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Introduction



Introduction

I PAC (Probably Approximately Correct) Learning provides guarantees on the expected error

(approximately) of prediction rules that hold with high probability (probably) with respect to

representativeness of the observed sample.

I In PAC approach, we choose hypothesis class H as the prior knowledge.

I The PAC approach has the advantage that one can prove guarantees for generalization error

without assuming the truth of the prior.

I How to incorporate more complicated prior knowledge.

I The Bayesian approach has the advantage of using arbitrary domain knowledge in the form of a

Bayesian prior.

I A PAC-Bayesian approach to machine learning attempts to combine the advantages of both PAC

and Bayesian approaches.

I A PAC-Bayesian approach bases the bias of the learning algorithm on an arbitrary prior

distribution, thus allowing the incorporation of domain knowledge, and yet provides a guarantee

on generalization error that is independent of any truth of the prior.
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Bayesian methods



Maximum likelihood

I Let the data is drawn from a distribution that comes from some parametric family.

Example (Gaussian distribution)

Let σ be a known fixed parameter. Then, P [y | x; w] = N
(
〈w, x〉 , σ2

)
= 〈w, x〉+N

(
0, σ2

)
is a

parametric family.

I Given a sample S = {(x1, y1), . . . , (xm, ym)}, we define the likelihood of w as

L(w, S) = log (P [y1, . . . , ym | x1, . . . , xm; w]) =
m∑
i=1

log (P [yi | xi ; w])

I The maximum livelihood is the given value of w that maximizes L(w, S)

(
w = argmax

w′
L(w′,S)

)
Example (Gaussian distribution)

1. Let σ be a known fixed parameter. Then, P [y | x; w] = N
(
〈w, x〉 , σ2

)
= 〈w, x〉+N

(
0, σ2

)
is a

parametric family.

2. This means that P [yi | xi ; w] = 1√
2πσ2

exp
(
− (yi−〈w,x〉)2

σ2

)
and the likelihood is

L(w,S) = −
∑m

i=1
1
σ2

(yi−〈w,x〉)2

σ2 + C , where C is a normalization factor that does not depend on w.

3. This means that maximum likelihood is equivalent to minimizing square loss.

4. We want to maximize P [w | x, y ].
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Maximum a posteriori

I To find P [w | x, y ], we need to a prior distribution P [w].

I We have P [y | x,w] and P [w] from Bayes Theorem, hence, we have

P [w | x, y ] =
P [y | x,w]P [w]

P [y | x]
∝ P [y | x,w]P [w] .

I The maximum a posteriori (MAP) model is

w = argmax
w′

P
[
y
∣∣ X,w′

]
P
[
w′
]

= argmax
w′

L(w′, S) + log P
[
w′
]

Example (Gaussian distribution (cont.))

1. Let P [w] = N (0, σ2
wI) be prior distribution on w.

2. Now, we have

w = argmax
w′

−
m∑
i=1

1

σ2

(yi − 〈w′, x〉)2

σ2
−

1

σ2

∥∥w′
∥∥2

2

= argmin
w′

m∑
i=1

1

σ2

(yi − 〈w′, x〉)2

σ2
+

1

σ2

∥∥w′
∥∥2

2

3. This is equivalent to doing regularized ERM with L2 regularization.

4. If we use Laplacian distribution instead of Gaussian, we will get L1 regularization.
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Bayesian inference

I MAP picks the best model, given our model and data.

I Why do we have to pick one model?

I We have seen that the optimal classifier can be calculated given P [y | x].

I The Bayesian approach does exactly that, so we get

P [y | x, S ] =

∫
w
P [y | x,w]P [w | S ] d P [w]

I In some cases (such as Guassian), this as an analytic solution, but most of the time there isn’t any.
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PAC-Bayes theory



Introduction

I In agnostic PAC learning, this prior is defined as selecting the hypothesis class H.

I In SRM learning, this prior is defined as the weights assigned to different hypothesis class Hn.

I In MDL, this prior is defined as the description length of hypothesis h.

I In the above models, the output of the learning algorithm is a single hypothesis h, i.e h = A(S).

I In PAC-Bayes, algorithms return a distribution Q on H.

Example (Loss of posterior)

Let Q be a distribution on H, D a distribution on X × Y and S a finite sample. Define

R(Q) = E
h∼Q

[R(h)] = E
h∼Q

[
E

z∼D
[`(h, z)]

]
R̂(Q) = E

h∼Q

[
R̂(h)

]
= E

h∼Q

[
1

m

m∑
i=1

`(h, z)

]

I The learning algorithm is

1. Define prior distribution P on H.

2. Get sample S ∼ Dm.

3. Define/find posterior distribution Q on H.
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Gibbs classifier

I We can turn a posterior into a learning algorithm.

Definition (Gibbs classifier)

Let Q be a distribution on H. The Gibbs classifier is the following randomized hypothesis

1. Pick h ∈ H according to Q(h).

2. Observe x.

3. Return h(x).

I It is straightforward to show that the expected loss Gibbs classifier equals to R(Q).

Example

1. Let H = {h1, . . . , hk}.

2. Let P be a uniform distribution over H.

3. Let Q be defined as

Q(h) =


1 if h = herm

0 if h 6= herm
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Gibbs classifier

Example

1. For w ∈ Rn, define

hw(x) =

{
+1 with probability 1

Z
e〈w,x〉

−1 with probability 1
Z
e−〈w,x〉

2. The prior P is N
(
0, σ2I

)
, i.e. P(hw) ∝ exp(−‖w‖2 /σ2).

3. Given sample S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, and sample h ∼ P and output

S = {(x1, h(y1)), . . . , (xm, h(ym))}. Then likelihood equals to

P [y1, . . . , ym | hw, x1, . . . , xm] =
∏
i

1

Z
e〈w,xi 〉 ∝ exp

(∑
i

yi 〈w, xi 〉

)
.

4. Using Bayes’ rule, we can form the posterior

P [hw | y1, . . . , ym, x1, . . . , xm] ∝

(
exp

(∑
i

yi 〈w, xi 〉

))(
exp

(
−‖w‖

2

σ2

))

∝

(
exp

(∑
i

yi 〈w, xi 〉

)
− ‖w‖

2

σ2

)

We will see that the critical factor determining the complexity of the learning algorithm will become

KL(Q||P), the Kullback-Liebler divergence from Q to P instead of the Rademacher complexity.
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KL divergence

I We want to show that if Q is similar to P, the classifier generalizes well.

I Kullback-Leibler (KL) divergence is how to measure the similarity of two distributions.

Definition (KL divergence)

Let P and Q be continuous or discrete distributions. Then, KL divergence of distributions P and Q

defined as

KL(Q||P) = E
x∼Q

[
ln

(
Q(x)

P(x)

)]
.

I Note that KL divergence is not symmetric, i.e. KL(Q||P) 6= KL(P||Q).

I The intuition behind this definition comes from information theory.

I Assume we have a finite alphabet and message x is sent with probability P(x).

I Shannon’s coding theorem states that code of x with log2(1/P(x)) bits is an optimal coding and

the expected bits per letter is Ex∼P

[
log2

(
1

P(x)

)]
= H(P).

I Consider now that we use the optimal code for P, but the letters where sent according to Q. The

expected bits per letter is now

E
x∼Q

[
log2

(
1

P(x)

)]
= E

x∼Q

[
log2

(
Q(x)

P(x)

)
+ log2

(
1

Q(x)

)]
= H(Q) + KL(Q||P).

I KL(Q||P) is the extra number of bits expected per letter from using P instead of Q to create the

codebook.

I This shows that KL(Q||P) ≥ 0.
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KL Divergence

Example

Let P be some distribution on x1, . . . , xm and Q be 1 on xi then, KL(Q||P) = ln
(

1
P(xi )

)
.

Example

Let P(xi ) = 0 and Q(xi ) > 0, then KL(Q||P) =∞.

Example

Let α, β ∈ [0, 1], then KL(α||β) = KL(Ber(α)||Ber(β)) = α ln
(
α
β

)
+ (1− α) ln

(
1−α
1−β

)
.

Show the above equation.

Example

Let Q = N (µ0,Σ0) and P = N (µ1,Σ1) be two n-dimensional Gaussian distributions. Then,

KL(Q||P) =
1

2

(
Tr
[
Σ−1

1 Σ0

]
+ (µ1 − µ0)Σ−1

1 (µ1 − µ0)− n − det (Σ0)

det (Σ1)

)
Show the above equation.
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PAC Bayes bound

Lemma

If X is a real valued random number satisfying P [X ≤ x ] ≤ e−mf (x), then E
[
e(m−1)f (x)

]
≤ m.

Lemma

With probability greater then (1− δ) over S ,

E
h∼P

[
e(m−1)KL(R̂(h)||R(h))

]
≤ m

δ
.

Lemma (Shift of measure)

E
x∼Q

[f (x)] ≤ KL(Q||P) + ln E
x∼P

[
e f (x)

]
.
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PAC Bayes bound

Theorem (PAC Bayes bound)

Let Q and P be distributions on H and D be a distribution onX × Y. Also let `(h, z) ∈ [0, 1] and

S ∼ Dm be a sample of size m, then with probability greater or equal to (1− δ) over S we have

KL(R̂(Q)||R(Q)) ≤
KL(P||Q) + ln

(
m+1
δ

)
m

.

1. The left-hand side is the KL divergence between two numbers; while the right-hand side is the KL

divergence between distributions.

2. We assume no connection between D and P (an agnostic analysis).

Proof (PAC Bayes bound).

1. Define f (h) = KL(R̂(h)||R(h)). Using the Lemma Shift of measure and its preceding lemma, we

get

E
h∼Q

[mf (h)] ≤ KL(Q||P) + ln E
h∼P

[
emf (h)

]
≤ KL(Q||P) + ln

(
m + 1

δ

)
2. Since KL divergence is convex, so from the Jensen inequality

KL(R̂(Q)||R(Q)) = KL( E
h∼Q

[
R̂(h)

]
|| E

h∼Q
[R(h)])

≤ E
h∼Q

[
KL(R̂(h)||R(h))

]
= E

h∼Q
[f (h))]
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Generalization bounds

I We bounded KL(R̂(Q)||R(Q)).

I Now, we bound R(Q)− R̂(Q).

Lemma

Let a, b ∈ [0, 1] and KL(a||b) ≤ x , then b ≤ a +
√

x
2
and b ≤ a + 2x +

√
2ax , where the second is

much stronger if a is very small.

Theorem (Generalization bounds)

Let Q and P be distributions on H and D be a distribution on X × Y. Let also `(h, z) ∈ [0, 1] and

S ∼ Dm be a sample, then with probability greater or equal to (1− δ) over S we have

R(Q) ≤ R̂(Q) +

√
KL(Q||P) + ln

(
m+1
δ

)
2m

R(Q) ≤ R̂(Q) + 2
KL(Q||P) + ln

(
m+1
δ

)
m

+

√
2R̂(Q)

KL(Q||P) + ln
(
m+1
δ

)
m
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Summary



Summary

I Shawe-Taylor et al. gave PAC analysis of Bayesian estimators.

I McAllester gave PAC-Bayesian bound.

I PAC-Bayes bounds hold even if prior incorrect;while Bayesian inference must assume prior is

correct.

I PAC-Bayes bounds hold for all posteriors; while in Bayesian learning, posterior computed by

Bayesian inference, depends on statistical modeling

I PAC-Bayes bounds can be used to define prior, hence no need to be known explicitly; while in

Bayesian learning, input effectively excluded from the analysis, randomness lies in the noise model

generating the output.

I We analyzed Gibbs classifier. Another solution is to sample many hi ∼ Q i.i.d. and output the

majority vote.

I PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with fairly simple

proofs.

I PAC-Bayesian analysis applies directly to algorithms that output distributions on the hypothesis

class, rather than a single best hypothesis.

I However, it is possible to de-randomize the PAC-Bayes bound to get bounds for algorithms that

output deterministic hypothesis.
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Readings

1. Chapter 31 of Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From

theory to algorithms. Cambridge University Press, 2014.

2. The papers given in References [4, 2, 3, 1].
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Questions?
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