
Deep learning

Attention models

Hamid Beigy

Sharif University of Technology

May 3, 2021

Table of contents

1. Introduction

2. Attention models

3. Generalized model of attention

4. Attention in computer vision

5. Transformers family

6. ELMo model

7. Reading

1/68

Introduction

Common concept representation

1. Consider the task of transferring a concept from a source domain to different

target domains.

x

Encoder

Common concept representation

Decoder 1

y1

Decoder 2

y2

Decoder 3

y3

2. For example, consider the following tasks

I A translation from Persian language to English language
I A translation from Persian language to German language
I A translation from Persian language to French language

2/68

Sequence to sequence models

1. In seq2seq, the idea is to have two recurrent neural networks (RNNs) with an
encoder-decoder architecture:

I read the input words one by one to obtain a vector representation of a fixed

dimensionality (encoder), and
I conditioned on these inputs, extract the output words one by one using another

RNN (decoder).

2. Both the encoder and decoder are recurrent neural networks such as LSTM or

GRU units.

3. A critical disadvantage of this fixed-length context vector design is incapability of

remembering long sentences.
3/68

Attention models

1. RNNs cannot remember longer sentences and sequences due to the

vanishing/exploding gradient problem.

2. The performance of the encoder-decoder network degrades rapidly as the length

of the input sentence increases.

3. In psychology, attention is the cognitive process of selectively concentrating on

one or a few things while ignoring others.

Example (Counting the number of people in a photo)

Counting the number of heads and ignoring the rest.

4/68

Attention models (examples)

1. Consider two different tasks : neural machine translation and image captioning.

neural machine translation (heatmap) Image captioning

Neural network model Neural network model

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals
Google

vinyals@google.com

Alexander Toshev
Google

toshev@google.com

Samy Bengio
Google

bengio@google.com

Dumitru Erhan
Google

dumitru@google.com

Abstract

Automatically describing the content of an image is a
fundamental problem in artificial intelligence that connects
computer vision and natural language processing. In this
paper, we present a generative model based on a deep re-
current architecture that combines recent advances in com-
puter vision and machine translation and that can be used
to generate natural sentences describing an image. The
model is trained to maximize the likelihood of the target de-
scription sentence given the training image. Experiments
on several datasets show the accuracy of the model and the
fluency of the language it learns solely from image descrip-
tions. Our model is often quite accurate, which we verify
both qualitatively and quantitatively. For instance, while
the current state-of-the-art BLEU-1 score (the higher the
better) on the Pascal dataset is 25, our approach yields 59,
to be compared to human performance around 69. We also
show BLEU-1 score improvements on Flickr30k, from 56 to
66, and on SBU, from 19 to 28. Lastly, on the newly released
COCO dataset, we achieve a BLEU-4 of 27.7, which is the
current state-of-the-art.

1. Introduction
Being able to automatically describe the content of an

image using properly formed English sentences is a very
challenging task, but it could have great impact, for instance
by helping visually impaired people better understand the
content of images on the web. This task is significantly
harder, for example, than the well-studied image classifi-
cation or object recognition tasks, which have been a main
focus in the computer vision community [27]. Indeed, a
description must capture not only the objects contained in
an image, but it also must express how these objects relate
to each other as well as their attributes and the activities
they are involved in. Moreover, the above semantic knowl-
edge has to be expressed in a natural language like English,
which means that a language model is needed in addition to
visual understanding.

Most previous attempts have proposed to stitch together

A group of people
shopping at an
outdoor market.
!
There are many
vegetables at the
fruit stand.

Vision!
Deep CNN

Language !
Generating!

RNN

Figure 1. NIC, our model, is based end-to-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.

existing solutions of the above sub-problems, in order to go
from an image to its description [6, 16]. In contrast, we
would like to present in this work a single joint model that
takes an image I as input, and is trained to maximize the
likelihood p(S|I) of producing a target sequence of words
S = {S1, S2, . . .} where each word St comes from a given
dictionary, that describes the image adequately.

The main inspiration of our work comes from recent ad-
vances in machine translation, where the task is to transform
a sentence S written in a source language, into its transla-
tion T in the target language, by maximizing p(T |S). For
many years, machine translation was also achieved by a se-
ries of separate tasks (translating words individually, align-
ing words, reordering, etc), but recent work has shown that
translation can be done in a much simpler way using Re-
current Neural Networks (RNNs) [3, 2, 30] and still reach
state-of-the-art performance. An “encoder” RNN reads the
source sentence and transforms it into a rich fixed-length
vector representation, which in turn in used as the initial
hidden state of a “decoder” RNN that generates the target
sentence.

Here, we propose to follow this elegant recipe, replac-
ing the encoder RNN by a deep convolution neural network
(CNN). Over the last few years it has been convincingly
shown that CNNs can produce a rich representation of the
input image by embedding it to a fixed-length vector, such
that this representation can be used for a variety of vision

1

5/68

Attention models

Attention models

1. The attention mechanism was born to help memorize long source sentences in

neural machine translation (NMT) (Bahdanau, Cho, and Bengio 2015).

2. Instead of building a single context vector out of the encoder’s last hidden state,

the goal of attention is to create shortcuts between the context vector and the

entire source input.

3. The weights of these shortcut connections are customizable for each output

element.

4. The alignment between the source and target is learned and controlled by the

context vector.

5. Essentially the context vector consumes three pieces of information:

I Encoder hidden states
I Decoder hidden states
I Alignment between source and target

6/68

Attention models

1. Assume that we have a source sequence x of length n and try to output a target

sequence y of length m

x = [x1, x2, . . . , xn]

y = [y1, y2, . . . , ym]

2. The encoder is a bidirectional RNN with a forward hidden state
−→
h i and a

backward one
←−
h i .

3. A simple concatenation of these two hidden states represents the encoder state.

4. The motivation is to include both the preceding and following words in the

annotation of one word.

hi =
[−→
h >i ;
←−
h >i
]>

i = 1, 2, . . . , n

7/68

Attention models

1. Model of attention

8/68

Attention models

1. The decoder network has hidden state st = f (st−1, yt−1, ct) at position

t = 1, 2, . . . ,m.

2. The context vector ct is a sum of hidden states of the input sequence, weighted

by alignment scores:

ct =
n∑

i=1

αt,ihi Context vector for output yt

αt,i = align(yt , xi) How well two words yt and xi are aligned.

=
exp (score(st−1,hi))∑n
j=1 exp (score(st−1,hj))

Softmax of predefined alignment score.

3. The alignment model assigns a score αt,i to the pair of (yt , xi) based on how well

they match.

4. The set of {αt,i} are weights defining how much of each source hidden state

should be considered for each output.

9/68

Attention models

1. The alignment score α is parametrized by a feed-forward network with a single

hidden layer (Bahdanau, Cho, and Bengio 2015).

2. This network is jointly trained with other parts of the model.

3. The score function is in the following form.

score(st ,hi) = v>a tanh(Wa[st ; hi])

where both Va and Wa are weight matrices to be learned in the alignment model.

10/68

Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and

target words.

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

11/68

Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and

target words.

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

12/68

hierarchical attention network (HAN)

1. Attention can be effectively used on various

levels (Yang et al. 2016).

2. HAN applicable to classification problem,

not sequence generation.

3. HAN has two encoders: word and sentence.

I Word encoder processes each word and

aligns them a sentence of interest.
I Then, sentence encoder aligns each

sentence with final output.

4. HAN enables hierarchical interpretation of

I which sentence is crucial in classifying

document,
I which part of a sentence (which words) are

salient in that sentence.

13/68

Self-Attention

1. Consider the following example

Example (Self-Attention)

I Consider the following sentence

The animal didn’t cross the street because it was too tired.

I What does it in this sentence refer to?

I Is it referring to the street or to the animal?

2. Self-attention (intra-attention) is an attention mechanism relating different

positions of a single sequence in order to compute a representation of the same

sequence (Cheng, Dong, and Lapata 2016).

3. It is very useful in

I Machine reading (the automatic, unsupervised understanding of text)
I Abstractive summarization
I Image description generation

14/68

Self Attention

1. The self-attention mechanism enables us to learn the correlation between the

current words and the previous part of the sentence.

2. The current word is in red and the size of the blue shade indicates the activation

level.
15/68

Self Attention

1. Self-attention is applied to the image to generate descriptions (Xu et al. 2015).

2. Image is encoded by a CNN and a RNN with self-attention consumes the CNN

feature maps to generate the descriptive words one by one.

3. The visualization of the attention weights clearly demonstrates which regions of

the image, the model pays attention to so as to output a certain word.

16/68

Self Attention

17/68

Soft vs Hard Attention

1. The soft vs hard attention is another way to categorize how attention is defined
based on whether the attention has access to the entire image or only a patch.

I Soft Attention: the alignment weights are learned and placed “softly” over all

patches in the source image (same idea as in (Bahdanau, Cho, and Bengio 2015)).

I Soft attention, in its simplest variant, is no different for images than for vector-valued

features and is implemented exactly.
I Pro: the model is smooth and differentiable.
I Con: expensive when the source input is large.

I Hard Attention: only selects one patch of the image to attend to at a time.

I Hard attention for images has been known for a very long time: image cropping.
I Pro: less calculation at the inference time.
I Con: the model is non-differentiable and requires more complicated techniques such

as variance reduction or reinforcement learning to train.

18/68

Global vs Local Attention

1. Global and local attention are proposed in (Luong, Pham, and Manning 2015).

2. The idea of a global attentional model is to consider all the hidden states of the

encoder when deriving the context vector.

Global attention Local attention

19/68

Global vs Local Attention

1. The global attention has a drawback that it has to attend to all words on the

source side for each target word, which is expensive and can potentially render it

impractical to translate longer sequences,

2. The local attentional mechanism chooses to focus only on a small subset of the

source positions per target word.

3. Local one is an interesting blend between hard and soft, an improvement over the

hard attention to make it differentiable:

4. The model first predicts a single aligned position for the current target word and a

window centered around the source position is then used to compute a context

vector.

pt = n × sigmoid
(

v>p tanh(Wpht)
)

n is length of source sequence. Hence, pt ∈ [0, n].

20/68

Global vs Local Attention

1. To favor alignment points near pt , they placed a Gaussian distribution centered

around pt . Specifically, the alignment weights are defined as

ast = align(ht , h̄s) exp

(
−(s − pt)

2

2σ2

)

and

pt = n × sigmoid
(

v>p tanh(Wpht)
)

yt

h̃t

ct

at

ht

pt

h̄s

Attention Layer

Context vector

Local weights

Aligned position

Figure 3: Local attention model – the model first
predicts a single aligned position pt for the current
target word. A window centered around the source
position pt is then used to compute a context vec-
tor ct, a weighted average of the source hidden
states in the window. The weights at are inferred
from the current target state ht and those source
states h̄s in the window.

and target hidden states in their non-stacking uni-
directional decoder. Second, our computation path
is simpler; we go from ht → at → ct → h̃t

then make a prediction as detailed in Eq. (5),
Eq. (6), and Figure 2. On the other hand, at
any time t, Bahdanau et al. (2015) build from the
previous hidden state ht−1 → at → ct →
ht, which, in turn, goes through a deep-output
and a maxout layer before making predictions.7
Lastly, Bahdanau et al. (2015) only experimented
with one alignment function, the concat product;
whereas we show later that the other alternatives
are better.

3.2 Local Attention

The global attention has a drawback that it has to
attend to all words on the source side for each tar-
get word, which is expensive and can potentially
render it impractical to translate longer sequences,
e.g., paragraphs or documents. To address this
deficiency, we propose a local attentional mech-
anism that chooses to focus only on a small subset
of the source positions per target word.
This model takes inspiration from the tradeoff

between the soft and hard attentional models pro-
posed by Xu et al. (2015) to tackle the image cap-
tion generation task. In their work, soft attention

7We will refer to this difference again in Section 3.3.

refers to the global attention approach in which
weights are placed “softly” over all patches in the
source image. The hard attention, on the other
hand, selects one patch of the image to attend to at
a time. While less expensive at inference time, the
hard attention model is non-differentiable and re-
quires more complicated techniques such as vari-
ance reduction or reinforcement learning to train.
Our local attention mechanism selectively fo-

cuses on a small window of context and is differ-
entiable. This approach has an advantage of avoid-
ing the expensive computation incurred in the soft
attention and at the same time, is easier to train
than the hard attention approach. In concrete de-
tails, the model first generates an aligned position
pt for each target word at time t. The context vec-
tor ct is then derived as a weighted average over
the set of source hidden states within the window
[pt−D, pt+D];D is empirically selected.8 Unlike
the global approach, the local alignment vector at

is now fixed-dimensional, i.e., ∈ R2D+1. We con-
sider two variants of the model as below.
Monotonic alignment (local-m) – we simply set

pt = t assuming that source and target sequences
are roughly monotonically aligned. The alignment
vector at is defined according to Eq. (7).9
Predictive alignment (local-p) – instead of as-

suming monotonic alignments, our model predicts
an aligned position as follows:

pt = S · sigmoid(v⊤
p tanh(Wpht)), (9)

Wp and vp are the model parameters which will
be learned to predict positions. S is the source sen-
tence length. As a result of sigmoid, pt ∈ [0, S].
To favor alignment points near pt, we place a
Gaussian distribution centered around pt . Specif-
ically, our alignment weights are now defined as:

at(s) = align(ht, h̄s) exp

(
−(s − pt)

2

2σ2

)
(10)

We use the same align function as in Eq. (7) and
the standard deviation is empirically set as σ= D

2 .
Note that pt is a real nummber; whereas s is an
integer within the window centered at pt.10

8If the window crosses the sentence boundaries, we sim-
ply ignore the outside part and consider words in the window.

9local-m is the same as the global model except that the
vector at is fixed-length and shorter.

10local-p is similar to the local-m model except that we dy-
namically compute pt and use a truncated Gaussian distribu-
tion to modify the original alignment weights align(ht, h̄s)
as shown in Eq. (10). By utilizing pt to derive at, we can
compute backprop gradients for Wp and vp. This model is
differentiable almost everywhere.

21/68

Generalized model of attention

Retrieving a record from a relational database

1. Consider the following table, called Persons, in a relational database.

ID Name Family

005123174812 Ali Ahmadi

015843268901 Mohammad Reza Ali Mohammadi

005123174823 Ashkan Mohammadi

2. Now consider the following queries.

I Select ID, Name, Family from persons where ID=’015843268901’
I Select ID, Name, Family from persons where ID like ’00512317%’

3. Here, concepts of query,key, and value become and the result is retrieved using

the following similarity function.

Similarity(q, k, v) =
∑

i

Similarity(q, ki)× vi

22/68

Retrieving a value from neural Turing machine memory

1. Consider the following memory in the neural Turing machine.

Key Value

key 1 Value 1

key 2 Value 2

key 3 Value 3

2. When reading from the memory at time t, an attention vector of size p, wt

controls how much attention to assign to different memory locations.

3. The read vector rt is a sum weighted by attention intensity:

rt =

p∑

i=1

wt(i)Mt(i)

p∑

i=1

wt(i) = 1,∀i : 0 ≤ wt(i) ≤ 1

23/68

Generalized model of attention

1. Consider the following sentence.

2. For calculating the attention of a target word with respect to the input word,
I we first use the query of the target word and the key of the input word,
I next calculate a matching score, and
I finally calculate the weighted sum of value vectors using the matching scores.

24/68

Generalized model of attention

1. Each word is key, query and value.

2. Each word w is represented by a vector x ∈ Rd by using an embedding method.

3. Calculate query (q ∈ Rp) for x ∈ Rd , which is projection of x to a new space.

q = w>q x.

4. Calculate key (k ∈ Rp) for x ∈ Rd , which is projection of x to a new space.

k = w>k x.

5. Calculate value (w ∈ Rp) for x ∈ Rd , which is projection of x to a new space.

v = w>v x.

6. A single word x has three different representations. Sometimes, we look at this

word as query, sometimes as key, and sometimes as value.

7. The self-attention means that looking a word as query and compute the similarity

of the query with all of the words seen as key.

8. Then use the softmax for computing the weights and compute the weighted

average all of the words seen as value.

9. This computes the attention vector.
25/68

Generalized model of attention

1. Consider the following sentence.

2. Calculating the attention for word apple.

3. Taking the inner product of the query vector of apple to the key vector of the

previous words.

a = softmax
(

q>applekshe ,q
>
applekis ,q

>
applekeating ,q

>
appleka,q

>
applekgreen

)

4. Suppose that we obtain a = (0.1, 0.1, 0.5, 0.1, 0.2). Then we obtain

vapple = 0.1vshe + 0.1vis + 0.5veating + 0.1va + 0.2vgreen

26/68

Generalized model of attention

1. Self-attention uses the following neural network architecture.

q

k1

k2

k3

k4

s1

s2

s3

s4

Similarity

a1

a2

a3

a4

Softmax

av

×

×

×

×

Attention

value=
∑

i aivi

v1

v2

v3

v4

+

+

+

27/68

Generalized model of attention

1. By defining three different vectors corresponding to each word.

I Key k ∈ Rp and k = W>k x, where Wk ∈ Rd×p and x ∈ Rd .
I Query q ∈ Rp and q = W>q x, where Wq ∈ Rd×p and x ∈ Rd .
I Value v ∈ Rp and v = W>v x, where Wv ∈ Rd×p and x ∈ Rd .

2. By defining the following matrices

I X = [x1, x2, . . . , xn], where X ∈ Rd×n.
I K = [k1, k2, . . . , kn], where K ∈ Rp×n.
I Q = [q1,q2, . . . ,qn], where Q ∈ Rp×n.
I V = [v1, v2, . . . , vn], where V ∈ Rp×n.

3. Then, the new value Z ∈ Rp×n equals to Z = V Softmax
(

Q>K√
p

)
.

28/68

Alignment scores

Name Alignment score function Paper (https://lilianweng.github.io/

lil-log/2018/06/24/attention-attention.html)

Content-base attention
score(st , hi) = cosine[st , hi] A. Graves, et al. ”Neural Turing ma-

chines”, arXiv, 2014.

Additive
score(st , hi) = v>a tanh(Wa[st ; hi]) D. Bahdanau, et al.”Neural machine

translation by jointly learning to align

and translate”, ICLR 2015.

Location-Base
αt,i = softmax(Wast) T. Luong, , et al. ”Effective Ap-

proaches to Attention-based Neural Ma-

chine Translation”, EMNLP 2015.

General
score(st , hi) = s>t Wahi

Same as the above

Dot-Product
score(st , hi) = s>t hi

Same as the above

Scaled Dot-Product
score(st , hi) =

s>t hi√
n

A. Vaswani, et al. ”Attention is all you

need”, NIPS 2017.

29/68

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Attention in computer vision

Image captioning

1. The natural image caption generator was proposed in (Xu et al. 2015).Model

2. This network is a combination of CNN and LSTM networks.

30/68

Image captioning

1. The outputs of lower layers of CNN are used as representation of values.

Captioning with attention

C
N

N

LS
TM

filtA filtB filtB

0.3 0.2 0.5

LS
TM

W

a adam … Zebra

0.2 0.1 … 0.1

31/68

Image captioning results

1. Examples of attending to the correct object

Neural Image Caption Generation with Visual Attention

Figure 4. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

research. We report BLEU4 from 1 to 4 without a brevity
penalty. There has been, however, criticism of BLEU, so
we report another common metric METEOR (Denkowski
& Lavie, 2014) and compare whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we ex-
plain here. The first challenge is a difference in choice
of convolutional feature extractor. For identical decoder
architectures, using a more recent architectures such as
GoogLeNet (Szegedy et al., 2014) or Oxford VGG (Si-
monyan & Zisserman, 2014) can give a boost in perfor-
mance over using the AlexNet (Krizhevsky et al., 2012).
In our evaluation, we compare directly only with results
which use the comparable GoogLeNet/Oxford VGG fea-
tures, but for METEOR comparison we include some re-
sults that use AlexNet.

The second challenge is a single model versus ensemble
comparison. While other methods have reported perfor-
mance boosts by using ensembling, in our results we report
a single model performance.

Finally, there is a challenge due to differences between
dataset splits. In our reported results, we use the pre-
defined splits of Flickr8k. However, for the Flickr30k
and COCO datasets is the lack of standardized splits for
which results are reported. As a result, we report the re-
sults with the publicly available splits5 used in previous

thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same.

4 BLEU-n is the geometric average of the n-gram precision.
For instance, BLEU-1 is the unigram precision, and BLEU-2 is
the geometric average of the unigram and bigram precision.

5 http://cs.stanford.edu/people/karpathy/

work (Karpathy & Li, 2014). We note, however, that the
differences in splits do not make a substantial difference in
overall performance.

5.3. Quantitative Analysis

In Table 1, we provide a summary of the experiment vali-
dating the quantitative effectiveness of attention. We obtain
state of the art performance on the Flickr8k, Flickr30k and
MS COCO. In addition, we note that in our experiments we
are able to significantly improve the state-of-the-art perfor-
mance METEOR on MS COCO. We speculate that this is
connected to some of the regularization techniques we used
(see Sec. 4.2.1) and our lower-level representation.

5.4. Qualitative Analysis: Learning to attend

By visualizing the attention learned by the model, we are
able to add an extra layer of interpretability to the output
of the model (see Fig. 1). Other systems that have done
this rely on object detection systems to produce candidate
alignment targets (Karpathy & Li, 2014). Our approach is
much more flexible, since the model can attend to “non-
object” salient regions.

The 19-layer OxfordNet uses stacks of 3x3 filters mean-
ing the only time the feature maps decrease in size are due
to the max pooling layers. The input image is resized so
that the shortest side is 256-dimensional with preserved as-
pect ratio. The input to the convolutional network is the
center-cropped 224x224 image. Consequently, with four
max pooling layers, we get an output dimension of the top
convolutional layer of 14x14. Thus in order to visualize
the attention weights for the soft model, we upsample the
weights by a factor of 24 = 16 and apply a Gaussian filter

deepimagesent/

2. Examples of mistakes

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

to emulate the large receptive field size.

As we can see in Figs. 3 and 4, the model learns alignments
that agree very strongly with human intuition. Especially
from the examples of mistakes in Fig. 5, we see that it is
possible to exploit such visualizations to get an intuition as
to why those mistakes were made. We provide a more ex-
tensive list of visualizations as the supplementary materials
for the reader.

6. Conclusion
We propose an attention based approach that gives state
of the art performance on three benchmark datasets us-
ing the BLEU and METEOR metric. We also show how
the learned attention can be exploited to give more inter-
pretability into the models generation process, and demon-
strate that the learned alignments correspond very well to
human intuition. We hope that the results of this paper will
encourage future work in using visual attention. We also
expect that the modularity of the encoder-decoder approach
combined with attention to have useful applications in other
domains.

Acknowledgments
The authors would like to thank the developers of
Theano (Bergstra et al., 2010; Bastien et al., 2012). We
acknowledge the support of the following organizations
for research funding and computing support: NSERC,
Samsung, NVIDIA, Calcul Québec, Compute Canada, the
Canada Research Chairs and CIFAR. The authors would

also like to thank Nitish Srivastava for assistance with his
ConvNet package as well as preparing the Oxford convolu-
tional network and Relu Patrascu for helping with numer-
ous infrastructure-related problems.

References
Ba, Jimmy Lei, Mnih, Volodymyr, and Kavukcuoglu, Ko-

ray. Multiple object recognition with visual attention.
arXiv:1412.7755 [cs.LG], December 2014.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neu-
ral machine translation by jointly learning to align and trans-
late. arXiv:1409.0473 [cs.CL], September 2014.

Baldi, Pierre and Sadowski, Peter. The dropout learning algo-
rithm. Artificial intelligence, 210:78–122, 2014.

Bastien, Frederic, Lamblin, Pascal, Pascanu, Razvan, Bergstra,
James, Goodfellow, Ian, Bergeron, Arnaud, Bouchard, Nico-
las, Warde-Farley, David, and Bengio, Yoshua. Theano:
new features and speed improvements. Submited to the
Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop, 2012.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric, Lam-
blin, Pascal, Pascanu, Razvan, Desjardins, Guillaume, Turian,
Joseph, Warde-Farley, David, and Bengio, Yoshua. Theano: a
CPU and GPU math expression compiler. In Proceedings of
the Python for Scientific Computing Conference (SciPy), 2010.

Chen, Xinlei and Zitnick, C Lawrence. Learning a recurrent
visual representation for image caption generation. arXiv
preprint arXiv:1411.5654, 2014.

Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar,
Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua.
Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP, October 2014.

32/68

Image captioning results

1. There is also a method given in (Vinyals et al. 2015).

Figure 5. A selection of evaluation results, grouped by human rating.

4.3.7 Analysis of Embeddings

In order to represent the previous word St�1 as input to
the decoding LSTM producing St, we use word embedding
vectors [22], which have the advantage of being indepen-
dent of the size of the dictionary (contrary to a simpler one-
hot-encoding approach). Furthermore, these word embed-
dings can be jointly trained with the rest of the model. It
is remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 4.3.7 shows, for a few example words, the nearest
other words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the
CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where
we see very few examples of a class (e.g., “unicorn”), its
proximity to other word embeddings (e.g., “horse”) should
provide a lot more information that would be completely
lost with more traditional bag-of-words based approaches.

5. Conclusion

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate

Word Neighbors
car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

a reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robust-
ness of NIC in terms of qualitative results (the generated
sentences are very reasonable) and quantitative evaluations,
using either ranking metrics or BLEU, a metric used in ma-
chine translation to evaluate the quality of generated sen-
tences. It is clear from these experiments that, as the size
of the available datasets for image description increases, so
will the performance of approaches like NIC. Furthermore,
it will be interesting to see how one can use unsupervised
data, both from images alone and text alone, to improve im-
age description approaches.

33/68

Transformers family

Transformers family

Transformers model

Transformers model

1. The soft attention and make it possible to do sequence to sequence modeling

without recurrent network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without

using sequence-aligned recurrent architecture.

Figure: Jay Alammar

3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.

34/68

Transformers training

1. The Transformers works slightly differently during training and inference.

2. Input sequence: You are welcome in English, target sequence: De nada in Spanish

Figure:Ketan Doshi
35/68

Transformers inference

1. During Inference, we have only the input sequence and don’t have the target

sequence to pass as input to the Decoder.

2. The goal is to produce the target sequence from the input sequence alone.

Figure:Ketan Doshi

36/68

Transformers encoder

1. Each encoder has two sub-layers and each decoder has three sub-layers

2. Each sublayer has residual connection.

3. All encoders receive a list of vectors each of the size 512.

4. The size of this list is hyper-parameter we can set (it would be the length of the

longest sentence in our training dataset).

Figure: Jay Alammar

37/68

Transformers

1. A transformer of two stacked encoders and decoders

Figure: Jay Alammar

38/68

Transformers embedding and position encoding

1. Transformers needs two things for a word: its meaning and its position in

sequence.
2. The Transformers has two Embedding layers.

I Input sequence is fed to the first embedding layer (Input Embedding).
I Target sequence is fed to the second embedding layer after shifting the targets right

by one position and inserting a Start token in the first position.

Figure:Ketan Doshi

39/68

Transformers position encoding

1. There are two position encoding layers for: input sequence and output sequence.

2. Let d be size of embedding for each word and L be length of input sequence.

3. Transformers considers an array of d × L to encode positions of the input

sequence.

Figure:Ketan Doshi

40/68

Transformers position encoding

1. Let pos be the position of word in sequence and i be the index value in positional

encoding. Then, PE is computed using

PE (pos, i) =

sin
(

pos
10000i/d

)
if i = 2k

cos
(

pos
10000i/d

)
if i = 2k + 1

2. For word w at position pos ∈ [0, L− 1] in the input sequence w = (w0, . . . ,wL−1),

with 4-dimensional embeddingew , and d = dmodel = 4, the operation would be

e ′w = ew +
[
sin
(pos

100000

)
, cos

(pos

100000

)
, sin

(pos

100002/4

)
, cos

(pos

100002/4

)]

= ew +
[
sin (pos) , cos (pos) , sin

(pos
100

)
, cos

(pos
100

)]

41/68

Transformers position encoding

1. Position encoding interleaves a sine curve and a cos curve, with sine values for all

even indexes and cos values for all odd indexes.

2. This results the following position encoding and the corresponding curves.

Figure: Amirhossein Kazemnejad

Figure: Ketan Doshi

42/68

Transformers encoder

1. The Encoder passes its input into a Multi-head Self-attention layer.

2. The Self-attention output is passed into a Feed-forward layer, which then sends its

output upwards to the next Encoder.

Figure: Ketan Doshi 43/68

Transformers decoder

1. The Decoder passes its input into a Multi-head Self-attention layer.

2. This operates in a slightly different way than the one in the Encoder.

3. It is only allowed to attend to earlier positions in the sequence. This is done by

masking future positions.

Figure: Ketan Doshi

44/68

Transformers multi-head attention

1. The Transformers calls each Attention processor an Attention Head and repeats it

several times in parallel.

2. This is known as Multi-head attention.

3. It gives its Attention greater power of discrimination, by combining several similar

Attention calculations.

Figure: Ketan Doshi

45/68

Transformers multi-head attention

1. There are three separate Linear layers for the Query, Key, and Value.

2. Each Linear layer has its own weights.

3. The input is passed through these Linear layers to produce the Q, K, and V

matrices.

Figure: Ketan Doshi

46/68

Transformers multi-head attention

1. The data are split across the multiple Attention heads so that each can process it

independently.

2. This is a logical split only. The Query, Key, and Value are not physically split into

separate matrices, one for each Attention head.

3. A single data matrix is used for the Query, Key, and Value, respectively, with

logically separate sections of the matrix for each Attention head.

Figure: Ketan Doshi

47/68

Transformers multi-head attention

1. We now have separate Attention Scores for

each head.

2. They need to be combined together into a

single score.

3. This Merge operation is essentially the

reverse of the Split operation.

4. It is done by simply reshaping the result
matrix to eliminate the Head dimension.

I Reshape the Attention Score matrix by

swapping the Head and Sequence

dimensions.
I Collapse the Head dimension by reshaping . Figure: Ketan Doshi

48/68

Transformers multi-head attention

1. The end-to-end flow of the Multi-head Attention is

Figure: Ketan Doshi

49/68

Transformers multi-head attention

1. The different attention heads are focusing on different words as we encode the

word it.

Figure: Jay Alammar

50/68

Transformers decoder attention layers

1. The attention layers of Transformers decoder are

Figure: Ketan Doshi

51/68

Transformers decoder self-attention and masking

1. The Decoder Self-Attention works just like the Encoder Self-Attention, except

that it operates on each word of the target sequence.

Figure: Ketan Doshi

52/68

Transformers decoder encoder-decoder attention and masking

1. The Encoder-Decoder Attention takes its input from two sources.

2. The Encoder-Decoder Attention computes the interaction between each target

word with each input word.

3. The Masking masks out the Padding words in the target sequence.

Figure: Ketan Doshi

53/68

Simple Neural Attention Meta-Learner (SNAIL)

1. The SNAIL was developed partially to resolve the problem with positioning in the

transformer model by combining the self-attention mechanism in transformer with

convolutions (Mishra et al. 2018).

2. It has been demonstrated to be good at both supervised learning and

reinforcement learning tasks.

54/68

Transformers family

BERT model

BERT model

1. BERT (Pre-training of Deep Bidirectional Transformers for Language

Understanding) is basically a trained Transformers Encoder stack (Devlin et al.

2019).

2. Each position outputs a vector. For the sentence classification, we focus on the

output of only the first position ([CLS]).

3. That vector can now be used as the input for a classifier. The paper achieves

great results by just using a single-layer neural network as the classifier.

4. BERT makes use of a novel technique called Masked LM (MLM): it randomly

masks words in the sentence and then it tries to predict them.
55/68

BERT model

1. BERT needs the input to be massaged and decorated with some extra meta data:

Token embeddings A [CLS] token is added to the input word tokens at the

beginning of the first sentence and a [SEP] token is inserted at the end of each

sentence.

Segment embeddings A marker indicating Sentence A or Sentence B is added

to each token. This allows the encoder to distinguish between sentences.

Positional embeddings A positional embedding is added to each token to

indicate its position in the sentence.

56/68

BERT sentence classification

Figure: Jay Alammar

57/68

Training BERT using masked language model

1. Randomly mask out 15% of the words in the input (replacing them with a

[MASK] token) .

2. Then run the entire sequence through the BERT attention based encoder and

predict only the masked words, based on the context provided by the other

non-masked words in the sequence.

3. The problem here is : the model only tries to predict when the [MASK] token is

present in the input, while we want the model to try to predict the correct tokens

regardless of what token is present in the input.

4. To deal with this issue, out of the 15% of the tokens selected for masking:

I 80% of the tokens are actually replaced with the token [MASK].
I 10% of the time tokens are replaced with a random token.
I 10% of the time tokens are left unchanged.

58/68

Training BERT using next Sentence prediction model

1. To understand relationship between two sentences, BERT training process also

uses next sentence prediction.

2. A pre-trained model with this kind of understanding is relevant for tasks like

question answering.

3. During training the model gets as input pairs of sentences and it learns to predict

if the second sentence is the next sentence in the original text as well.

4. BERT separates sentences with a special [SEP] token.

5. During training the model is fed with two input sentences at a time such that

I 50% of the time the second sentence comes after the first one.
I 50% of the time it is a a random sentence from the full corpus.

6. BERT is then required to predict whether the second sentence is random or not.

7. To predict if the second sentence is connected to the first one or not, the output

of the [CLS] token is given to a classifier.

59/68

BERT pre-trained architecture

1. There are two types of pre-trained versions of BERT depending on the scale of

the model architecture

BERT-Base 12-layer, 768-hidden-nodes, 12-attention-heads, 110M parameters.

BERT-Large 24-layer, 1024-hidden-nodes, 16-attention-heads, 340M

parameters.

60/68

Transformers family

GPT-2 model

GPT-2 model

1. The GPT-2 is built using transformer decoder blocks (Radford et al. 2019).

2. BERT uses transformer encoder blocks.

3. A key difference between the two is that GPT2 outputs one token at a time.

Figure: Jay Alammar

61/68

GPT-2 pre-trained architecture

Figure: Jay Alammar

62/68

ELMo model

Embeddings from Language Model (ELMo)

1. ELMo learns contextualized word representation by pre-training a language model

in an unsupervised way (Peters et al. 2018).

63/68

Embeddings from Language Model (ELMo)

1. The bidirectional Language Model (biLM) is the foundation for ELMo.

2. While the input is a sequence of n tokens, (x1, . . . , xn), the language model learns

to predict the probability of next token given the history.

3. In the forward pass, the history contains words before the target token,

p(x1, . . . , xn) =
n∏

i=1

p(xi | x1, . . . , xi−1)

4. In the backward pass, the history contains words after the target token,

p(x1, . . . , xn) =
n∏

i=1

p(xi | xi+1, . . . , xn)

5. The predictions in both directions are modeled by multi-layer LSTMs with hidden

states.

64/68

Embeddings from Language Model (ELMo)

1. The model is trained to minimize the negative log likelihood (= maximize the log

likelihood for true words) in both directions:

L = −
n∑

i=1

(
log p(xi | x1, . . . , xi−1; Θe ,

−→
Θ LSTM,Θs)+

log p(xi | xi+1, . . . , xn; Θe ,
←−
Θ LSTM,Θs)

)

2. ELMo word representations are functions of the entire input sentence.

3. A linear combination of the vectors stacked above each input word is learned as

the representation of each token.

65/68

Embeddings from Language Model (ELMo)

66/68

Reading

References i

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine

Translation by Jointly Learning to Align and Translate”. In: International Conference

on Learning Representations.

Cheng, Jianpeng, Li Dong, and Mirella Lapata (2016). “Long Short-Term

Memory-Networks for Machine Reading”. In: Proceedings of Conference on

Empirical Methods in Natural Language Processing, EMNLP. Ed. by Jian Su,

Xavier Carreras, and Kevin Duh, pp. 551–561.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding”. In: Proc. of Conf. of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

pp. 4171–4186.

Luong, Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective

Approaches to Attention-based Neural Machine Translation”. In: Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421.

Mishra, Nikhil et al. (2018). “A Simple Neural Attentive Meta-Learner”. In:

International Conference on Learning Representations.

67/68

References ii

Peters, Matthew E. et al. (2018). “Deep Contextualized Word Representations”. In:

Proc. of Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 2227–2237.

Radford, Alec et al. (2019). Language Models are Unsupervised Multitask Learners.

Technical report, OpenAi.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural

Information Processing Systems, pp. 5998–6008.

Vinyals, Oriol et al. (2015). “Show and tell: A neural image caption generator”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 3156–3164.

Xu, Kelvin et al. (2015). “Show, Attend and Tell: Neural Image Caption Generation

with Visual Attention”. In: Proceedings of the 32nd International Conference on

Machine Learning. Vol. 37, pp. 2048–2057.

Yang, Zichao et al. (2016). “Hierarchical Attention Networks for Document

Classification”. In: The 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

pp. 1480–1489.

68/68

Questions?

68/68

	Introduction
	Attention models
	Generalized model of attention
	Attention in computer vision
	Transformers family
	Transformers model
	BERT model
	GPT-2 model

	ELMo model
	Reading

