Modern Information Retrieval
Index Construction
Hamid Beigy

Sharif university of technology

February 21, 2025

Table of contents

1. Introduction

2. Sort-based index construction

3. Single—pass in-memory indexing (SPIMI)

4. Distributed indexing

5. Dynamic indexing

6. References

Hamid Beigy (Sharif university of technology) 1/31

Introduction

Inverted index

1. The goal is constructing inverted index

For each term t, we store a list of all documents that contain t.
| Brutus | — | 1] 2| 4] 11[31 45173174 |

[Capsar | — [1] 2] 4] 5] 6]16] 57132 ... |

|CALPURN1A \ — | 2 | 31 \ 54 | 101 \

Af—/ N ~ J/
dictionary postings

Hamid Beigy (Sharif university of technology) 2/31

RCV1 collection

1. An example for applying scalable index construction algorithms, we will use the Reuters
RCV1 collection.

2. English newswire articles sent over the wire in 1995 and 1996 (a year).
3. RCV1 statistics

o Number of documents (/N): 800,000

o Number of tokens per document (L): 200

o Number of distinct terms (M) : 400,000

Bytes per token (including spaces): 6
o Bytes per token (without spaces): 4.5

o Bytes per term: 7.5

4. Why does the algorithm given in previous sections not scale to very large collections?

Hamid Beigy (Sharif university of technology) 3/31

Sort-based index construction

based index construction

1. As we build index, we parse docs one at a time.

2. The final postings for any term are incomplete until the end.

3. Can we keep all postings in memory and then do the sort in-memory at the end?
No, not for large collections
Thus: We need to store intermediate results on disk.

4. Can we use the same index construction algorithm for larger collections, but by using disk

instead of memory?
No: Sorting very large sets of records on disk is too slow— too many disk seeks.

5. We need an external sorting algorithm.

Index A | aardvark | 2 I 3 | 4 | 5 | apple I 2 |4 I

Index B | aardvark I() I9 | actor | 15 I 42 l()SI

Index A [aardvark [2]3[4]5] [Capplc 24
Index B l() l‘) I actor l 15 l 42 1681

Combined index | aardvark |2 |3 I4 | 5 I 6 I 9 I actor I 15 I 42 I()BI apple | 2 I4 |

Hamid Beigy (Sharif university of technology) 4/31

External sorting algorithm

1. We must sort T = 100,000,000 non-positional postings.
2. Each posting has size 12 bytes (44+4+4: termlID, doclD, term frequency).
3. Define a block to consist of 10,000,000 such postings
4. We can easily fit that many postings into memory.
5. Basic idea of algorithm:
6. For each block do
e accumulate postings
e sort in memory

o write to disk

7. Then merge the blocks into one long sorted order.

Hamid Beigy (Sharif university of technology) 5/31

Merging two blocks

postings

to be merged brutus
Block 1 Block 2 brutus
brutus d3 brutus d2 caesar
caesar

caesar d4 caesar dl —- i
noble d3 julius ~ d1 Jk‘f”:j

with d4 killed d2 '
noble

with

d2
d3
dl
d4
dl
d2
d3
d4

/

disk

Hamid Beigy (Sharif university of technology)

merged
postings

6/31

Problem with sort-based algorithm

1. The assumption was: we can keep the dictionary in memory.

2. We need the dictionary (which grows dynamically) in order to implement a term to termID
mapping.
3. Actually, we could work with term,doclD postings instead of termID,docID postings . . .

4. The intermediate files become very large.

5. We would end up with a scalable, but very slow index construction method.

Hamid Beigy (Sharif university of technology) 7/31

Single—pass in-memory indexing (SPIMI)

Single—pass in-memory indexing (SPIMI)

1. Key idea 1: Generate separate dictionaries for each block - no need to maintain

term—termID mapping across blocks.

Key idea 2: Don't sort. Accumulate postings in postings lists as they occur.

w N

With these two ideas we can generate a complete inverted index for each block.

&

These separate indexes can then be merged into one big index.
5. Compression makes SPIMI even more efficient.
o Compression of terms

o Compression of postings

Hamid Beigy (Sharif university of technology) 8/31

Single—pass in-memory indexing (SPIMI)

SPIMI-INVERT(token_stream)

1

O NO O b~ WiN

9
10
11
12
13

output_file <~ NEWFILE()
dictionary <— NEWHASH()
while (free memory available)
do token < next(token_stream)
if term(token) ¢ dictionary
then postings_list <~ ADDTODICTIONARY (dictionary,term(token))
else postings_list <— GETPOSTINGSLIST(dictionary,term(token))
if full(postings_list)
then postings_list <~ DOUBLEPOSTINGSLIST(dictionary,term(token)
ADpDTOPOSTINGSLIST(postings_list,doclD(token))
sorted_terms <— SORTTERMS(dictionary)
WRITEBLOCKTODISK(sorted _terms,dictionary ,output _file)
return output_file

Merging of blocks is analogous to BSBI.

Hamid Beigy (Sharif university of technology) 9/31

How can we index web-scale data?

1. For web-scale indexing: must use a distributed computer system
2. Individual machines are fault-prone.
Can unpredictably slow down or fail.
3. How do we exploit such a pool of machines?
4. Distributed index is partitioned across several machines - either
o according to term or

o according to document.

Hamid Beigy (Sharif university of technology) 10 / 31

Distributed indexing

Google Example

1. Crawling and indexing the web pages.
o The number of web pages: 10 billion
o Average size of web page: 20 KB
o The average size of the whole data: 200 TB

o The data is stored on a single disk and tends to be processed in CPU.

o One computer reads 50 MB/sec from disk (disk read bandwidth).
o Time to read: 4 million seconds ~ 46 days
2. Even longer to do useful things with the data.

3. Solution: Cluster computing

Hamid Beigy (Sharif university of technology) 11 /31

Cluster architecture

1. Every rack has 42-48 units, containing 16-64 nodes.

2. Ex. Each computer is commodity Linux nodes.

Hamid Beigy (Sharif university of technology)

N
™~
™~

CPU

Memory

Node

CPU

Memory

Node

12/31

Cluster architecture

1. Switch connecting nodes

2. Ex. 10 GB/sec bandwidth between any pair of nodes in a rack

Hamid Beigy (Sharif university of technology)

Switch
CPU CPU
Memory emw Memory
= e
Node Node

13 /31

Cluster architecture

1. Backbone switch connecting racks

2. Ex. 100 GB/sec bandwidth between racks.

Memory

Hamid Beigy (Sharif university of technology)

Switch

e

it

Switch

Memory

14 /31

Cluster architecture @

Hamid Beigy (Sharif university of technology)

Challenges in cluster computing

Node failures
@ one server can stay up 3 years (1,000

days) Network bottleneck
@ 1,000 servers in cluster — 1 failure/day o Let network bandwidth: 1 GB/sec
o 1M servers in cluster — 1,000 failure/day @ Time for moving 10TB data: 1 day

@ What does it happen to its data and
its computations?

Distributed/parallel programming is hard
o Consider the life-cycle for Java threads.
@ A programming model that hides most
of the complexity.

suspend()

Map-Reduce addresses the challenges

Hamid Beigy (Sharif university of technology) 16 / 31

Google data centers (Gartner estimates)

1. Google data centers mainly contain commodity machines. Data centers are distributed all
over the world.

2. 1 million servers, 3 million processors/cores
3. Google installs 100,000 servers each quarter.

4. Based on expenditures of 200-250 million dollars per year. This would be 10% of the
computing capacity of the world!

5. If in a non-fault-tolerant system with 1000 nodes, each node has 99.9% uptime, what is
the uptime of the system (assuming it does not tolerate failures)?

6. Suppose a server will fail after 3 years. For an installation of 1 million servers, what is the
interval between machine failures?

7. Answer: Less than two minutes.

Hamid Beigy (Sharif university of technology) 17 /31

Map-Reduce

Map-Reduce addresses the challenges
1. Node failure: Store data redundantly on multiple nodes
2. Network bottleneck: Move computation close to data to minimize data movement

3. Distributed programming: Map function and Reduce functions

Primaries |
[

|

Workers Hadoop Core Components

Map Reduce HDFS

fl |
r 1 r 1
O ———
Hadoop Cluster [N [R

e

=
Workers

Hamid Beigy (Sharif university of technology) 18 / 31

Map-Reduce

1. Maintain a master machine directing the indexing job — considered "safe”
2. Break up indexing into sets of parallel tasks: Map and Reduce

3. Master machine assigns each task to an idle machine from a pool.

Primaries (] M
:
Workers || gea e |
[B

Hadoop Core Components

Map Reduce HDFS

i\ 4
r 1 r 1
e S ——— |
_ Prlmarles

Hadoop Cluster

I3
H
i
i
i
i
i

R

N o o - Data Node ~ Data Node [N
T Taaxrachs oo
eeee e Workers

Data Node + Data Node + Data Node + [N
Task Tracker Task Tracker Task Tracker

Hamid Beigy (Sharif university of technology) 19 /31

Map-Reduce: word count example

map(key, value):
// key: document name; value: text of document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result +=v
emit(result)

Hamid Beigy (Sharif university of technology) 20/ 31

Map-Reduce: word count example

Wordcount Map Shuffle Reduce
(1 Map, 1 Reduce)
apple 1
* apple orange apple I—r orange 1 |} apple 1 PP
apple 1 apple 1
melon 1 banana 1
melon apple banana l—» apple 1 banana 1
apple orange apple banana 1 banana 1 Tole 4
1 le b banana 3
melon apple banana e &
peach melon banana —
banana peach apple peach 1 melon 1 g
peach 2
peach melon banana |——> melon 1 melon 1
banana 1
l orange 1 H orange 1
banana 1 ’
* banana peach apple '—» peach 1
apple 1 peach 1
peach 1

Hamid Beigy (Sharif university of technology) 21/31

Map-Reduce: Sum of squares

[1,2,3.4]
Input sa()]| [sa@] [sa@)]| [sa() & mapper

Intermediatel 1 || 4 || 9 || 16|

output

Hamid Beigy (Sharif university of technology) 22/31

Map-Reduce: Sum of squares of even and odd

[1,2,3,4]
Input £ -
i [sa)] [sa@] [sa@]| [sa@] 3 MAPPER
Intermediate (odd, 1) (even, 4) (odd, 9) (even, 16)
output
Output

R1 R2

Hamid Beigy (Sharif university of technology) 23 /31

We will define two sets of parallel tasks and deploy two types of machines to solve

them: Parsers and Inverters
1. Parsers
]
o Master assigns a split to an idle parser machine.
o Parser reads a document at a time and emits (term,doclD)-pairs.
o Parser writes pairs into j term-partitions. Each for a range of terms’ first letters
E.g., a-f, g-p, g-z (here: j = 3)
2. Inverters
o An inverter collects all (term,docID) pairs (= postings) for one term-partition (e.g., for a-f).

o Sorts and writes to postings lists

Hamid Beigy (Sharif university of technology) 24 /31

Map-Reduce

splits assign , assign
%,w“ — \g postings

a-f g-p|q-z a-f

[eNeXe}

segment
files

reduce
phase phase

map

Hamid Beigy (Sharif university of technology) 25 /31

Dynamic indexing

Dynamic indexing

1. Up to now, we have assumed that collections are static.
2. They rarely are: Documents are inserted, deleted and modified.

3. This means that the dictionary and postings lists have to be dynamically modified.

Hamid Beigy (Sharif university of technology) 26 /31

mic indexing: simplest approach

1. Maintain big main index on disk
New docs go into small auxiliary index in memory.
Search across both, merge results

Periodically, merge auxiliary index into big index

A

Deletions:

o Invalidation bit-vector for deleted docs

o Filter docs returned by index using this bit-vector
6. Issues with auxiliary and main index
o Frequent merges

o Poor search performance during index merge

Hamid Beigy (Sharif university of technology)

27 /31

Logarithmic merge

1. Logarithmic merging amortizes the cost of merging indexes over time.
Users see smaller effect on response times.

2. Maintain a series of indexes, each twice as large as the previous one.

3. Keep smallest (Zp) in memory

4. Larger ones (ly, I, ...) on disk

5. If Zy gets too big (> n), write to disk as Iy or merge with Iy (if ly already exists) and write
merger to /; etc.

Hamid Beigy (Sharif university of technology) 28 /31

Logarithmic merge

LMERGEADDTOKEN(indexes, Zy, token)
1 Zy < MERGE(Zy, {token})
2 if|Z|=n
then for / <— 0 to oo
do if /; € indexes
then Z; .1 + MERCE(/;, Z;)
(Zis+1 is a temporary index on disk.)
indexes < indexes — {l;}
else [; +— Z; (Z; becomes the permanent index I;.)
indexes < indexes U {l;}
BREAK

w

—
— O ©O© 0w ~NO O &

—

Zo(-@

LOGARITHMICMERGE()

Zo+ 0 (Z is the in-memory index.)

indexes <+ ()

while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

PO

Hamid Beigy (Sharif university of technology) 29 /31

References

Reading

1. Chapters 4 of Information Retrieval Book!

2. Section 5.6 of Search Engines - Information Retrieval in Practice Book?

1Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press.
2W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information Retrieval in

Practice. Pearson Education.
Hamid Beigy (Sharif university of technology) 30/31

References

@ Croft, W. Bruce, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information
Retrieval in Practice. Pearson Education.

M Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schiitze (2008). Introduction to
Information Retrieval. New York, NY, USA: Cambridge University Press.

Hamid Beigy (Sharif university of technology) 31/31

Questions?

	Introduction
	Sort-based index construction
	Single–pass in-memory indexing (SPIMI)
	Distributed indexing
	Dynamic indexing
	References

