Modern Information Retrieval
Index compression
Hamid Beigy

Sharif university of technology

February 23, 2025

Table of contents

1. Introduction

2. Characterization of an index

3. Dictionary compression

4. Compressing the dictionary

5. Compressing the posting lists

6. Conclusion

7. References

Hamid Beigy (Sharif university of technology) 1/33

Introduction

Boolean model'

lawyer AND
Penang AND
NOT silver

T

5
T

c

=

Output
Set of documents Subset of documents

ICredit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 2/33

Inverted index?

£6i7 weenp I 1NN NN I I N IR
s wemp [1NN I I NN I
—— T L
cata e (SN Kl KN
cru mump [
information . [NGRN s 9
retrieval ‘. n

2Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 3/33

Dictionary structures?

Hash tables Trees (B, B+)

3Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 4/33

Term mapping*

lawyer AND
Penang AND
NOT silver

T

5
T

c

=

Output
Set of documents Subset of documents

4Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 5/33

Bi-word index®

Help ETH Zurich to flexibly react to new challenges and to
set new accents in the future.

Help ETH
ETH Zurich
Zurich to

to flexibly
flexibly react

react to

5Credit: Ghislain Fourny

Hamid Beigy (Sharif university of technology) 6 /33

Positional index®

"ETH Zurich"|

Help
ETH
Zurich
to

flexibly

react

6Credit: Ghislain Fourny

Hamid Beigy (Sharif university of technology) 7/33

[com[ers [err]
$8 8 333

computer terran terran computer terran computer computer terran terran
computer computer ‘ omputer

7Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 8/33

Auxiliary index®

Spp—
nformation [N N Ausxiliary index
course mummp [N [N

ey 4 § § f§ f B
T e I O
Information ‘. - - - Viain indox

SR

8Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 9/33

Characterization of an index

Characterization of an index

Considering the Reuters-RCV1 collection

size of dictionary non-positional index positional index

size A cum. size A cum. size A cum.
unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2% -2% 100,680,242 -8% -8% 179,158,204 -9% -9%
case folding 391,523 -17% -19% 96,969,056 3% -12% 179,158,204 -0% -9%
30 stop words 391,493 -0% -19% 83,390,443 -14% -24% 121,857,825 -31% -38%
150 stop words 391,373 0% -19% 67,001,847 -30% -39% 94,516,599 -47% -52%
stemming 322,383 -17% -33% 63,812,300 -4% -42% 94,516,599 0% -52%

Hamid Beigy (Sharif university of technology) 10 / 33

Statistical properties of terms

1. The vocabulary grows with the corpus size
2. Empirical law determining the number of term types in a collection of size M (Heap's law)
M = kT®
T is the number of tokens, and k (growth-rate) and b are two parameters defined as:

b~ 0.5 30 <k <100

3. On the REUTERS corpus for the first 1,000,020 tokens (taking k = 44 and b = 0.49):
M = 44 % 1,000,020%° = 38,323 The actual number: 38,365

logio M
3
1

Hamid Beigy (Sharif university of technology) 0 2 4 6 8 11/33

Modeling the distribution of terms (Zipf’s law)

1. We want understand how terms are distributed across documents.
2. We want know how many frequent vs. infrequent terms.
3. In natural language, there are a few very frequent terms and very many very rare terms.

4. Zipf's law: The i most frequent term has frequency cf; as
cf; x =
i

cf; is collection frequency: the number of occurrences of the term t; in the collection.
5. It means: rank of a word (cf;) times its frequency (i) is approximately a constant (k).

6. So if the most frequent term (the) occurs cf; times, then

1
cfy = chl

1
Cf3 = §Cf1

1
ka = ;Cfl

Hamid Beigy (Sharif university of technology)

12/33

Modeling the distribution of terms (Zipf’s law)

1. Equivalently, we can write Zipf's law as

of; = ci*

logcf; =logc+ klogi for k= -1

log10 cf

log10 rank

Hamid Beigy (Sharif university of technology) 13 /33

Modeling the distribution of terms (Zipf’s law)

1. How about the probability of occurrence of a word?
2. The probability is:
the frequency of the word divided by the total number of word occurrences in the text.

3. For Zipf's law, we have

-0

pi = for English, ¢ ~ 0.1.

Probability g5

(of occurrence)

0 10 20 30 40 50 60 70 80 90 100

Rank
{by decreasing frequency)

4. This figure shows how the frequency of word occurrence falls rapidly after the first few
most common words.

Hamid Beigy (Sharif university of technology) 14 / 33

Most frequent 50 words from AP89

Word Freq. v Pp(%) r.P| Word Freg v Pr(%) 1P,
the 2,420,778 1 6.49 0.065| has 136,007 26 0.37 0.095
of 1,045,733 2 2.80 0.056]| are 130,322 27 0.35 0.094
to 968,882 3 2.60 0.078| not 127,493 28 0.34 0.096
a 892,429 4 2.39 0.096| who 116,364 29 0.31 0.090
and 865,644 S 232 0.120| they 111,024 30 0.30 0.089
in 847,825 6 2.27 0.140| its 111,021 31 0.30 0.092
said 504,593 7 1.35 0.095| had 103,943 32 0.28 0.089
for 363,865 8 0.98 0.078| will 102,949 33 0.28 0.091
that 347,072 9 0.93 0.084| would 99,503 34 027 0.091
was 293,027 10 0.79 0.079| about 92,983 35 0.25 0.087
on 291,947 11 0.78 0.086| i 92,005 36 0.25 0.089
he 250,919 12 0.67 0.081| been 88,786 37 0.24 0.088
is 245,843 13 0.65 0.086| this 87,286 38 0.23 0.089
with 223,846 14 0.60 0.084| their 84,638 39 0.23 0.089
at 210,064 15 0.56 0.085| new 83,449 40 0.22 0.090
by 209,586 16 0.56 0.090| or 81,796 41 0.22 0.090
it 195,621 17 0.52 0.089| which 80,385 42 0.22 0.091
from 189,451 18 0.51 0.091| we 80,245 43 0.22 0.093
as 181,714 19 0.49 0.093| more 76,388 44 0.21 0.090
be 157,300 20 0.42 0.084| after 75,165 45 0.20 0.091
were 153,913 21 0.41 0.087| us 72,045 46 0.19 0.089
an 152,576 22 0.41 0.090 percent 71,956 47 0.19 0.091
have 149,749 23 0.40 0.092| up 71,082 48 0.19 0.092
his 142,285 24 0.38 0.092| one 70,266 49 0.19 0.092

but 140,880 25 038 0.094| people 68988 50 0.19 0.093

Hamid Beigy (Sharif university of technology) 15 /33

Dictionary compression

B-Tree for Dictionary®

| possess | | |

come | is merel

\

almost | be caref\y |iS |it |Laer\es | |POSSGSS Zhoul take |thy In’me \{\to |
y |

/

come | fair | hou merely

|that | thine | this | | upon |yuu |your |

Pointers
to postings lists

9Credit: Ghislain Fourny
Hamid Beigy (Sharif university of technology) 16 / 33

Dictionary compression

1. The dictionary is small compared to the postings file.
2. But we want to keep it in memory.
3. We compress the dictionary because of

o Reduce the response time of an IR system

o We want design the search system for systems with limited hardware such as cell phones,

onboard computers.
o Fast startup time

o Sharing resurces with other applications.

4. So compressing the dictionary is important.

Hamid Beigy (Sharif university of technology) 17 /33

Index format with fixed-width entries

term document frequency pointer to postings list postings list
a 656,265 —
aachen 65 —
zulu 221 —
40 4 4 space needed

1. Total space for using Unicode and fixed-width entries (term-length=20):

M x (2 x 20 + 4 + 4) = 400,000 x 48 = 19.2 MB

2. Without using Unicode:

M x (20 + 4 + 4) = 400,000 x 28 = 11.2 MB

3. Remarks
o The average length of a word type for REUTERS is 7.5 bytes
o With fixed-length entries, a one-letter term is stored using 20 bytes!
e Some very long words (such as hydrochlorofluorocarbons) cannot be handled.

o How can we extend the dictionary representation to save bytes and allow for long words?
Hamid Beigy (Sharif university of technology) 18 /33

Compressing the dictionary

Dictionary as a string

..systilesyzygeticsyzygialsyzygyszaibely

freq. postings ptr. term ptr.

9 —
92 —
5 —
71 —
12 —

4 bytes 4 bytes 3 bytes
1. 3 bytes per pointer into string (need log,(400000 x 8) ~ 22 bits to resolve 400,000
positions).
2. 8 chars (on average) for term in string

3. Using Unicode: 400,000 x (4 +4 + 3+ 2 x 8) = 10.8MB (compared to 19.2 MB for
fixed-width)

4. Without using Unicode: 400,000 x (4 +4 4 3+ 8) = 7.6 MB (compared to 11.2 MB for
fixed-width)

Hamid Beigy (Sharif university of technology) 19 /33

Block storage

...Tsystile9syzygetic8syzygialbsyzygyllszaibelyit

freq. postings ptr. term ptr.
9 —
92 —
5 —
71 —
12 —

1. Let us consider blocks of size k
2. We remove k — 1 pointers, but add k bytes for term length

3. Example: k =4, (k — 1) x 3 bytes saved (pointers), and 4 bytes added (term length) — 5
bytes saved

4. Space saved: 400,000 x (1) x 5= 0.5 MB (dictionary reduced to 10.3 MB and for
non-Unicode 7.1MB)

5. Why not taking k > 4 7

Hamid Beigy (Sharif university of technology) 20/ 33

Search in dictionary

1. Uncompressed dictionary

Average search cost: (0+1+2+3+2+1+2+2)/8~ 1.6 steps

2. Compressed dictionary with blocking

Average search cost: (0+1+2+3+4+1+2+ 3)/8~ 2 steps

Hamid Beigy (Sharif university of technology) 21/33

Front coding

1. Many words have the same prefix. We can write common prefix once.

2. One block in blocked compression (k = 4)

8automata8automate9automaticl0automation

3. Compressed with front coding.

8automatkxaloe2¢ic3oion
4. End of prefix marked by =

5. Deletion of prefix marked by ¢

Hamid Beigy (Sharif university of technology) 22/33

Dictionary compression for Reuters

representation

size (unicode)

size (non-unicode)

dictionary, fixed-width
dictionary as a string

~, with blocking, k =4

~, with blocking & front coding

19.2MB
10.8MB
10.3MB
7.9MB

11.2MB
7.6MB
7.1MB
5.9MB

Hamid Beigy (Sharif university of technology)

23/33

Compressing the posting lists

Compressing the posting lists

1. The REUTERS collection has

o about 800 000 documents,

o each having 200 tokens
2. Since tokens are encoded using 6 bytes, the collection’s size is 960 MB
3. A docld must cover all the collection, i.e. must be /og>800,000 ~ 20 bits

4. If the collection includes about 100,000, 000 postings, the size of the posting lists is
100, 000, 000 x 20/8 = 250MB

5. How to compress these postings ?
6. ldea: most frequent terms occur close to each other.

7. We encode the gaps between occurrences of a given term

Hamid Beigy (Sharif university of technology) 24 /33

encoding postings list

the doclDs . 283042 283043 283044 283045
gaps 1 1 1

computer doclDs e 283047 283154 283159 283202
gaps 107 5 43

arachnocentric doclDs 252000 500100
gaps 252000 248100

Furthermore, small gaps are represented with shorter codes than big gaps.
Two techniques
@ Variable-length byte-codes (Byte-level)

o ~-codes (Bit-level)

Hamid Beigy (Sharif university of technology) 25 /33

Compressing the posting lists

Using variable-length byte-codes

Using variable-length byte-codes

1. Variable-length byte encoding uses an integral number of bytes to encode a gap
o First bit := continuation byte
o Last 7 bits := part of the gap

2. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise

3. Example: a gap of size 5 is encoded as 10000101

Example
doclDs 824 829 215406
gaps 5 214577

VB code 00000110 10111000 10000101 00001101 00001100 10110001
What is the code for a gap of size 12837

4. The posting lists for the REUTERS collection are compressed to 116 MB with this
technique (original size: 250 MB)

5. The idea of representing gaps with variable integral number of bytes can be applied with
units that differ from 8 bits

6. Larger units can be processed (decompression) quicker than small ones, but are less
effective in terms of compression rate

Hamid Beigy (Sharif university of technology) 26 /33

Compressing the posting lists

Using y-codes

Using y-codes

1. ldea: representing numbers with a variable bit code
n times
. ~

2. Unary code: the number nis encoded as: 11... 0

(not efficient)

3. ~v-code: variable encoding done by splitting the representation of a gap as follows:

’ length ‘ offset ‘

o offset is the binary encoding of the gap (without the leading 1)

o length is the unary code of the offset size

Hamid Beigy (Sharif university of technology) 27 /33

Unary and v-codes

number unary code length offset ~ code

0 0

1 10 0 0

2 110 10 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Hamid Beigy (Sharif university of technology)

28 /33

Example

1. Given the following y-coded gaps:

1110001110101011111101101111011
2. Decode these, extract the gaps, and recompute the posting list
3. v-decoding :
o first reads the length (terminated by 0),
o then uses this length to extract the offset,

o and eventually prepends the missing 1

1110001 - 11010 - 101 - 11111011011 - 11011

Hamid Beigy (Sharif university of technology) 29 /33

Compression of Reuters: Summary

representation size in MB size in MB

Unicode | non-unicode
dictionary, fixed-width 19.2 11.2
dictionary, term pointers into string 10.8 7.6
~, with blocking, k = 4 10.3 7.1
~, with blocking & front coding 7.9 5.3
collection (text, xml markup etc) 3600.0 3600.0
collection (text) 960.0 960.0
term incidence matrix 40,000.0 40,000.0
postings, uncompressed (32-bit words) 400.0 400.0
postings, uncompressed (20 bits) 250.0 250.0
postings, variable byte encoded 116.0 116.0
postings, v encoded 101.0 101.0

Hamid Beigy (Sharif university of technology)

Conclusion

Conclusion

1. y-codes achieve better compression ratios (about 15 % better than variable bytes
encoding), but are more complex (expensive) to decode

2. This cost applies on query processing — trade-off to find

3. The objectives announced are met by both techniques, recall:
o reducing the disk space needed

o reducing the time processing, by using a cache
4. The techniques we have seen are lossless compression (no information is lost)

5. Lossy compression can be useful, e.g. storing only the most relevant postings (more on
this in the ranking lecture)

Hamid Beigy (Sharif university of technology) 31/33

References

Reading

1. Chapters 5 of Information Retrieval Book!?

2. Sections 4.2 and 5.4 of Search Engines - Information Retrieval in Practice Book!!

10Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press.
11W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information Retrieval in

Practice. Pearson Education.
Hamid Beigy (Sharif university of technology) 32/33

References

@ Croft, W. Bruce, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information
Retrieval in Practice. Pearson Education.

M Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to
Information Retrieval. New York, NY, USA: Cambridge University Press.

Hamid Beigy (Sharif university of technology) 33/33

Questions?

	Introduction
	Characterization of an index
	Dictionary compression
	Compressing the dictionary
	Compressing the posting lists
	Using variable-length byte-codes
	Using -codes

	Conclusion
	References

