltzmann Machine: Deep Boltzmann Machine
(DBM) [18] is an undirected deep network of several hidden
layers. In DBMs every unit is connected to every unit from

2. The probability of generating a visible vector, v, is computed by summing over all possible

hidden states.

p(v) =
∑

h

p(h)p(v|h)

Hamid Beigy (Sharif University of Technology) 31 / 64

Gibbs sampling

1. Given an ordered set of variable, x1, . . . , xd , and a starting configuration x0 = (x0
1 , . . . , x

0
d),

Gibbs sampling uses the following procedure

Repeat until convergence for t = 1, 2, . . . ,

Set x← xt−1.

For each variable xi in the order we fixed:

1) Sample x ′i ∼ p(xi | x−i).

2) Update x← (x1, . . . , x ′i , . . . , xd).

Set xt ← x.

We use x−i to denote all variables in x except xi .

2. It is often very easy to performing each sampling step, since we only need to condition xi
on other variables.

3. Note that when we update xi , we immediately use its new value for sampling other

variables xj .

Hamid Beigy (Sharif University of Technology) 32 / 64

Restricted Boltzmann Machine (RBM)

1. The intractability of the joint distribution is one of the biggest drawbacks of BMs.

2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.

Fi
g.

1.
A

B
ol

tz
m

an
n

M
ac

hi
ne

w
ith

5
vi

si
bl

e
un

its
(i

n
bl

ue
)

an
d

5
hi

dd
en

un
its

(i
n

re
d)

.

le
ar

n
co

m
pl

ex
di

st
ri

bu
tio

ns
.

H
ow

ev
er

,
th

ey
ha

ve
no

t
pr

ov
en

us
ef

ul
on

a
pr

ac
tic

al
le

ve
l.

Si
m

ila
r

to
H

op
fie

ld
ne

tw
or

ks
,

B
ol

tz
m

an
n

m
ac

hi
ne

s
ar

e
fu

lly
co

nn
ec

te
d

ne
tw

or
ks

of
bi

na
ry

un
its

th
at

us
e

th
e

sa
m

e
en

er
gy

fu
nc

tio
n.

H
ow

ev
er

,
un

lik
e

H
op

fie
ld

ne
tw

or
ks

,
B

ol
tz

m
an

n
m

ac
hi

ne
s

ar
e

no
t

m
em

or
y

dr
iv

en
an

d
tr

y
to

ca
pt

ur
e

th
e

in
ne

r
st

ru
ct

ur
e

an
d

re
gu

la
ri

tie
s

in
st

ea
d.

T
he

po
w

er
of

th
e

bi
na

ry
B

ol
tz

m
an

n
M

ac
hi

ne
lie

s
in

th
e

hi
dd

en
un

its
th

at
al

lo
w

it
to

ex
te

nd
th

e
si

m
pl

e
lin

ea
r

in
te

ra
ct

io
ns

to
hi

gh
er

-o
rd

er
on

es
an

d
gi

ve
it

th
e

po
ss

ib
ili

ty
to

m
od

el
vi

rt
ua

lly
an

y
pr

ob
ab

ili
st

ic
di

st
ri

bu
tio

n.
T

he
E

ne
rg

y
of

th
e

bi
na

ry
B

ol
tz

m
an

n
M

ac
hi

ne
is

gi
ve

n
by

:

E
(x

)
=
−

(
1 2

∑ ij

w
ij

x
ix

j
+

∑ i

b i
x

i)
(1

)

W
he

re
x

=
(x

1
,x

2
,.

..
,x

d
)
∈

{0
,1

}d
,

W
=

(w
ij

) i
j

is
th

e
w

ei
gh

t
m

at
ri

x
an

d
B

=
(b

1
,x

2
,.

..
,b

d
)

is
th

e
bi

as
ve

ct
or

.
T

he
jo

in
t

pr
ob

ab
ili

ty
of

th
e

ne
tw

or
k

is
gi

ve
n

by
:

P
(x

)
=

1

Z
(b

)
ex

p
(−

E
(x

))
(2

)

W
he

re
Z

(b
)

is
th

e
pa

rt
iti

on
fu

nc
tio

n
th

at
en

su
re

s
P

(x
)
≤

1
.

B
ol

tz
m

an
n

m
ac

hi
ne

s
ar

e
th

eo
re

tic
al

ly
ca

pa
bl

e
of

le
ar

ni
ng

an
y

gi
ve

n
di

st
ri

bu
tio

n
si

m
pl

y
by

be
in

g
sh

ow
n

ex
am

pl
es

sa
m

-
pl

ed
fr

om
it.

E
ss

en
tia

lly
,

th
e

ne
tw

or
k

se
ts

th
e

st
re

ng
th

s
of

th
e

co
nn

ec
tio

ns
be

tw
ee

n
th

e
un

its
to

ca
pt

ur
e

th
e

co
rr

el
at

io
ns

th
at

tie
th

em
to

ge
th

er
in

or
de

r
to

bu
ild

a
ge

ne
ra

tiv
e

ne
tw

or
k

ca
pa

bl
e

of
,

am
on

g
ot

he
r

th
in

gs
,

pr
od

uc
in

g
ne

w
ex

am
pl

es
of

th
e

sa
m

e
di

st
ri

bu
tio

n.
A

nd
si

nc
e

no
t

al
l

th
e

va
ri

ab
le

s
(u

ni
ts

)
in

a
B

ol
tz

m
an

n
m

ac
hi

ne
ar

e
di

re
ct

ly
ob

se
rv

ed
,

it
gi

ve
s

us
a

ha
nd

le
to

co
nt

ro
lt

he
sa

m
pl

in
g

of
ne

w
ex

am
pl

es
.F

ur
th

er
m

or
e,

th
e

m
od

el
ca

n
ta

ke
in

an
in

co
m

pl
et

e
ex

am
pl

e
an

d
us

e
it

to
ou

tp
ut

th
e

co
m

pl
et

e
ve

rs
io

n.
L

ea
rn

in
g

in
B

ol
tz

m
an

n
m

ac
hi

ne
s

is
of

a
H

eb
bi

an
na

tu
re

,
m

ea
ni

ng
to

up
da

te
a

w
ei

gh
t,

w
e

on
ly

ne
ed

in
fo

rm
at

io
n

fr
om

th
e

ne
ig

hb
or

in
g

ne
ur

on
s.

T
hi

s
m

ea
ns

th
at

le
ar

ni
ng

in

B
ol

tz
m

an
n

m
ac

hi
ne

s
is

m
or

e
bi

ol
og

ic
al

ly
pl

au
si

bl
e.

H
eb

bi
an

le
ar

ni
ng

is
on

e
of

th
e

ol
de

st
le

ar
ni

ng
al

go
ri

th
m

s.
It

ca
n

be
su

m
m

ar
iz

ed
as

“C
el

ls
th

at
fir

e
to

ge
th

er
w

ir
e

to
ge

th
er

.”
[1

2]
In

pr
ac

tic
e,

ne
ur

on
s

ch
oo

se
to

ei
th

er
st

re
ng

th
en

th
ei

r
lin

k
or

w
ea

ke
n

it
ba

se
d

on
ho

w
of

te
n

th
ey

ag
re

e
in

th
ei

r
ou

tp
ut

s.
If

tw
o

ne
ur

on
s

w
ou

ld
m

or
e

of
te

n
th

an
no

t
ha

ve
th

e
sa

m
e

ou
tp

ut
,t

he
le

ar
ni

ng
al

go
ri

th
m

pu
ts

m
or

e
w

ei
gh

to
n

th
ei

r
lin

k.
Si

m
ila

rl
y,

if
th

ey
di

sa
gr

ee
m

os
to

ft
en

,t
he

lin
k

be
tw

ee
n

th
em

is
w

ea
ke

ne
d.

T
hi

s
le

ar
ni

ng
pr

oc
es

s
is

sa
id

to
be

m
or

e
bi

ol
og

ic
al

ly
pl

au
si

bl
e

be
ca

us
e

it
do

es
no

t
re

qu
ir

e
an

y
ba

ck
lin

ks
to

be
m

ai
nt

ai
ne

d
by

th
e

ne
tw

or
k

to
re

ce
iv

e
gr

ad
ie

nt
in

fo
rm

at
io

n,
an

d
ev

er
y

w
ei

gh
t

up
da

te
re

lie
s

on
ly

on
th

e
ne

ig
hb

or
in

g
un

its
.

2)
R

es
tr

ic
te

d
B

ol
tz

m
an

n
M

ac
hi

ne
:

T
he

tr
ac

ta
bi

lit
y

of
th

e
jo

in
td

is
tr

ib
ut

io
n

is
on

e
of

th
e

bi
gg

es
td

ra
w

ba
ck

s
of

B
ol

tz
m

an
n

m
ac

hi
ne

s.
R

es
tr

ic
te

d
B

ol
tz

m
an

n
M

ac
hi

ne
s

(f
or

m
al

ly
H

ar
m

o-
ni

um
)

[1
3]

ar
e

a
sp

ec
ia

lt
yp

e
of

B
ol

tz
m

an
n

m
ac

hi
ne

s
w

ith
tw

o
la

ye
rs

:O
ne

vi
si

bl
e

an
d

on
e

hi
dd

en
la

ye
r,

th
at

w
as

de
si

gn
ed

to
so

lv
e

th
is

pr
ob

le
m

.
T

he
R

B
M

is
a

gr
ap

hi
ca

l
m

od
el

of
bi

na
ry

un
its

.
H

ow
ev

er
,

re
al

-v
al

ue
d

ge
ne

ra
liz

at
io

n
is

st
ra

ig
ht

fo
rw

ar
d

[1
4]

[1
5]

.
T

he
co

nn
ec

tio
ns

in
an

R
B

M
ar

e
un

di
re

ct
ed

an
d

th
er

e
ar

e
no

vi
si

bl
e-

vi
si

bl
e

or
hi

dd
en

-h
id

de
n

co
nn

ec
tio

ns
(fi

g.
2)

.
A

m
on

g
ot

he
r

th
in

gs
,

th
is

bi
pa

rt
ite

ar
ch

ite
ct

ur
e

al
lo

w
s

us
to

ha
ve

m
or

e
co

nt
ro

l
ov

er
th

e
jo

in
t

di
st

ri
bu

tio
n

by
ca

st
in

g
it

in
to

a
su

m
of

co
nd

iti
on

al
pr

ob
ab

ili
tie

s.
R

B
M

s
ar

e
a

po
w

er
fu

l
re

pl
ac

em
en

t
fo

r
fu

lly
co

nn
ec

te
d

B
ol

tz
m

an
n

m
ac

hi
ne

s
w

he
n

bu
ild

in
g

a
de

ep
ar

ch
ite

ct
ur

e
be

ca
us

e
of

th
e

in
de

pe
nd

en
ce

of
un

its
w

ith
in

th
e

sa
m

e
la

ye
r,

w
hi

ch
al

lo
w

s
fo

r
m

or
e

fr
ee

do
m

an
d

fle
xi

bi
lit

y.

Fi
g.

2.
A

R
es

tr
ic

te
d

B
ol

tz
m

an
n

M
ac

hi
ne

w
ith

3
vi

si
bl

e
un

its
(i

n
bl

ue
)

an
d

4
hi

dd
en

un
its

(i
n

re
d)

.

R
B

M
s

ca
n

be
tr

ai
ne

d
us

in
g

th
e

tr
ad

iti
on

al
te

ch
ni

qu
es

of
m

ax
im

um
lik

el
ih

oo
d

[1
6]

.
Sa

m
pl

in
g

fr
om

an
R

B
M

ca
n

be
do

ne
us

in
g

G
ib

bs
sa

m
pl

in
g

m
et

ho
d

or
an

y
ot

he
rM

ar
ko

v
C

ha
in

M
on

te
C

ar
lo

(M
C

M
C

)
[1

7]
m

et
ho

d.
3)

D
ee

p
B

ol
tz

m
an

n
M

ac
hi

ne
:

D
ee

p
B

ol
tz

m
an

n
M

ac
hi

ne
(D

B
M

)
[1

8]
is

an
un

di
re

ct
ed

de
ep

ne
tw

or
k

of
se

ve
ra

l
hi

dd
en

la
ye

rs
.

In
D

B
M

s
ev

er
y

un
it

is
co

nn
ec

te
d

to
ev

er
y

un
it

fr
om

3. The connections in an RBM are undirected and the graph is a bipartite graph.

4. The probability density is calculated by

p(v,h) =
1

Zθ
exp(−Eθ(v,h))

Eθ(v,h) = −v>Wh− b>v − c>h

Zθ =
∑

v∈{0,1}D

∑

h∈{0,1}F
exp(−Eθ(v,h))

Hamid Beigy (Sharif University of Technology) 33 / 64

Restricted Boltzmann Machine

1. The learned receptive fields of Bernoulli–Bernoulli RBM

ST02CH15-Salakhutdinov ARI 14 March 2015 8:3

Training samples Learned receptive !elds
Training samples Learned receptive !elds

a b

Figure 2
A random subset of the training images along with the learned receptive fields. (a) The binary restricted
Boltzmann machine (RBM) trained on the Handwritten Characters data set (resolution is 28 × 28). (b) The
Gaussian–Bernoulli RBM trained on the CIFAR-100 data set (resolution is 32 × 32). Each square displays
the incoming weights from all of the visible variables into one hidden unit.

Specifically, let K be the dictionary size, M be the number of words appearing in a document,
and h ∈ {0, 1}F be stochastic binary hidden topic features. Let V be an M × K observed binary
matrix with vik = 1 if visible unit i takes on value k (meaning the ith word in the document is the
kth dictionary word). The energy of the state {V, h} can be defined as follows:

E(V, h) = −
M∑

i=1

F∑

j=1

K∑

k=1

Wi jkh j vik −
M∑

i=1

K∑

k=1

vikbik −
F∑

j=1

h j a j , (15)

where {W, a, b} are the model parameters. Wijk is a symmetric interaction term between visible
variable i that takes on value k and hidden variable j, bik is the bias of unit i that takes on value
k, and aj is the bias of hidden feature j. The model assigns the following probability to a visible
binary matrix V:

P (V ; θ) = 1
Z(θ)

∑

h

exp(−E(V, h; θ)), Z(θ) =
∑

V

∑

h

exp(−E(V, h; θ)). (16)

Now suppose that for each document, we create a separate RBM with as many softmax units
as there are words in the document. Assuming we can ignore the order of the words, all of these
softmax units can share the same set of weights connecting them to binary hidden units. In this
case, the energy of the state {V, h} for a document that contains M words is defined as follows:

E(V, h) = −
F∑

j=1

K∑

k=1

W jkh j v̂k −
K∑

k=1

v̂kbk − M
F∑

j=1

h j a j , (17)

W1

W1 W2

W2

h

v

h

v

W1
W1

W1

W2
W2

W2

W1 W2

Latent topics Latent topics
a b

Observed softmax visibles Multinomial visible

Figure 3
The replicated softmax model. The top layer represents a vector h of stochastic binary hidden topic features, and the bottom layer
consists of softmax visible variables, v. All visible variables share the same set of weights, connecting them to the binary hidden
variables. (a) Two members of a replicated softmax family for documents containing two and three words. (b) A different interpretation
of the replicated softmax model, in which M softmax variables with identical weights are replaced by a single multinomial variable that
is sampled M times.

www.annualreviews.org • Deep Learning 367

2. The learned receptive fields of Gaussian–Bernoulli RBM

ST02CH15-Salakhutdinov ARI 14 March 2015 8:3

Training samples Learned receptive !elds
Training samples Learned receptive !elds

a b

Figure 2
A random subset of the training images along with the learned receptive fields. (a) The binary restricted
Boltzmann machine (RBM) trained on the Handwritten Characters data set (resolution is 28 × 28). (b) The
Gaussian–Bernoulli RBM trained on the CIFAR-100 data set (resolution is 32 × 32). Each square displays
the incoming weights from all of the visible variables into one hidden unit.

Specifically, let K be the dictionary size, M be the number of words appearing in a document,
and h ∈ {0, 1}F be stochastic binary hidden topic features. Let V be an M × K observed binary
matrix with vik = 1 if visible unit i takes on value k (meaning the ith word in the document is the
kth dictionary word). The energy of the state {V, h} can be defined as follows:

E(V, h) = −
M∑

i=1

F∑

j=1

K∑

k=1

Wi jkh j vik −
M∑

i=1

K∑

k=1

vikbik −
F∑

j=1

h j a j , (15)

where {W, a, b} are the model parameters. Wijk is a symmetric interaction term between visible
variable i that takes on value k and hidden variable j, bik is the bias of unit i that takes on value
k, and aj is the bias of hidden feature j. The model assigns the following probability to a visible
binary matrix V:

P (V ; θ) = 1
Z(θ)

∑

h

exp(−E(V, h; θ)), Z(θ) =
∑

V

∑

h

exp(−E(V, h; θ)). (16)

Now suppose that for each document, we create a separate RBM with as many softmax units
as there are words in the document. Assuming we can ignore the order of the words, all of these
softmax units can share the same set of weights connecting them to binary hidden units. In this
case, the energy of the state {V, h} for a document that contains M words is defined as follows:

E(V, h) = −
F∑

j=1

K∑

k=1

W jkh j v̂k −
K∑

k=1

v̂kbk − M
F∑

j=1

h j a j , (17)

W1

W1 W2

W2

h

v

h

v

W1
W1

W1

W2
W2

W2

W1 W2

Latent topics Latent topics
a b

Observed softmax visibles Multinomial visible

Figure 3
The replicated softmax model. The top layer represents a vector h of stochastic binary hidden topic features, and the bottom layer
consists of softmax visible variables, v. All visible variables share the same set of weights, connecting them to the binary hidden
variables. (a) Two members of a replicated softmax family for documents containing two and three words. (b) A different interpretation
of the replicated softmax model, in which M softmax variables with identical weights are replaced by a single multinomial variable that
is sampled M times.

www.annualreviews.org • Deep Learning 367

Hamid Beigy (Sharif University of Technology) 34 / 64

Deep Belief Networks (DBN)

1. A single layer of binary features is not the best way to capture the structure in

high-dimensional input data.

2. DBN is a hybrid PGM involving both directed and undirected connections.

3. Deep belief networks consisting of many hidden layers.

Connections between top two layers are undirected

Connections between all other layers is directed, pointing towards data.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

p(v,h(1),h(2), . . . ,h(k)) = p(v|h(1))p(h(1)|h(2)) . . . p(h(k−2)|h(k−1))p(h(k−1),h(k))

4. p(h(k−1),h(k)) (the marginal distribution over the top two layers) is an RBM.

Hamid Beigy (Sharif University of Technology) 35 / 64

Deep Belief Networks Training

1. Deep belief networks training

1.1 We first train the bottom RBM with parameters W(1).

1.2 We then initialize the second layer weights to W(2) = W(1), ensuring that the

two-hidden-layer DBN is at least as good as our original RBM.

1.3 Improve the fit of the DBN to the training data by untying and refitting parameters W(2).

2. Find the variational lower bound of the log-likelihood of the two-hidden-layer DBN.

Hamid Beigy (Sharif University of Technology) 36 / 64

Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and Larochelle

2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

4. Derive the conditional probability of each layer given its above layer.

5. Derive derivative of the log-likelihood with respect to the model parameters.

Hamid Beigy (Sharif University of Technology) 37 / 64

Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

the adjacent layers. Similar to RBMs, there are no connections
between units of the same layer (fig. 3). DBMs can also be
viewed as a group of RBMs stacked together (fig. 4).

Fig. 3. A Deep Boltzmann Machine with 1 visible layer (in blue) and 3
hidden layers (in red).

Fig. 4. The same DBM from fig. 3 decomposed into 3 RBMs. Every two
consecutive layers, when taken together, will form an RBM.

Training of DBMs is often done in two stages: a pre-
training stage where every RBM is trained independently and
a fine tuning stage where the network is trained at once using
backpropagation. [19]

4) Deep Belief Networks: Deep belief networks are another
deep architectures consisting of many hidden layers that
revolutionized the deep learning scene when they were first
introduced in 2006. [20]. Similar to DBMs, DBNs do not have
connections within the same layer. The difference between the
two is that in DBN only the top two layers have directed
connections pointing towards the visible layer, the rest all
have undirected connections (fig. 5). The most widely used
method to train a DBN is a greedy layer-wise fast algorithm
introduced by Hinton et al. [21]. Similar to the algorithm
described above for training DBMs, this algorithm consists
of two stages: an initialization (fast) stage where every layer

is trained independently, and a fine tuning (slow) stage where
the network as a whole is trained using a variation of the
wake-sleep algorithm [22].

Fig. 5. A Deep Belief Network with a similar architecture to The DBM in
fig. 3. In DBNs, all connections are undirected except for the top two layers.

Sampling from a DBN is done by first running multiple
steps of Gibbs sampling on the two hidden layers with directed
connections. We then use the sampled latent variables to draw
samples from the visible units by running a step of ancestral
sampling through the network.

B. Autoencoders
An autoencoder is a neural network trained for the purpose

of recreating its input as the output. It is a feedforward non-
recurrent network of which the aim is to continually reduce
the dimensionality to a smaller hidden layer often called the
code representative of the input. In a similar but mirroring
process, the network then recreates the same input structure
from the code layer. The first part is called the encoder and
the second decoder (fig. 6).

The goal of an autoencoder is not to perfectly copy the input
to the output. Therefore, we must prevent it from learning a
trivial identity function which comes easily if the autoencoder
is not properly “restrained”. The aim is for our model to
pick up the underlying patterns and characteristics of the data
distribution to be able to generate new never seen before
examples of the same distribution as the examples provided
during the training phase. Formally, an autoencoder can be
written in a deterministic way (although, it is not usually the
case) as a composition of two functions:

x = fd(h) where h = fe(x)

Where fe is the encoder, fd is the decoder, x is the input
variable and h is the code.
Since an autoencoder is a particular case of neural networks,
it can be trained using the standard techniques for training
feedforward neural networks, such as mini batch gradient
descent and back-propagation.

2. Training of DBMs is often done in two stages:

A pre-training stage where every RBM is trained independently.

a fine tuning stage where the network is trained at once using backpropagation.

Hamid Beigy (Sharif University of Technology) 38 / 64

Deep Boltzmann Machine (DBM)

1. Considering two architectures for MNIST dataset.

 453

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W
1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

2. The results using Gibbs sampling.

 453

Deep Boltzmann Machines

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM 3-layer BM Training Samples

Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen-
erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities
of the binary visible units given the binary states of the hidden units.

h

output

h

W W

vq(h |v)

W
1

2

2

2

2 1T T

Figure 3: After learning, DBM is used to initialize a multilayer
neural network. The marginals of approximate posterior q(h2

j =
1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.

3.3 Discriminative Fine-tuning of DBM’s
After learning, the stochastic activities of the binary fea-
tures in each layer can be replaced by deterministic, real-
valued probabilities, and a deep Boltzmann machine can be
used to initialize a deterministic multilayer neural network
in the following way. For each input vector v, the mean-
field inference is used to obtain an approximate posterior
distribution q(h|v). The marginals q(h2

j = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu-
ral network as shown in Fig. 3. Standard backpropagation
can then be used to discriminatively fine-tune the model.

The unusual representation of the input is a by-product of
converting a DBM into a deterministic neural network. In
general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to
zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by
driving the first-layer W1 to zero. In all of our experi-
ments, however, the network uses the entire augmented in-
put for making predictions.

4 Experimental Results
In our experiments we used the MNIST and NORB
datasets. To speed-up learning, we subdivided datasets into

mini-batches, each containing 100 cases, and updated the
weights after each mini-batch. The number of fantasy par-
ticles used for tracking the model’s statistics was also set to
1002. For the stochastic approximation algorithm, we al-
ways used 5 Gibbs updates of the fantasy particles. The ini-
tial learning rate was set 0.005 and was gradually decreased
to 0. For discriminative fine-tuning of DBM’s we used
the method of conjugate gradients on larger mini-batches
of 5000 with three line searches performed for each mini-
batch in each epoch.

4.1 MNIST
The MNIST digit dataset contains 60,000 training and
10,000 test images of ten handwritten digits (0 to 9), with
28×28 pixels. In our first experiment, we trained two deep
Boltzmann machines: one with two hidden layers (500 and
1000 hidden units), and the other with three hidden lay-
ers (500, 500, and 1000 hidden units), as shown in Fig. 4.
To estimate the model’s partition function we used 20,000
βk spaced uniformly from 0 to 1.0. Table 1 shows that
the estimates of the lower bound on the average test log-
probability were−84.62 and−85.18 for the 2- and 3-layer
BM’s respectively. This result is slightly better compared
to the lower bound of−85.97, achieved by a two-layer deep
belief network (Salakhutdinov and Murray, 2008).

Observe that the two DBM’s, that contain over 0.9 and
1.15 million parameters, do not appear to suffer much from
overfitting. The difference between the estimates of the
training and test log-probabilities was about 1 nat. Fig. 4
shows samples generated from the two DBM’s by ran-
domly initializing all binary states and running the Gibbs
sampler for 100,000 steps. Certainly, all samples look
like the real handwritten digits. We also note that without
greedy pretraining, we could not successfully learn good
DBM models of MNIST digits.

2It may seem that 100 particles is not nearly enough to rep-
resent the model’s distribution which may be highly multimodal.
However, experience has shown that the fantasy particles move
around rapidly because the learning algorithm increases the en-
ergy at the location of each fantasy particle.

Hamid Beigy (Sharif University of Technology) 39 / 64

Training Energy-Based Models

Maximum Likelihood Training of EBMs

1. We use the maximum likelihood estimation to train EBMs:

2. Let

LNLL(θ) = − log
m∏

k=1

pθ(xk) = −Ex∼ pd(x)[log pθ(x)]

3. MLE is equivalent to minimizing DKL(pd(x) || pθ(x)):

LKL(θ) = DKL(pd(x) || pθ(x)) = Ex∼ pd(x)

[
log

pd(x)

pθ(x)

]

= Ex∼ pd(x)[log pd(x)]
︸ ︷︷ ︸

Independent of θ

−Ex∼ pd(x)[log pθ(x)]

= Constant + LNLL(θ)

4. We cannot directly compute the likelihood of an EBM as in the maximum likelihood

approach due to the intractable normalizing constant Zθ.

5. Nevertheless, we can still estimate the gradient of the log-likelihood with MCMC

approaches, allowing for likelihood maximization with gradient ascent.

Hamid Beigy (Sharif University of Technology) 40 / 64

Maximum Likelihood Training of EBMs

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. The gradient of negative log-likelihood (NLL) is decomposed to:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ

3. The first gradient term, −∇θEθ(x), is straightforward to evaluate with automatic

differentiation.

4. The challenge is in approximating the second gradient term, ∇θ logZθ, which is

intractable to compute exactly.

Hamid Beigy (Sharif University of Technology) 41 / 64

Maximum Likelihood of EBMs

∇θ logZθ an be rewritten as follows:

∇θ logZθ = ∇θ log

∫
exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1

∇θ
∫

exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1 ∫
∇θ exp(−Eθ(x))dx

=

(∫
exp(−Eθ(x))dx

)−1 ∫
exp(−Eθ(x))(−∇θ Eθ(x))dx

=

∫ (∫
exp(−Eθ(x))dx

)−1

exp(−Eθ(x))(−∇θ Eθ(x))dx

=

∫
exp(−Eθ(x))

Zθ
(−∇θ Eθ(x))dx

=

∫
pθ(x)(−∇θ Eθ(x))dx = Ex∼ pθ(x)[−∇θ Eθ(x)]

Hamid Beigy (Sharif University of Technology) 42 / 64

Maximum Likelihood Training of EBMs

1. Then, ∇θ LNLL(θ) equals to

∇θ LNLL(θ) = Ex∼ pd(x)[∇θ Eθ(x)]
︸ ︷︷ ︸

Positive phase

− Ex∼ pθ(x)[∇θ Eθ(x)]
︸ ︷︷ ︸

Negative phase

2. Positive phase tries to change the parameters to minimize the energy at points coming

from training set.

3. Negative phase tries to change the parameters to maximize the energy at points coming

from model.

Modern Training – Contrastive Divergence III

Figure 11: Taking steps in the direction of r✓E✓(xtrain)�r✓E✓(xsample).
Adapted from [LeCun et al., 2006].

Hamid Beigy (Sharif University of Technology) 43 / 64

Maximum Likelihood Training of EBMs

1. Then, ∇θ LNLL(θ) equals to

∇θ LNLL(θ) = Ex∼ pd(x)[∇θ Eθ(x)]
︸ ︷︷ ︸

Positive phase

− Ex∼ pθ(x)[∇θ Eθ(x)]
︸ ︷︷ ︸

Negative phase

2. For computing the negative phase, usually collect samples from pd(x) using Markov chains

and make a Monte Carlo estimate of the expectation.

3. The problem is that in practice MCMC chains mix very poorly on complex data.

4. An unbiased one-sample Monte Carlo estimate of log-likelihood gradient is

∇θ logZθ ≈ −∇θ Eθ(x̃)

where x̃ ∼ pθ(x) is a random sample from the distribution over x given by the EBM.

5. This algorithm is called contrastive divergence training.

Hamid Beigy (Sharif University of Technology) 44 / 64

Improved Contrastive Divergence training

1. The loss function equals to

LCD(θ) = DKL(pd(x) || pθ(x))︸ ︷︷ ︸
LNLL(θ)

−DKL

(
ptθ(x) || pθ(x)

)

where ptθ(x) is the distribution resulting from running t steps of the MC chain starting

from pd(x).

2. The second term is another negative likelihood loss.

3. The second term tries to minimize Ex∼ pt
θ(x)[pθ(x)].

4. It can be shown that the above loss function and negative log likelihood loss functions

have the same solution:

LCD(θ) = 0 =⇒ LNLL(θ) = 0

But they get there in different ways.

5. Homework: Drive the updating rule of the parameters (Gagnon and Lajoie 2022).

Hamid Beigy (Sharif University of Technology) 45 / 64

Gradient-based MCMC methods

1. As long as we can draw random samples from the model, we have access to an unbiased

Monte Carlo estimate of the log-likelihood gradient, allowing us to optimize the

parameters with stochastic gradient ascent.

2. Since drawing random samples is far from being trivial, much of the literature has focused

on methods for efficient MCMC sampling from EBMs.

3. Some efficient MCMC methods make use of the fact that the gradient of the

log-probability w.r.t. x (score) is equal to the (negative) gradient of the energy, therefore

easy to calculate:

∇x log pθ(x) = −∇xEθ(x)−∇x logZθ︸ ︷︷ ︸
=0

= −∇xEθ(x)

4. For example, Langevin MCMC initially draws a sample x0 from a simple prior distribution,

and then uses a process for K steps with step size ε > 0:

xk+1 ← xk +
ε2

2
∇x log pθ(x) + εzk

where zk ∼ N (0, I) is a Gaussian noise term.

Hamid Beigy (Sharif University of Technology) 46 / 64

Maximum Likelihood Training

1. The density function given by an EBM is

pθ(x) =
exp(−Eθ(x))

Zθ

2. The gradient of negative log-likelihood (NLL) is decomposed to:

∇θ log pθ(x) = −∇θEθ(x)−∇θ logZθ

3. The first gradient term, −∇θEθ(x), is straightforward to evaluate with automatic

differentiation, but the exact computation of the second term is interactable.

∇θ logZθ = Ex∼ pθ(x)[−∇θEθ(x)]

4. Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we

need sampling for each training iteration in contrastive divergence.

5. The goal is training without sampling

Score Matching

Noise Contrastive Estimation

Adversarial training

Hamid Beigy (Sharif University of Technology) 47 / 64

Training Energy-Based Models

Score-based methods

Score Matching (SM)

1. Let f (x) and g(x) be two continuously differentiable real-valued functions.

2. If f (x) and g(x) have equal first derivatives everywhere, then f (x) = g(x) + Constant.

3. When f (x) and g(x) are log-pdfs with equal first derivatives, the normalization

requirement implies that
∫

exp(f (x))dx =
∫

exp(g(x))dx = 1 and f (x) ≡ g(x).

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the

first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that

distribution.

7. For training EBMs, it is useful to transform the equivalence of distributions to the

equivalence of scores, because the score of an EBM can be easily obtained.

Hamid Beigy (Sharif University of Technology) 48 / 64

Score Matching (SM)

1. The score of an EBM can be easily obtained by ∇x log pθ(x) = −∇xEθ(x), which does not

involve the typically intractable normalizing constant Zθ.

2. The basic score matching objective minimizes a discrepancy between two distributions

called the Fisher divergence:

DFS(pd(x) || pθ(x)) = E pd(x)

[
1

2
‖∇x log pd(x)−∇x log pθ(x)‖2

]

3. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean

of samples x ∼ pd(x).

4. The second term is generally impractical to calculate since it requires knowing

∇x log pθ(x).

Hamid Beigy (Sharif University of Technology) 49 / 64

Training Energy-Based Models

Noise Contrastive Estimation based Methods

Noise Contrastive Estimation (NCE)

1. The core idea behind NCE is to distinguish data samples from a dataset (signal) from

artificially generated noise samples.

2. This is achieved by training a binary classifier that learns to classify whether a given

sample comes from the actual data distribution or from a noise distribution.

3. The classifier implicitly learns the parameters of the data distribution.

4. NCE involves the following steps:

4.1 A noise distribution is chosen, which should ideally be simple enough to sample from and

calculate probabilities.

4.2 Noise samples are generated from this noise distribution.

4.3 A logistic regression model is trained to discriminate between samples from the true data

distribution and the noise samples.

4.4 The parameters learned by the logistic regression model are then used as estimates for the

parameters of the true data distribution.

Hamid Beigy (Sharif University of Technology) 50 / 64

Noise Contrastive Estimation

1. Advantages of NCE over MLE methods

1.1 Computational Efficiency: NCE avoids the computation of the partition function, which

can be intractable for large models.

1.2 Scalability: NCE scales well with the size of the dataset and the complexity of the model.

1.3 Flexibility: NCE can be applied to a wide range of models, including those where MLE is

not feasible.

2. Challenges and considerations of using NCE

2.1 Choice of Noise Distribution: The performance of NCE is sensitive to the choice of noise

distribution. A poor choice can lead to suboptimal parameter estimation.

2.2 Hyperparameter Tuning: NCE requires careful tuning of hyperparameters, including the

number of noise samples and the learning rate for the classifier.

2.3 Convergence: Ensuring convergence of the estimation process can be challenging, especially

for complex models with many parameters.

Hamid Beigy (Sharif University of Technology) 51 / 64

Noise Contrastive Estimation

1. NCE is based on the idea that we can learn an Energy-Based Model by contrasting it with

another distribution with known density.

2. Let pd(x) be the data distribution, and let pn(x) be a chosen distribution with known

density, called a noise distribution.

3. This noise distribution is usually simple and has a tractable pdf, like N (0, I), such that we

can compute the pdf and generate samples from it efficiently.

4. Let y be a binary variable with Bernoulli distribution, which we use to define a mixture

distribution of noise and data:

pn,data(x) = p(y = 0) pn(x) + p(y = 1) pd(x)

5. Based on the Bayes’ rule, given a sample x from this mixture, the posterior probability of

y = 0 is

pn,data(y = 0 | x) =
pn,data(x | y = 0) p(y)

pn,data(x)
=

pn(x)

pn(x) + α pd(x)
Drive this equation.

where α = p(y=1)
p(y=0) .

Hamid Beigy (Sharif University of Technology) 52 / 64

Noise Contrastive Estimation

1. Let our energy-based model has the following form:

pθ(x) =
exp(−Eθ(x))

Zθ

2. Unlike other EBMs, Zθ is treated as a learnable (scalar) parameter in NCE.

3. Given this model, we can define a mixture of noise and the model distribution:

pn,θ(x) = p(y = 0) pn(x) + p(y = 1) pθ(x)

4. The posterior probability of y = 0 given this noise/model mixture is

pn,θ(y = 0 | x) =
pn(x)

pn(x) + α pθ(x)

Hamid Beigy (Sharif University of Technology) 53 / 64

Noise Contrastive Estimation

1. In NCE, we indirectly fit pθ(x) to pd(x) by fitting pn,θ(y | x) to pn,data(y | x) through a

standard conditional maximum likelihood objective:

θ∗ = arg minθ
{
E pn,data(x,y)[DKL(pn,data(y | x) || pn,θ(y | x))]

}

= arg maxθ
{
E pn,data(x,y)[log pn,θ(y | x)]

}
Derive this function

2. This optimization problem can be solved using stochastic gradient ascent.

3. Like any other deep classifier, when the model is sufficiently powerful, pn,θ∗(y | x) will

match pn,data(y | x) at the optimum.

pn,θ∗(y = 0 | x) = pn,data(y = 0 | x)

⇐⇒ pn(x)

pn(x) + α pn,θ∗(x)
=

pn(x)

pn(x) + α pn,data(x)

⇐⇒ pθ∗(x) = pd(x)

4. Consequently, Eθ∗(x) is an unnormalized energy function that matches the data

distribution pd(x), and Zθ∗ is the corresponding normalizing constant.

Hamid Beigy (Sharif University of Technology) 54 / 64

Training Energy-Based Models

Adversarial training

Adversarial training

1. When training EBMs with MLE, we need to sample from the EBM per training iteration.

2. Sampling using multiple MCMC steps is expensive and requires careful tuning of the

Markov chain.

3. One way to avoid this difficulty is to use non-MLE methods that do not need sampling,

such as Score Matching and Noise Contrastive Estimation.

4. We can sidestep costly MCMC sampling by learning an auxiliary model through adversarial

training, which allows fast sampling.

5. From the definition of EBMs, we can rewrite the maximum likelihood objective by

introducing a variational distribution qφ(x) parameterized by φ:

E pd(x)[log pθ(x)] = E pd(x)[−Eθ(x)]− logZθ

= E pd(x)[−Eθ(x)]− log

∫
exp(−Eθ(x))

= E pd(x)[−Eθ(x)]− log

∫
exp(−Eθ(x))

qφ(x)

qφ(x)

≤ E pd(x)[−Eθ(x)]−
∫

qφ(x) log
exp(−Eθ(x))

qφ(x)
Using Jensen inequality

= E pd(x)[−Eθ(x)]− E qφ(x)[−Eθ(x)]− H(qφ(x))

Hamid Beigy (Sharif University of Technology) 55 / 64

Adversarial training

1. The upperbound of E pd(x)[log pθ(x)] is

E pd(x)[log pθ(x)] ≤ E pd(x)[−Eθ(x)]− E qφ(x)[−Eθ(x)]− H(qφ(x))

2. For EBM training,

First minimize the upper bound with respect to qφ(x) so that it is closer to the likelihood

objective.

Then maximize with respect to Eθ(x) as a surrogate for maximizing likelihood.

3. This amounts to using the following maximin objective

max
θ

min
φ

E qφ(x)[Eθ(x)]− E pd(x)[Eθ(x)]− H(qφ(x))

4. Optimizing the above objective is similar to training GANs and can be achieved by

adversarial training.

5. The variational distribution qφ(x) should allow both fast sampling and efficient entropy

evaluation to make the maximin objective function tractable.

Hamid Beigy (Sharif University of Technology) 56 / 64

Hybrid Modeling

Hybrid Modeling

1. Consider using deep generative modeling in the context of finding the joint distribution

over observables and decision variables that is factorized as

p(x, y) = p(y | x) p(x)

where x ∈ RD and y ∈ {0, 1, . . . ,K − 1}.

2. By taking the logarithm of the joint we obtain two additive components:

log p(x, y) = log p(y | x) + log p(x)

3. How can we model the above problem using EBMs?

4. Let Eθ(x, y) be parameterized by a neural network NNθ(x) where its input is x and returns

K values: NNθ : RD 7→ RK .

5. This means that we can define energy function as

Eθ(x, y) = −NNθ(x)[y]

where [y] denotes the specific output of the neural networks NNθ(x).

Hamid Beigy (Sharif University of Technology) 57 / 64

Hybrid Modeling

1. Then, the joint probability distribution is defined as

p(x, y) =
exp(−Eθ(x, y))

Zθ

=
exp(NNθ(x)[y])

Zθ

2. The marginal distribution p(x) is

pθ(x) =
∑

y

p(x, y)

=

∑
y exp(NNθ(x)[y])

Zθ

3. We can re-write the numerator in the following manner:

∑

y

exp(NNθ(x)[y]) = exp

(
log

{∑

y

exp(NNθ(x)[y])

})

= exp(LogSumExpy (NNθ(x)[y]))

4. We can say that the energy function of the marginal distribution is expressed as

−LogSumExpy (NNθ(x)[y]).
Hamid Beigy (Sharif University of Technology) 58 / 64

Hybrid Modeling

1. The conditional distribution pθ(y | x) is

pθ(y | x) =
pθ(x, y)

pθ(x)

=

exp(NNθ(x)[y])
Zθ∑

y exp(NNθ(x)[y])

Zθ

=
exp(NNθ(x)[y])∑
y exp(NNθ(x)[y])

.

2. This means that the energy-based model could be used either as a classifier or a marginal

distribution.

3. Any any classifier could be seen as an energy-based model (Grathwohl et al. 2020).

4. The logarithm of the joint distribution is

log pθ(x, y) = log
exp(fθ(x)[y])∑

y exp(NNθ(x)[y])
+ log

∑
y exp(NNθ(x)[y])

Zθ

= log Softmax(NNθ(x)[y]) + (LogSumExpy (NNθ(x)[y])− logZθ)

Hamid Beigy (Sharif University of Technology) 59 / 64

Hybrid Modeling

1. The model requires a shared neural network that is used for calculating both distributions.

2. We have a single neural network to train and the training objective is the logarithm of the

joint distribution.

3. The training objective is a sum of the logarithm of the conditional pθ(y | x) and the

logarithm of the marginal pθ(x).

4. Calculating the gradient with respect to the parameters θ requires taking the gradient of

each of the component separately (Derive the weight update equations).

Hamid Beigy (Sharif University of Technology) 60 / 64

Summary

Summary

1. Both Variational Autoencoders and EBM learn the parameters by maximizing the

(marginal) log-likelihood, which can be interpreted also as the minimization of

DKL(pd(x) || pθ(x)).

2. VAEs are intrinsically latent variable models imposing an information bottleneck and

approximating the posterior on the latent variables pd(z | x) through variational inference,

whereas EBMs generally are not.

3. EBMs can easily extended to latent variable models (Xiao, Yan, and Amit 2020).

4. Che et. al. showed that GANs can be better understood through the lens of EBM (Che

et al. 2020).

5. They showed that GAN generators and discriminators collaboratively learn an implicit

energy-based model.

Hamid Beigy (Sharif University of Technology) 61 / 64

References

Reading

1. Paper Learning Deep Generative Models (Salakhutdinov 2015).

2. Chapter A Tutorial on Energy-Based Learning (Lecun et al. 2006).

3. Paper How to Train Your Energy-Based Models (Song and Kingma 2021).

4. Chapter 24 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

5. Chapter 7 of Deep Generative Modeling (Tomczak 2024).

Hamid Beigy (Sharif University of Technology) 62 / 64

References i

Che, Tong et al. (2020). “Your GAN is Secretly an Energy-based Model and You Should Use

Discriminator Driven Latent Sampling”. In: Advances in Neural Information Processing

Systems.

Du, Yilun, Shuang Li, and Igor Mordatch (2020). “Compositional Visual Generation with

Energy Based Models”. In: Advances in Neural Information Processing Systems.

Gagnon, Léo and Guillaume Lajoie (2022). Clarifying MCMC-based training of modern EBMs :

Contrastive Divergence versus Maximum Likelihood. arXiv: 2202.12176.

Grathwohl, Will et al. (2020). “Your classifier is secretly an energy based model and you should

treat it like one”. In: International Conference on Learning Representations.

Lecun, Yann et al. (2006). “A tutorial on energy-based learning”. In: Predicting structured

data. Ed. by G. Bakir et al. MIT Press.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press.

Salakhutdinov, Ruslan (2015). “Learning Deep Generative Models”. In: Annual Review of

Statistics and Its Application 2, pp. 361–385.

Salakhutdinov, Ruslan and Hugo Larochelle (2010). “Efficient Learning of Deep Boltzmann

Machines”. In: Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics (AISTATS). Vol. 9, pp. 693–700.

Song, Yang and Diederik P. Kingma (2021). “How to Train Your Energy-Based Models”. In:

CoRR abs/2101.03288.

Hamid Beigy (Sharif University of Technology) 63 / 64

https://arxiv.org/abs/2202.12176

References ii

Tomczak, Jakub M. (2024). Deep Generative Modeling. Springer.

Xiao, Zhisheng, Qing Yan, and Yali Amit (2020). “Exponential Tilting of Generative Models:

Improving Sample Quality by Training and Sampling from Latent Energy”. In: CoRR

abs/2006.08100.

Hamid Beigy (Sharif University of Technology) 64 / 64

Questions?

Hamid Beigy (Sharif University of Technology) 64 / 64

	Introduction
	Probabilistic Graphical Models
	Energy-Based Models
	Training Energy-Based Models
	Score-based methods
	Noise Contrastive Estimation based Methods
	Adversarial training

	Hybrid Modeling
	Summary
	References

