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Probability



Probability

I Probability theory is the study of uncertainty.

I Elements of probability

I Sample space Ω : The set of all the outcomes of a random experiment.
I Event space F : A set whose elements A ∈ F (called events) are subsets of Ω.
I Probability measure : A function P : F → R that satisfies the following properties,

1. P(A) ≥ 0, for all A ∈ F .

2. P(Ω) = 1.

3. If A1,A2, . . . are disjoint events (i.e.,Ai ∩ Aj = ∅ whenever i 6= j),then

P(∪iAi ) =
∑
i

P(Ai )

I Consider the following example.

Example (Tossing two coins)

In tossing two coins, we have

I The sample space equals to Ω = {HH,HT ,TT ,TH}
I An event space F that only one head is a subset of Ω such as F = {TH,HT}
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Properties of probability

I If A ⊆ B =⇒ P(A) ≤ P(B).

I P(A ∩ B) ≤ min(P(A),P(B)).

I P(A ∪ B) ≤ P(A) + P(B). This property is called union bound.

I P(Ω \ A) = 1− P(A).

I If A1,A2, . . . ,Ak are disjoint events such that ∪ki=1Ai = Ω,then

k∑

i=1

P(Ai ) = 1

This property is called law of total probability.
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Probability

Conditional probability and independence

I Let B be an event with non-zero probability. The conditional probability of any event A

given B is defined as,

P(A | B) =
P(A ∩ B)

P(B)

In other words, P(A | B) is the probability measure of the event A after observing the

occurrence of event B.

I Two events are called independent if and only if

P(A ∩ B) = P(A)P(B),

or equivalently, P(A | B) = P(A).

Therefore, independence is equivalent to saying that observing B does not have any effect

on the probability of A.
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What is probability?

I Classical definition (Laplace, 1814)

P(A) =
NA

N

where N mutually exclusive equally likely outcomes, NA of which result in the occurrence

of A.

I Frequentist definition

P(A) = lim
N→∞

NA

N

or relative frequency of occurrence of A in infinite number of trials.

I Bayesian definition(de Finetti, 1930s)

P(A) is a degree of belief.
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What is probability? (example)

I Suppose that you have a coin that has an unknown probability θ of coming up heads.

I We must determine this probability as accurately as possible using experimentation.

I Experimentation is to repeatedly tossing the coin. Let us denote the two possible

outcomes of a single toss by 1 (for HEADS) and 0 (for TAILS).

I If you toss the coin m times, then you can record the outcomes as x1, . . . , xm, where each

xi ∈ {0, 1} and P[xi = 1] = θ independently of all other xi ’s.

I What would be a reasonable estimate of θ?

I In Frequentist view, by Law of Large Numbers, in a long sequence of independent coin

tosses, the relative frequency of heads will eventually approach the true value of θ with

high probability. Hence,

θ̂ =
1

m

∑

i

xi

I In Bayesian view, θ is a random variable and has a distribution.
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Random variables

I Consider an experiment in which we flip 10 coins, and we want to know the number of

coins that come up heads.

I Here, the elements of the sample space Ω are 10-length sequences of heads and tails.

I However, in practice, we usually do not care about the probability of obtaining any

particular sequence of heads and tails.

I Instead we usually care about real-valued functions of outcomes, such as the number of

heads that appear among our 10 tosses, or the length of the longest run of tails.

I These functions, under some technical conditions, are known as random variables.

I More formally, a random variable X is a function X : Ω→ R. Typically, we will denote

random variables using upper case letters X (ω) or more simply X , where ω is an event.

I We will denote the value that a random variable X may take on using lower case letter x .
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Random variables

I A random variable can be discrete or continuous.

Random Variables

A random variable (r.v.) X denotes possible outcomes of an event

Can be discrete (i.e., finite many possible outcomes) or continuous

Some examples of discrete r.v.

A random variable X 2 {0, 1} denoting outcomes of a coin-toss
A random variable X 2 {1, 2, . . . , 6} denoteing outcome of a dice roll

Some examples of continuous r.v.

A random variable X 2 (0, 1) denoting the bias of a coin
A random variable X denoting heights of students in CS772
A random variable X denoting time to get to your hall from the department

An r.v. is associated with a probability mass function or prob. distribution

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning 2

I A random variable is associated with a probability mass function or probability distribution.
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Discrete random variables

I For a discrete random variable X , p(x) denotes the probability that p(X = x).
I p(x) is called the probability mass function (PMF). This function has the following

properties:

p(x) ≥ 0

p(x) ≤ 1
∑

x

p(x) = 1

Discrete Random Variables

For a discrete r.v. X , p(x) denotes the probability that p(X = x)

p(x) is called the probability mass function (PMF)

p(x) � 0

p(x)  1X

x

p(x) = 1

Picture courtesy: johndcook.com
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Continuous random variables

I For a continuous random variable X , a probability p(X = x) is meaningless.

I Instead we use p(x) to denote the probability density function (PDF).

p(x) ≥ 0
∫

x

p(x) = 1

I Probability that a continuous random variable X ∈ (x , x + δx) is p(x)δx as δx → 0.

Continuous Random Variables

For a continuous r.v. X , a probability p(X = x) is meaningless

Instead we use p(x) to denote the probability density function (PDF)

p(x) � 0 and

Z

x

p(x)dx = 1

Probability that a cont. r.v. X 2 (x , x + �x) is p(x)�x as �x ! 0

Probability that X lies between (�1, z) is given by the cumulative
distribution function (CDF) P(z) where

P(z) = p(X  z) =

Z z

�1
p(x)dx and p(x) = |P 0(z)|z=x

Picture courtesy: PRML (Bishop, 2006)
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I Probability that X ∈ (−∞, z) is given by the cumulative distribution function (CDF)

P(z), where

P(z) = p(X ≤ z) =

∫ z

−∞
p(x)dx

p(x) = z

∣∣∣∣
dP(z)

dz

∣∣∣∣
z=x
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Joint probability

I Joint probability p(X ,Y ) models probability of co-occurrence of two random variables X

and Y .

I Let nij be the number of times events xi and yj simultaneously occur.

I Let N =
∑

i

∑
j nij .

I Joint probability is

p(X = xi ,Y = yj) =
nij
N

.

I Let ci =
∑

j nij , and rj =
∑

i nij .

I The probability of X irrespective of Y is

p(X = xi ) =
ci
N
.

I Therefore, we can marginalize or sum over Y , i.e. p(X = xi ) =
∑

j p(X = xi ,Y = yj).

I For discrete random variables, we have
∑

x

∑
y p(X = x ,Y = y) = 1.

I For continuous random variables, we have
∫
x

∫
y
p(X = x ,Y = y) = 1.
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Marginalization

I Consider only instances where the fraction of instances Y = yj when X = xi .

I This is conditional probability and is written p(Y = yj |X = xi ), the probability of Y given

X .

p(Y = yj |X = xi ) =
nij
ci

I Now consider

p(X = xi ,Y = yj) =
nij
N

=
nij
ci

ci
N

= p(Y = yj |X = xi )p(X = xi )

I If two events are independent, p(X ,Y ) = p(X )p(Y ) and p(X |Y ) = p(X )

I Sum rule p(X ) =
∑

Y p(X ,Y )

I Product rule p(X ,Y ) = p(Y |X )p(X )
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Expected value

I Expectation, expected value, or mean of a random variable X , denoted by E [X ], is the

average value of X in a large number of experiments.

E [X ] =
∑

x

p(x)x

or

E [X ] =

∫
p(x)xdx

I The definition of Expectation also applies to functions of random variables (e.g., E [f (x)])

I Linearity of expectation

E [αf (x) + βg(x)] = αE [f (x)] + β E [g(x)]
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Variance and and Covariance

I Variance (σ2) measures how much X varies around the expected value and is defined as.

Var(X ) = E
[
(X − E [X ])2

]
= E

[
X 2
]
− µ2

I Standard deviation : std [X ] =
√
Var [X ] = σ.

I Covariance of two random variables X and Y indicates the relationship between two

random variables X and Y .

Cov(X ,Y ) = E
X ,Y

[
(X − E [X ])>(Y − E [Y ])

]
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Common probability distributions

We will use these probability distributions extensively to model data as well as parameters

I Some discrete distributions and what they can model:

1. Bernoulli : Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

2. Binomial : Bounded non-negative integers, e.g., the number of heads in n coin tosses

3. Multinomial : One of K(> 2) possibilities, e.g., outcome of a dice roll

4. Poisson : Non-negative integers, e.g., the number of words in a document

I Some continuous distributions and what they can model:

1. Uniform: Numbers defined over a fixed range

2. Beta: Numbers between 0 and 1, e.g., probability of head for a biased coin

3. Gamma: Positive unbounded real numbers

4. Dirichlet : Vectors that sum of 1 (fraction of data points in different clusters)

5. Gaussian: Real-valued numbers or real-valued vectors
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Probability distributions

Discrete distributions



Bernoulli distribution

I Distribution over a binary random variable x ∈ {0, 1}, like a coin-toss outcome

I Defined by a probability parameter p ∈ (0, 1).

p[X = 1] = p

p[X = 0] = 1− p

I Distribution defined as: Bernoulli(x ; p) = px(1− p)1−x

Bernoulli Distribution

Distribution over a binary r.v. x 2 {0, 1}, like a coin-toss outcome

Defined by a probability parameter p 2 (0, 1)

P(x = 1) = p

Distribution defined as: Bernoulli(x ; p) = px(1 � p)1�x

Mean: E[x ] = p

Variance: var[x ] = p(1 � p)

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning 16

I The expected value and the variance of X are equal to

E [X ] = p

Var(X ) = p(1− p)
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Binomial distribution

I Distribution over number of successes m in a number of trials

I Defined by two parameters: total number of trials (N) and probability of each success

p ∈ (0, 1).

I We can think Binomial as multiple independent Bernoulli trials

I Distribution defined as

Binomial(m;N, p) =

(
N

m

)
pm(1− p)N−m

Binomial Distribution

Distribution over number of successes m (an r.v.) in a number of trials

Defined by two parameters: total number of trials (N) and probability of
each success p 2 (0, 1)

Can think of Binomial as multiple independent Bernoulli trials

Distribution defined as

Binomial(m; N, p) =

✓
N

m

◆
pm(1 � p)N�m

Mean: E[m] = Np

Variance: var[m] = Np(1 � p)

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning 17

I The expected value and the variance of m are equal to

E [m] = Np

Var(m) = Np(1− p)
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Multinomial distribution

I Consider a generalization of Bernoulli where the outcome of a random event is one of K

mutually exclusive and exhaustive states, each of which has a probability of occurring qi
where

∑K
i=1 qi = 1.

I Suppose that n such trials are made where outcome i occurred ni times with
∑K

i=1 ni = n.

I The joint distribution of n1, n2, . . . , nK is multinomial

P(n1, n2, . . . , nK ) = n!
K∏

i=1

qnii
ni !
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Uniform distribution

I Models a continuous random variable X distributed uniformly over a finite interval [a, b].

Uniform(X ; a, b) =
1

b − a

Uniform Distribution

Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

Uniform(x ; a, b) =
1

b � a

Mean: E[x ] = (b+a)
2

Variance: var[x ] = (b�a)2

12
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I The expected value and the variance of X are equal to

E [X ] =
b + a

2

Var(X ) =
(b − a)2

12
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Normal (Gaussian) distribution

I For 1-dimensional normal or Gaussian distributed variable x with mean µ and variance σ2,

denoted as N (x ;µ, σ2), we have

N (x ;µ, σ2) =
1

σ
√

2π
exp

{
− (x − µ)2

2σ2

}

I Mean: E [X ] = µ

I Variance: var [X ] = σ2

I Precision (inverse variance): β = 1
σ2
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Multivariate Gaussian distribution

I Distribution over a multivariate random variables vector x ∈ RD of real numbers

I Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x ;µ,Σ) =
1√

(2π)D |Σ|
exp

{
−1

2
(x − µ)>Σ−1(x − µ)

}

Multivariate Gaussian Distribution

Distribution over a multivariate r.v. vector 2 RD of real numbers

Defined by a mean vector µ 2 RD and a D ⇥ D covariance matrix ⌃

N ( ; µ,⌃) =
1p

(2⇡)D |⌃|
e�

1
2 ( �µ)>⌃�1( �µ)

The covariance matrix ⌃ must be symmetric and positive definite

All eigenvalues are positive
>⌃ > 0 for any real vector

Often we parameterize a multivariate Gaussian using the inverse of the
covariance matrix, i.e., the precision matrix ⇤ = ⌃�1

Probabilistic Machine Learning (CS772A) Some Essentials of Probability for Probabilistic Machine Learning 30

I The covariance matrix Σ must be symmetric and positive definite

1. All eigenvalues are positive

2. z>Σz > 0 for any real vector z .

I Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix,

i.e., the precision matrix Λ = Σ−1.
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Bayes theorem

I Bayes theorem

p(Y |X ) =
P(X |Y )P(Y )

P(X )

=
P(X |Y )P(Y )∑
Y p(X |Y )p(Y )

I p(Y ) is called prior of Y . This is information we have before observing anything about the

Y that was drawn.

I p(Y |X ) is called posterior probability, or simply posterior. This is the distribution of Y

after observing X .

I p(X |Y ) is called likelihood of X and is the conditional probability that an event Y has

the associated observation X .

I p(X ) is called evidence and is the marginal probability that an observation X is seen.

I In other words

posterior =
prior × likelihood

evidence
.
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Maximum a posteriori estimation

I In many learning scenarios, the learner considers some set Y and is interested in finding

the most probable Y ∈ Y given observed data X .

I This is called maximum a posteriori estimation (MAP) and can be estimated using Bayes

theorem.

YMAP = argmax
Y∈Y

p(Y |X )

= argmax
Y∈Y

P(X |Y )P(Y )

P(X )

= argmax
Y∈Y

P(X |Y )P(Y )

I P(X ) is dropped because it is constant and independent of Y .

YMAP = argmax
Y∈Y

P(X |Y )P(Y )

= argmax
Y∈Y

{logP(X |Y ) + logP(Y )}

= argmin
Y∈Y

{− logP(X |Y )− logP(Y )}
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Maximum likelihood estimation

I In some cases, we will assume that every Y ∈ Y is equally probable.
I This is called maximum likelihood estimation.

YML = argmax
Y∈Y

P(X |Y )

= argmax
Y∈Y

logP(X |Y )

= argmin
Y∈Y

{− logP(X |Y )}

I Let x1, x2, . . . , xN be random samples drawn from p(X ,Y ).
I Assuming statistical independence between the different samples,we can form p(X |Y ) as

p(X |Y ) = p(x1, x2, . . . , xN |Y ) =
N∏

n=1

p(xn|Y )

I This method estimates Y so that p(X |Y ) takes its maximum value.

YML = argmax
Y∈Y

N∏

n=1

p(xn|Y )
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Maximum likelihood estimation(cont.)

I A necessary condition that YML must satisfy in order to be a maximum is the gradient of

the likelihood function with respect to Y to be zero.

∂
∏N

n=1 p(xn|Y )

∂Y
= 0

I Because of the monotonicity of the logarithmic function, we define the log likelihood

function as

L(Y ) = ln
N∏

n=1

p(xn|Y )

I Equivalently, we have

∂L(Y )

∂Y
=

N∑

n=1

∂ln p(xn|Y )

∂Y

=
N∑

n=1

1

p(xn|Y )

∂p(xn|Y )

∂Y
= 0
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Readings

1. Chapter 2 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 2 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 1 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?
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