
Modern Information Retrieval

Index Construction

Hamid Beigy

Sharif university of technology

February 21, 2025

Table of contents

1. Introduction

2. Sort-based index construction

3. Single–pass in-memory indexing (SPIMI)

4. Distributed indexing

5. Dynamic indexing

6. References

Hamid Beigy (Sharif university of technology) 1 / 31

Introduction

Inverted index

1. The goal is constructing inverted index

Inverted index

For each term t, we store a list of all documents that contain t.
Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

4 / 62
Hamid Beigy (Sharif university of technology) 2 / 31

RCV1 collection

1. An example for applying scalable index construction algorithms, we will use the Reuters

RCV1 collection.

2. English newswire articles sent over the wire in 1995 and 1996 (a year).

3. RCV1 statistics

Number of documents (N): 800,000

Number of tokens per document (L): 200

Number of distinct terms (M) : 400,000

Bytes per token (including spaces): 6

Bytes per token (without spaces): 4.5

Bytes per term: 7.5

4. Why does the algorithm given in previous sections not scale to very large collections?

Hamid Beigy (Sharif university of technology) 3 / 31

Sort-based index construction

Sort-based index construction

1. As we build index, we parse docs one at a time.

2. The final postings for any term are incomplete until the end.

3. Can we keep all postings in memory and then do the sort in-memory at the end?

No, not for large collections

Thus: We need to store intermediate results on disk.

4. Can we use the same index construction algorithm for larger collections, but by using disk

instead of memory?

No: Sorting very large sets of records on disk is too slow– too many disk seeks.

5. We need an external sorting algorithm.
158 5 Ranking with Indexes

Fig. 5.9. An example of index merging. The first and second indexes are merged together
to produce the combined index.

Since I\ and /2 may have used the same document numbers, the merge function
renumbers documents in /2.

This merging process can succeed even if there is only enough memory to store
two words (wi and w^}, a single inverted list posting, and a few file pointers. In
practice, a real merge function would read large chunks of I\ and /2, and then
write large chunks to / in order to use the disk most efficiently.

This merging strategy also shows a possible parallel indexing strategy. If many
machines build their own partial indexes, a single machine can combine all of
those indexes together into a single, final index. However, in the next section,
we will explore more recent distributed indexing frameworks that are becoming
popular.

5.6.3 Parallelism and Distribution

The traditional model for search engines has been to use a single, fast machine to
create the index and process queries. This is still the appropriate choice for a large
number of applications, but it is no longer a good choice for the largest systems.
Instead, for these large systems, it is increasingly popular to use many inexpen-
sive servers together and use distributed processing software to coordinate their
activities. MapReduce is a distributed processing tool that makes this possible.

Two factors have forced this shift. First, the amount of data to index in the
largest systems is exploding. Modern web search engines already index tens of bil-
lions of pages, but even larger indexes are coming. Consider that if each person on
earth wrote one blog post each day, the Web would increase in size by over two
trillion pages every year. Optimistically, one typical modern computer can handle
a few hundred million pages, although not with the kind of response times that

Hamid Beigy (Sharif university of technology) 4 / 31

External sorting algorithm

1. We must sort T = 100,000,000 non-positional postings.

2. Each posting has size 12 bytes (4+4+4: termID, docID, term frequency).

3. Define a block to consist of 10,000,000 such postings

4. We can easily fit that many postings into memory.

5. Basic idea of algorithm:

6. For each block do

accumulate postings

sort in memory

write to disk

7. Then merge the blocks into one long sorted order.

Hamid Beigy (Sharif university of technology) 5 / 31

Merging two blocksMerging two blocks

Block 1
brutus d3
caesar d4
noble d3
with d4

Block 2
brutus d2
caesar d1
julius d1
killed d2

postings
to be merged brutus d2

brutus d3
caesar d1
caesar d4
julius d1
killed d2
noble d3
with d4

merged
postings

disk

25 / 54

Hamid Beigy (Sharif university of technology) 6 / 31

Problem with sort-based algorithm

1. The assumption was: we can keep the dictionary in memory.

2. We need the dictionary (which grows dynamically) in order to implement a term to termID

mapping.

3. Actually, we could work with term,docID postings instead of termID,docID postings . . .

4. The intermediate files become very large.

5. We would end up with a scalable, but very slow index construction method.

Hamid Beigy (Sharif university of technology) 7 / 31

Single–pass in-memory indexing (SPIMI)

Single–pass in-memory indexing (SPIMI)

1. Key idea 1: Generate separate dictionaries for each block - no need to maintain

term–termID mapping across blocks.

2. Key idea 2: Don’t sort. Accumulate postings in postings lists as they occur.

3. With these two ideas we can generate a complete inverted index for each block.

4. These separate indexes can then be merged into one big index.

5. Compression makes SPIMI even more efficient.

Compression of terms

Compression of postings

Hamid Beigy (Sharif university of technology) 8 / 31

Single–pass in-memory indexing (SPIMI)

SPIMI-Invert

SPIMI-Invert(token stream)
1 output file ← NewFile()
2 dictionary ← NewHash()
3 while (free memory available)
4 do token ← next(token stream)
5 if term(token) /∈ dictionary
6 then postings list ← AddToDictionary(dictionary ,term(token))
7 else postings list ← GetPostingsList(dictionary ,term(token))
8 if full(postings list)
9 then postings list ← DoublePostingsList(dictionary ,term(token))

10 AddToPostingsList(postings list,docID(token))
11 sorted terms ← SortTerms(dictionary)
12 WriteBlockToDisk(sorted terms,dictionary ,output file)
13 return output file
Merging of blocks is analogous to BSBI.

30 / 54Hamid Beigy (Sharif university of technology) 9 / 31

How can we index web-scale data?

1. For web-scale indexing: must use a distributed computer system

2. Individual machines are fault-prone.

Can unpredictably slow down or fail.

3. How do we exploit such a pool of machines?

4. Distributed index is partitioned across several machines - either

according to term or

according to document.

Hamid Beigy (Sharif university of technology) 10 / 31

Distributed indexing

Google Example

1. Crawling and indexing the web pages.

The number of web pages: 10 billion

Average size of web page: 20 KB

The average size of the whole data: 200 TB

The data is stored on a single disk and tends to be processed in CPU.

Motivation: Google Example
Crawling and indexing the web pages

• Split the data into chunks

• Store and process the data in parallel in multiple disks and CPUs

• e.g., 1,000 disks and CPUs

➪ Time to read = 4 million seconds / 1,000 = 4,000 seconds

• Cluster Computing

Memory

CPUGPU

Disk

One computer reads 50 MB/sec from disk (disk read bandwidth).

Time to read: 4 million seconds ≈ 46 days

2. Even longer to do useful things with the data.

3. Solution: Cluster computing

Hamid Beigy (Sharif university of technology) 11 / 31

Cluster architecture

1. Every rack has 42-48 units, containing 16-64 nodes.

2. Ex. Each computer is commodity Linux nodes.

Cluster Architecture

Each rack contains 16-64 nodes
e.g., commodity Linux nodes

…

???

Memory

CPU

Disk

Memory

CPU

Disk

Node Node

Hamid Beigy (Sharif university of technology) 12 / 31

Cluster architecture

1. Switch connecting nodes

2. Ex. 10 GB/sec bandwidth between any pair of nodes in a rack

Cluster Architecture

Each rack contains 16-64 nodes
e.g., commodity Linux nodes

Switch - connect nodes
e.g., 1 GB/sec bandwidth between any
pair of nodes in a rack

…

Switch

Memory

CPU

Disk

Memory

CPU

Disk

Node Node

Hamid Beigy (Sharif university of technology) 13 / 31

Cluster architecture

1. Backbone switch connecting racks

2. Ex. 100 GB/sec bandwidth between racks.

Hamid Beigy (Sharif university of technology) 14 / 31

Cluster architecture

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0ROHamid Beigy (Sharif university of technology) 15 / 31

Challenges in cluster computing

Node failures

one server can stay up 3 years (1,000

days)

1,000 servers in cluster → 1 failure/day

1M servers in cluster → 1,000 failure/day

What does it happen to its data and

its computations?

Network bottleneck

Let network bandwidth: 1 GB/sec

Time for moving 10TB data: 1 day

Distributed/parallel programming is hard

Consider the life-cycle for Java threads.

A programming model that hides most

of the complexity.

Cluster Computing Challenges III

• Distributed/parallel programming is hard

➪ A simple model that hides most of the complexity

https://www.tutorialride.com/core-java/multithreading-in-java.htmMap-Reduce addresses the challenges

Hamid Beigy (Sharif university of technology) 16 / 31

Google data centers (Gartner estimates)

1. Google data centers mainly contain commodity machines. Data centers are distributed all

over the world.

2. 1 million servers, 3 million processors/cores

3. Google installs 100,000 servers each quarter.

4. Based on expenditures of 200–250 million dollars per year. This would be 10% of the

computing capacity of the world!

5. If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is

the uptime of the system (assuming it does not tolerate failures)?

6. Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the

interval between machine failures?

7. Answer: Less than two minutes.

Hamid Beigy (Sharif university of technology) 17 / 31

Map-Reduce

Map-Reduce addresses the challenges

1. Node failure: Store data redundantly on multiple nodes

2. Network bottleneck: Move computation close to data to minimize data movement

3. Distributed programming: Map function and Reduce functions

http://saphanatutorial.com/hadoop-cluster-architecture-and-core-components/

Hadoop Cluster Primaries

Workers

Primaries

Workers

Hamid Beigy (Sharif university of technology) 18 / 31

Map-Reduce

1. Maintain a master machine directing the indexing job – considered ”safe”

2. Break up indexing into sets of parallel tasks: Map and Reduce

3. Master machine assigns each task to an idle machine from a pool.

http://saphanatutorial.com/hadoop-cluster-architecture-and-core-components/

Hadoop Cluster Primaries

Workers

Primaries

Workers

Hamid Beigy (Sharif university of technology) 19 / 31

Map-Reduce: word count exampleWord Count using MapReduce

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(result)

Hamid Beigy (Sharif university of technology) 20 / 31

Map-Reduce: word count example

Word Count in practice

58

Hamid Beigy (Sharif university of technology) 21 / 31

Map-Reduce: Sum of squaresExample: Sum of squares

[1,2,3,4]

Sq (1) Sq (2) Sq (3) Sq (4)

16941

30

Input

Intermediate

output

Output

MAPPER

REDUCER

M1 M2 M3 M4

R1

14

Hamid Beigy (Sharif university of technology) 22 / 31

Map-Reduce: Sum of squares of even and odd

Example: Sum of squares of even and odd

[1,2,3,4]

Sq (1) Sq (2) Sq (3) Sq (4)

(odd, 9)(even, 4)

(even, 20) (odd, 10)

Input

Intermediate

output

Output

R2R1

15

(odd, 1) (even, 16)

MAPPER

REDUCER

Hamid Beigy (Sharif university of technology) 23 / 31

Distributed indexing

We will define two sets of parallel tasks and deploy two types of machines to solve

them: Parsers and Inverters

1. Parsers

Master assigns a split to an idle parser machine.

Parser reads a document at a time and emits (term,docID)-pairs.

Parser writes pairs into j term-partitions. Each for a range of terms’ first letters

E.g., a-f, g-p, q-z (here: j = 3)

2. Inverters

An inverter collects all (term,docID) pairs (= postings) for one term-partition (e.g., for a-f).

Sorts and writes to postings lists

Hamid Beigy (Sharif university of technology) 24 / 31

Map-ReduceData flow

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

39 / 54
Hamid Beigy (Sharif university of technology) 25 / 31

Dynamic indexing

Dynamic indexing

1. Up to now, we have assumed that collections are static.

2. They rarely are: Documents are inserted, deleted and modified.

3. This means that the dictionary and postings lists have to be dynamically modified.

Hamid Beigy (Sharif university of technology) 26 / 31

Dynamic indexing: simplest approach

1. Maintain big main index on disk

2. New docs go into small auxiliary index in memory.

3. Search across both, merge results

4. Periodically, merge auxiliary index into big index

5. Deletions:

Invalidation bit-vector for deleted docs

Filter docs returned by index using this bit-vector

6. Issues with auxiliary and main index

Frequent merges

Poor search performance during index merge

Hamid Beigy (Sharif university of technology) 27 / 31

Logarithmic merge

1. Logarithmic merging amortizes the cost of merging indexes over time.

Users see smaller effect on response times.

2. Maintain a series of indexes, each twice as large as the previous one.

3. Keep smallest (Z0) in memory

4. Larger ones (I0, I1, . . .) on disk

5. If Z0 gets too big (> n), write to disk as I0 or merge with I0 (if I0 already exists) and write

merger to I1 etc.

Hamid Beigy (Sharif university of technology) 28 / 31

Logarithmic merge

LMergeAddToken(indexes,Z0, token)
1 Z0 ←Merge(Z0, {token})
2 if |Z0| = n
3 then for i ← 0 to ∞
4 do if Ii ∈ indexes
5 then Zi+1 ←Merge(Ii ,Zi)
6 (Zi+1 is a temporary index on disk.)
7 indexes ← indexes − {Ii}
8 else Ii ← Zi (Zi becomes the permanent index Ii .)
9 indexes ← indexes ∪ {Ii}

10 Break
11 Z0 ← ∅

LogarithmicMerge()
1 Z0 ← ∅ (Z0 is the in-memory index.)
2 indexes ← ∅
3 while true
4 do LMergeAddToken(indexes,Z0,getNextToken())

48 / 54

Hamid Beigy (Sharif university of technology) 29 / 31

References

Reading

1. Chapters 4 of Information Retrieval Book1

2. Section 5.6 of Search Engines - Information Retrieval in Practice Book2

1Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press.
2W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information Retrieval in

Practice. Pearson Education.
Hamid Beigy (Sharif university of technology) 30 / 31

References

Croft, W. Bruce, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information

Retrieval in Practice. Pearson Education.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

Hamid Beigy (Sharif university of technology) 31 / 31

Questions?

Hamid Beigy (Sharif university of technology) 31 / 31

	Introduction
	Sort-based index construction
	Single–pass in-memory indexing (SPIMI)
	Distributed indexing
	Dynamic indexing
	References

