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Introduction



Introduction

I We have analyzed some learning algorithms in the statistical setting,
I We assume training and test data are both drawn i.i.d. from some distribution D
I Usually, we have two separate phases: training and test.

I In this lecture,
I we weaken the assumptions and assume that data can be generated completely adversarily.
I we also move to the online setting where training and test are interleaved.

I We make two shifts to the learning setup:
I batch to online.
I statistical to adversarial.

I Considering the online learning framework for prediction.

I We need to find a mapping y = h(x), where x ∈ X and y ∈ Y.

I This setting can be thought of as a game between a learner and

nature.

I In each time stage t = 1, 2, . . . ,T ,

1. Learner receives an input xt ∈ X .

2. Learner outputs prediction ŷt ∈ Y.

3. Learner receives true label yt ∈ Y.

4. Learner suffers loss `(yt , ŷt).

5. Learner updates model parameters.

I Learning is hopeless if there is no correlation between past and

present rounds.

[begin lecture 13] (13)

5 Online learning

5.1 Introduction (Lecture 13)

• Thus far, we have analyzed algorithms (maximum likelihood, ERM) in the statistical
setting, where we assume the the training and test data are both drawn i.i.d. from some
distribution p⇤. We even boasted that we need not make any assumption about what
p⇤ is. In this unit, we will weaken the assumptions even more and assume that data can
be generated completely adversarily. In addition, we will move to the online setting
where training and test are interleaved. Thus we make two shifts to the learning setup:

– Batch to online

– Statistical to adversarial

• We will first discuss the online learning framework, focusing on prediction. Then, we
will cast online learning as online convex optimization and develop several algorithms
and prove regret bounds for these algorithms. Finally, we will look at multi-armed
bandit problems, where the learner obtains partial feedback. Throughout this section,
there will be very little probability (since we will be working in the adversarial setting),
but we will draw quite a bit from convex analysis.

• Framework

– Prediction task: we want to map inputs x 2 X to outputs y 2 Y .

– The online learning setting can be thought of as the following game between a
learner and nature:

Learner

x1

p1

y1

...

xT

pT

yT

Nature

Figure 9: Online learning game.

⇤ Iterate t = 1, . . . , T :

143

I Formally, learner is a function A that returns the current prediction given the full history

ŷt+1 = A (x1:t , ŷ1:t , y1:t , xt+1)

2/48



Introduction

I Consider the following example.

Example (Online binary classification for spam filtering)

In online binary classification for spam filtering, we have

I Inputs: X = {0, 1}n are boolean feature vectors (presence or absence of a word).

I Outputs: Y = {+1,−1} whether a document is spam or not spam.

I Loss: Zero-one loss `(yt , ŷt) = I [yt 6= ŷt ] is whether the prediction was incorrect.

I Remarks
I The training phase andtesting phase are interleaved in online learning.
I The online learning setting leaves completely open the time and memory usage of the online

algorithms.
I In practice, online learning algorithms update parameters after each example, and hence tend to be

faster than traditional batch optimization algorithms.
I The real world is complex and constantly-changing, but online learning algorithms have the potential

to adapt.
I In some applications such as spam filtering, the inputs could be generated by an adversary, hence. we

will make no assumptions about the input/output sequence.

I How we measure the quality of an online learner A?
I The learning algorithm is said to make a mistake in round t if ŷt 6= yt .
I The goal of the online learner is simply to make few prediction mistakes.
I We encode prior knowledge on the problem using

I some representation of the instances and
I assuming that there is a class of hypotheses, H = h : X 7→ Y, and on each online round the learner

uses a hypothesis from H to make his prediction.
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Online classification in the realizable case

I Online learning is performed in a sequence of consecutive rounds, where at round t,
1. Learner receives an input xt ∈ X .

2. Learner outputs prediction ŷt ∈ Y.

3. Learner receives true label yt ∈ Y.

I In the realizable case, we assume that all labels are generated by some hypothesis, h∗ : X 7→ Y.
I We also assume that h∗ is taken from a hypothesis class H, which is known to the learner.
I The learner should make as few mistakes as possible, assuming that both h∗ and the sequence of

instances can be chosen by an adversary.

Definition (Mistake bound)

For an online learning algorithm, A, we denote by MA(H) the maximal number of mistakes that the

algorithm A might make on a sequence of examples which is labeled by some h∗ ∈ H. A bound on

MA(H) is called a mistake-bound.

I We will study how to design algorithms for which MA(H) is minimal.

Definition (Mistake bounds, Online learnability)

Let H be a hypothesis class and let A be an online learning algorithm. Given any sequence

S = (x1, h
∗(x1), . . . , (xT , h

∗(xT ))), where T is any integer and h∗ ∈ H, let MA(S) be the number of

mistakes A makes on the sequence S . We denote by MA(H) the supremum of MA(S) over all

sequences of the preceding form. A bound of the form MA(H) ≤ B <∞ is called a mistake bound.

We say that a hypothesis class H is online learnable if there exists an algorithm A for which

MA(H) ≤ B <∞.
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Consistent algorithm

I Let |H| <∞. A learning rule for online learning is to use any ERM hypothesis (any hypothesis

which is consistent with all past examples).

Consistent algorithm

1: Let V1 = H

2: for t ← 1, 2, . . . do

3: Receive xt .

4: Choose any h ∈ Vt and predict ŷt = h(xt).

5: Receive true label yt = h∗(xt).

6: Update Vt+1 = {h ∈ Vt | h(xt) = yt}.
7: end for

I The Consistent algorithm maintains a set Vt , which is called version space.

Theorem (Mistakebound of Consistent algorithm)

Let H be a finite hypothesis class. Consistent algorithm has mistake bound MConsistent(H) ≤ |H| − 1.

Proof.

When Consistent makes a mistake, at least one hypothesis is removed from Vt . Therefore, after

making M mistakes we have |Vt | ≤ |H| −M. Since Vt is always nonempty (by the realizability

assumption it contains h∗), we have 1 ≤ |Vt | ≤ |H| −M.
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Random Consistent algorithm

I We define a variant of Consistent which has much better mistake bound.
I On each round, this algorithm choose a consistent hypothesis uniformly at random, as there is no

reason to prefer one consistent hypothesis over another.

RandConsistent algorithm

1: Let V1 = H

2: for t ← 1, 2, . . . do

3: Receive xt .

4: Choose some h from Vt uniformly at random.

5: Predict ŷt = h(xt).

6: Receive true label yt = h∗(xt).

7: Update Vt+1 = {h ∈ Vt | h(xt) = yt}.
8: end for

I Consider round t and let αt be the fraction of hypotheses in Vt , which are going to be correct on

example (xt , yt).
I If αt is close to 1, we are likely to make a correct prediction.
I If αt is close to 0, we are likely to make a prediction error.
I On the next round, after updating the set of consistent hypotheses, we will have |Vt+1| = αt |Vt |.
I Since we now assume that αt is small, we will have a much smaller set of consistent hypotheses in

the next round.
I If we are likely to have mistake on the current example, then we are going to learn a lot from this

example as well, and therefore be more accurate in later rounds.
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Random Consistent algorithm

Theorem (Mistakebound of RandConsistent algorithm)

Let |H| <∞, h∗ ∈ H and S = ((x1, h
∗(x1)), . . . , (xT , h

∗(xT ))) be an arbitrary sequence of examples.

Then, the expected number of mistakes the RandConsistent algorithm makes on this sequence is at

most ln(|H|), where expectation is with respect to the algorithm’s own randomization.

Proof.

1. For each round t, let αt =
|Vt+1|
|Vt |

. After T rounds we have 1 ≤ |VT+1| = |H|∏T
t=1 αt .

2. Using the inequality b ≤ e−(1−b), which holds for all b, we get that

1 ≤ |H|
T∏
t=1

e−(1−αt ) = |H|e−
∑T

t=1(1−αt ) =⇒
T∑
t=1

(1− αt) ≤ ln|H|.

3. Since we predict ŷt by choosing h ∈ H uniformly, the probability to make a mistake on round t is

P [ŷt 6= yt ] =
|{h ∈ Vt | h(xt) 6= yt}|

|Vt |
=
|Vt | − |Vt + 1|

|Vt |
= (1− αt).

4. Therefore, the expected number of mistakes is

T∑
t=1

E [I [ŷt 6= yt ]] =
T∑
t=1

P [ŷt 6= yt ] =
T∑
t=1

(1− αt) ≤ ln(|H|).
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Random Consistent algorithm

I It is interesting to compare the mistake bound of RandConsistent with the generalization bound of

PAC model.

I In PAC model, T equals to size of the training set.

I PAC model implies that with probability of at least (1− δ), the average error on new examples is

guaranteed to be at most ln(|H|/δ)/T .

I In contrast, the mistake bound of RandConsistent tells us a much stronger guarantee. We do not

need to first train the model on T examples, in order to have error rate of ln(|H|)/T .

I We can have this same error rate immediately on the first T examples we observe.

I Another important difference between these two models is that in online we don’t assume that

instances are sampled i.i.d. from some underlying distribution.

I Removing the i.i.d. assumption is a big advantage.

I In other hand, we only have a guarantee on MA(H) but we have no guarantee that after observing

T examples we will identify h∗.

I If we observe the same example on all the online rounds, we will make few mistakes but we will

remain with a large version space Vt .

I This Theorem bounds the expected number of mistakes. Using concentration techniques, we can

obtain a bound which holds with extremely high probability.

I A simpler way is to explicitly derandomize the algorithm.

I A simple derandomization is to make a deterministic prediction according to majority vote of

h ∈ Vt .

I The resulting algorithm is called Halving.
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Halving algorithm

I It is easy to construct a hypothesis class and a sequence of examples on which Consistent will

indeed make |H| − 1 mistakes.

Halving algorithm

1: Let V1 = H

2: for t ← 1, 2, . . . do

3: Receive xt .

4: Predict ŷt = argmax
r∈{0,1}

|{h ∈ Vt | h(xt) = r}|. in case of a tie predict ŷt = 1.

5: Receive true label yt = h∗(xt).

6: Update Vt+1 = {h ∈ Vt | h(xt) = yt}.
7: end for

Theorem (Mistakebound of Halving algorithm)

Let H be a finite hypothesis class. Halving algorithm has mistake bound MHalving (H) ≤ log2(|H|).

Proof.

When Halving makes a mistake, we have |Vt+1| ≤ |Vt |
2

. If M is total number of mistakes, we have

1 ≤ |VT+1| ≤ |H|2−M

Rearranging this inequality we conclude our proof.
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Online learnability

I What is the optimal online learning algorithm for a given hypothesis class H?

I We present a dimension of hypothesis classes that characterizes the best achievable mistake

bound.

I This measure was proposed by Nick Littlestone and we therefore refer to it as Ldim(H).

I To define Ldim, we consider online learning process as a game between two players: learner versus
environment. On round t of the game,

1. the environment picks an instance xt ,

2. the learner predicts a label ŷt ∈ {0, 1}, and

3. the environment outputs the true label, yt ∈ {0, 1}.
I Suppose that environment wants to make learner have mistake on the first T rounds of the game.

I Then, it must output yt = 1− ŷt , and the question is how it should choose the instances xt in

such a way that ensures that for some h∗ ∈ H, we have yt = h∗(xt) for all t ∈ {1, 2, . . . ,T}.
I A strategy for an adversarial environment can be formally described as the following a binary tree.

1. Each node of the tree is associated with an instance from X .

2. Initially, environment presents to learner the instance associated with the root of the tree.

3. If learner predicts ŷt = 0, then environment will set yt = 1 and will traverse to the right child.

4. If learner predicts ŷt = 1, then environment will set yt = 0 and will traverse to the left child.

5. This process will continue.
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Online learnability

I Formally, consider a complete binary tree of depth1 T .

I This tree has (2T − 1) nodes each of which is assigned an instance. Let v1, . . . , v2T−1 be these

instances.

I We start from the root of the tree, and set x1 = v1.

I At round t, we set xt = vit where it is the current node.

I If yt = 0, we go to the left child of it , otherwise we go to the right child of it .

I This results in it+1 = 2it + yt and hence it = 2t−1 +
∑t−1

j=1 yj2
t−1−j .

I This strategy succeeds if for every (y1, . . . , yT ) there exists a h∗ ∈ H such that for all

t ∈ {1, . . . ,T}, we have yt = h∗(xt). This leads to the following definition.

Definition (H Shattered tree)

A shattered tree of depth d is a sequence of instances v1, . . . , v2d−1 in X such that for every labeling

(y1, . . . , yd) ∈ {0, 1}d there exists h ∈ H such that for all t ∈ {1, . . . , d} we have yt = h(xit ), where

it = 2t−1 +
∑t−1

j=1 yj2
t−1−j .

h1 h2 h3 h4

v1 0 0 1 1
v2 0 1 ? ?
v3 ? ? 0 1

v1

v2

h1 h2

v3

h3 h4

Figure 1: An illustration of an H-shattered tree of depth 2. In-
ternal nodes are labeled with instances v1,v2,v3 and the leaves
are labeled with hypothesis h1, h2, h3, h4. The predictions of hy-
potheses on v1,v2,v3 is given in the table. A question mark
means that hj(vi) can be either 1 or 0. For example, the
path from the root to the leaf labeled h3 corresponds to the se-
quence of examples (v1, 1), (v3, 0), which can also be written as
(v1, h3(v1)), (v3, h3(v3)).

The following lemma formally establishes the optimality
of SOA.

Lemma 10. For any class H with finite Littlestone dimen-
sion, the SOA algorithm makes at most Ldim(H) mistakes
on any sequence of instances labeled by some h 2 H.

The idea behind the proof is to note that, whenever SOA
errs then the Ldim of the resulting version space (the space
of all the hypotheses in H that are consistent with the labels
presented by the environment, so far) goes down by at least
1.

Randomized Predictions To derive the lower bound, one
can think of the environment as choosing yt to be ¬ŷt. As
we describe in the next section, in the unrealizable case, al-
lowing the environment to base its label on the learner’s pre-
diction leads to non-vanishing regret. We circumvent this
problem by assuming that the environment must decide on
yt before observing ŷt, and the learner is allowed to make
randomized predictions (so the environment cannot predict
these predictions).

This leads to the question, whether randomization helps
in the realizable case. As it turns out, it does not help too
much, since one can show that even if the learner is random-
ized, there exists a sequence of instances and a target hypoth-
esis such the expected number of mistakes (with respect to
the target) is at least Ldim(H)/2. This easily follows by an
averaging argument, since if the environment plays accord-
ing to a root-to-leaf path chosen uniformly at random in a
fixed mistake tree of depth Ldim(H), the expected number
of mistakes is at least Ldim(H)/2. Therefore, the distinc-
tion between randomized and deterministic learners in the
realizable case is not significant.

3 Agnostic Online Learnability with
Arbitrary Labels

In the previous section we have shown that Littlestone’s di-
mension exactly characterizes the achievable mistake bounds
in the realizable case. However, the realizable assumption is
rather strong. The focus of this paper is the more realis-
tic, unrealizable, case. In the unrealizable case, our goal is
to minimize the regret with respect to a benchmark class of
labeling functions, H. That is, the difference between the

learner’s number of mistakes and the number of mistakes of
the optimal hypothesis in H.

As before, we are interested in a combinatorial measure
that determines the optimal achievable regret bound for hy-
pothesis classes. A natural candidate is the Littlestone’s di-
mension. Recall that in the unrealizable case we assume that
the environment must decide on yt before observing ŷt, and
the learner is allowed to make randomized predictions As
a warm-up, we recall a well known expected regret bound
under these assumptions for the case of finite hypotheses
classes. That is in terms of the cardinality of H . Then,
we present the main result, constructing a generic online al-

gorithm that has the expected regret bound
q

L̃dim(H)T

(regardless of the cardinality of H). Finally, we provide a
lower bound on the achievable regret.

3.1 An Expert Algorithm for Finite Classes
Let H be a finite hypothesis class. We can think on the hy-
potheses in H as “experts”, and the goal of the online learn-
ing algorithm is to track the optimal expert. In the following
we denote the set of experts by {f1, f2, . . . , fN} (rather than
by hi’s) since, the results apply to a more general case where
”experts” do not necessarily have to be fixed functions.

One way to do this is by using the weighted majority
algorithm [Littlestone and Warmuth, 1994]. The version of
the algorithm we give here, as well as the regret bound, is
based on [Cesa-Bianchi and Lugosi, 2006, Chapter 2].

Algorithm 2 Learning with Expert Advice
input: Number of experts N ; Learning rate ⌘ > 0
initialize: w0 = (1, . . . , 1) 2 RN ; Z0 = N
for t = 1, 2, . . . , n

receive expert advice (f t
1, f

t
2, . . . , f

t
N ) 2 {0, 1}N

environment determine yt without revealing it to learner
define p̂t = 1

Zt�1

P
i:ft

i =1 wt�1
i

predict ŷt = 1 with probability p̂t

receive label yt

update: wt
i = wt�1

i exp (�⌘|f t
i � yt|) ; Zt =

PN
i=1 wt

i

The algorithm maintains a weight for each expert and
makes a randomized prediction according to the relative
mass of experts. Finally, the weights of experts that erred
on the last example are diminished by a factor of exp(�⌘).
The definition of ŷt clearly implies that

E[|ŷt 6= yt|] =
1

Zt�1

NX

i=1

wt�1
i |f t

i � yt| . (6)

The following theorem, whose proof can be easily derived
from [Cesa-Bianchi and Lugosi, 2006, Chapter 2], analyzes
the expected regret of the algorithm.

Theorem 11. If we run Algorithm 2 with learning rate
⌘ =

p
8 ln(N)/T then the following expected regret bound

holds:
TX

t=1

E[|ŷt 6= yt|] � min
1iN

TX

t=1

|f t
i � yt| 

q
1
2 ln(N) T .

1we define the depth of the tree as the number of nodes in a path from the root to a leaf
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Online learnability

Definition (Littlestone’s Dimension (Ldim))

Ldim(H) is the maximal integer T such that there exists a shattered tree of depth T , which is

shattered by H.

Littlestone’s dimension

H shatters a full binary tree iff each leaf-hypothesis is
consistent with the path to the root.

h1 h2 h3 h4 h5 h6 h7 h8

x4 x5

x2

x1

x6

x3

x7

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Ldim(H) is maximum depth of a full binary tree
shattered by H.Ldim(H) is maximum depth of a full binary tree shattered by H.

Theorem (Lower bound of mistake)

No algorithm can have a mistake bound strictly smaller than Ldim(H); namely, for every algorithm,

A, we have MA(H) ≥ Ldim(H).

Proof.

Let T = Ldim(H) and let v1, . . . , v2T−1 be a sequence that satisfies the requirements in the

definition of Ldim. If the environment sets xt = vit and yt = 1− ŷt for all t ∈ {1, . . . ,T}, then the

learner makes T mistakes while the definition of Ldim implies that there exists a hypothesis h ∈ H

such that yt = h(xit ) for all t ∈ {1, . . . ,T}.
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Littlestone’s Dimension (example)

Theorem (Online learnability)

If Ldim(H) is finite, then the hypothesis class H is online learnable.

Example (Finite hypothesis class)

Let H be a finite hypothesis class. Clearly, any tree that is shattered by H has depth of at most

log2(|H|). Therefore, Ldim(H) ≤ log2(|H|).

Example (Threshold function)

Let X = [0, 1] and H = {x 7→ sgn (x− a) | x ∈ [0, 1]}. Then, Ldim(H) =∞.

The following tree is shattered by H and, because of the density of the reals, this tree can be made

arbitrarily deep.

21.1 Online Classification in the Realizable Case 249

v1

v2 v3

h1 h2 h3 h4

v1
v2
v3

0 0 1 1
0 1
∗ ∗

∗ ∗
0 1

Figure 21.1. An illustration of a shattered tree of depth 2. The dashed path corresponds
to the sequence of examples ((v1,1),(v3,0)). The tree is shattered by H = {h1,h2,h3,h4},
where the predictions of each hypothesis in H on the instances v1,v2,v3 is given in the
table (the * mark means that h j (vi ) can be either 1 or 0).

there exists h ∈ H such that for all t ∈ [d] we have h(vit ) = yt where it = 2t−1 +∑t−1
j=1 y j 2t−1− j .

An illustration of a shattered tree of depth 2 is given in Figure 21.1.

Definition 21.5 (Littlestone’s Dimension (Ldim)). Ldim(H) is the maximal integer
T such that there exists a shattered tree of depth T , which is shattered by H.

The definition of Ldim and the previous discussion immediately imply the
following:

Lemma 21.6. No algorithm can have a mistake bound strictly smaller than
Ldim(H); namely, for every algorithm, A, we have MA(H) ≥ Ldim(H).

Proof. Let T = Ldim(H) and let v1, . . . ,v2T −1 be a sequence that satisfies the
requirements in the definition of Ldim. If the environment sets xt = vit and yt =
1− pt for all t ∈ [T ], then the learner makes T mistakes while the definition of Ldim
implies that there exists a hypothesis h ∈ H such that yt = h(xt ) for all t .

Let us now give several examples.

Example 21.2. Let H be a finite hypothesis class. Clearly, any tree that is shattered
by H has depth of at most log2 (|H|). Therefore, Ldim(H) ≤ log2 (|H|). Another way
to conclude this inequality is by combining Lemma 21.6 with Theorem 21.3.

Example 21.3. Let X = {1, . . . ,d} and H = {h1, . . . ,hd } where h j (x) = 1 iff x = j .
Then, it is easy to show that Ldim(H) = 1 while |H| = d can be arbitrarily large.
Therefore, this example shows that Ldim(H) can be significantly smaller than
log2 (|H|).

Example 21.4. Let X = [0,1] and H = {x %→ 1[x<a] : a ∈ [0,1]}; namely, H is the
class of thresholds on the interval [0,1]. Then, Ldim(H) = ∞. To see this, consider
the tree

1/2

1/4

1/8 3/8

3/4

5/8 7/8
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Littlestone’s Dimension (example)

Example (Finite domain/hypothesis set )

Let X = {1, 2, . . . , d} and H = {h1, . . . , hd} where hj(x) = 1 iff x = j . Then, it is easy to show that

Ldim(H) = 1 while |H| = d can be arbitrarily large.

Therefore, this example shows that Ldim(H) can be significantly smaller than log2(|H|).

Homework: Show that Ldim(H) = 1.

Example (Perceptron)

Let X =
{

x ∈ {0, 1}∗
∣∣ ‖x‖0 ≤ r

}
and H =

{
x 7→ sgn (〈w, x〉)

∣∣ ‖w‖0 ≤ k
}

. Then |H| =∞ but

Ldim(H) ≤ r × k.

Homework: Show that Ldim(H) ≤ r × k.
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Standard Optimal Algorithm

I Is there any algorithm A such that for hypothesis class H we have MA(H) = Ldim(H)?

Standard Optimal Algorithm (SOA)

1: Let V1 = H

2: for t ← 1, 2, . . . do

3: Receive xt .

4: For r ∈ {0, 1}, let V
(r)
t = {h ∈ Vt | h(xt) = r}

5: Predict ŷt = argmax
r∈{0,1}

Ldim(V
(r)
t ).

6: Receive true label yt = h∗(xt).

7: Update Vt+1 = V
(yt )
t .

8: end for

I The SOA uses the same idea as Halving, but instead of predicting according to the larger class,

it predicts according to the class with larger Ldim.

Theorem (Optimality of SOA)

SOA enjoys the mistake bound MSOA(H) ≤ Ldim(H).
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Standard Optimal Algorithm

Proof (Optimality of SOA).

1. It suffices to prove that when algorithm makes a mistake, we have Ldim(Vt+1) ≤ Ldim(Vt)− 1.

2. We prove this claim by assuming the contrary, that is Ldim(Vt+1) = Ldim(Vt).

3. If this is true, then definition of ŷt implies Ldim(Vt+1) = Ldim(Vt) for both r = 1 and r = 0.

4. But in this case, then we can construct a shaterred tree of depth Ldim(Vt) + 1 for the class Vt ,

which leads to the desired contradiction.

Corollary

Let H be any hypothesis class. Then, the standard optimal algorithm enjoys the mistake bound

MSOA(H) = Ldim(H) and no other algorithm A can have MA(H) < Ldim(H).

Proof.

By combining Theorem (Lower bound of mistake) and Theorem (Optimality of SOA), this corollary

can be proved.
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Comparison of VC and Ldim

I In PAC learning, learnability is characterized by the VC(H).
I Recall that VC(H) is the maximal number d such that there are instances x1, . . . , xd that are

shattered by H. That is for any sequence of labels (y1, . . . , yd) ∈ {0, 1}d there exists a hypothesis

h ∈ H that gives exactly this sequence of labels.

Theorem

For any class H, we have VC(H) ≤ Ldim(H).

Proof.

Suppose VC(H) = d and let x1, . . . , xd be a shattered set. We now construct a complete binary tree

of instances x1, . . . , x2d−1, where all nodes at depth i are set to be xi .

x1

x2

x3 x3

x2

x3 x3

Figure 2: How to construct a shattered tree from a shattered sequence x1, . . . ,xd.

Proof Suppose VCdim(H) = d and let x1, . . . ,xd be a shattered set. We now construct a complete binary
tree of instances v1, . . . ,v2d�1, where all nodes at depth i are set to be xi (see the illustration in Figure 2).
Now, the definition of shattered sample clearly implies that we got a valid shattered tree of depth d, and our
proof is completed.

Corollary 2 For a finite hypothesis class, we have

VCdim(H)  Ldim(H)  log(|H|) .

Both inequalities in Corollary 2 can be strict as the following examples show.

Example 4 Consider again the class of initial segments on the real numbers. That is, X = R and H =
{x 7! sign(x� a) : a 2 R}. We have shown that the VC dimension of H is 1 while the Littlestone dimension
is1.

Example 5 Let X = {1, . . . , d} and H = {h1, . . . , hd} where hd(x) = 1 iff x = d. Then, it is easy to show
that Ldim(H) = 1 while |H| = d can be arbitrarily large.

Online Learning-9

Now, the definition of shattered sample clearly implies that we got a valid shattered tree of depth d

and we conclude that VC(H) ≤ Ldim(H).
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Comparison of VC and Ldim

Corollary

For any finite hypothesis class H, we have V (H) ≤ Ldim(H) ≤ log(|H|).

Example (Threshold function)

Let X = R and H = {x 7→ sgn (x− a) | x ∈ R}. We have shown that VC(H) = 1 while

Ldim(H) =∞.

Example

Let X = {1, 2, . . . , d} and H = {h1, h2, . . . , hd}, where hk(x) = 1 iff x = k.

1. Show that Ldim(H) = 1 while |H| = d can be arbitrarily large.

2. What is VC(H)?
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Online classification in the unrealizable case

I Similarly to agnostic PAC model, we no longer assume that all labels are generated by some

h∗ ∈ H, but we require the learner to be competitive with the best fixed predictor from H.

I This is captured by the regret of the algorithm, which measures how sorry the learner is.

Definition (Regret)

The regret of an algorithm A relative to h when running on a sequence of T examples is defined as

RegretA(h,T ) = sup
(x1,y1),...,(xT ,yT )

[
T∑
t=1

|ŷt − yt | −
T∑
t=1

|h(xt)− yt |
]
,

and the regret of the algorithm relative to a hypothesis class H is

RegretA(H,T ) = sup
h∈H

RegretA(h,T ).

The goal of learner is to have the lowest possible regret relative to H.
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Weighted majority algorithm

I Halving simply discards experts after a single mistake.
I Weighted majority (WM) weights importance of experts as a function of their mistake rate.
I WM reduces weight of incorrect experts by factor of β ∈ [0, 1). It reduces to Halving when β = 0.

Weighted majority algorithm (WM)

1: w1,i ← 1 for all i ∈ {1, 2, . . . ,N}
2: for t ← 1, 2, . . . do

3: Receive xt .

4: ŷt ← I
[∑

i :yt,i=1 w1,i ≥
∑

i :yt,i=0 w1,i

]
5: Receive true label yt .

6: if (ŷt 6= yt) then

7: wt+1,i ← I [yt,i 6= yt ]βwt,i + I [yt,i = yt ]wt,i for all i ∈ {1, 2, . . . ,N}
8: end if

9: end for

10: return wT+1

Theorem (Mistakes of WM)

Fix β ∈ (0, 1). Let MWM(N) be the number of mistakes made by WM after T ≥ 1 rounds, and m∗T
be the number of mistakes made by the best of the N experts. Then

MWM(N) ≤ logN + m∗T log(1/β)

log( 2
1+β

)
.
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Weighted majority algorithm

Proof (Mistake bound of WM).

1. We use a potential function, derive its upper and lower bounds and combine them for proof.

2. For t ≥ 1, define potential function as Wt =
∑N

i=1 wt,i .

3. Predictions generated using weighted majority vote, if algorithm has mistake at round t, then

Wt+1 ≤
[

1

2
+

1

2
β

]
Wt =

[
1 + β

2

]
Wt

4. Since W1 = N and MWM(N) mistakes are made after T rounds, we obtain

WT ≤
[

1 + β

2

]MWM (N)

N.

5. Since wt,i > 0, for all experts i , WT ≥ wT ,i = βmT,i , where mT ,i is the number of mistakes

made by the ith expert after T rounds.

6. Applying this lower bound to the best expert

βm∗
T ≤WT ≤

[
1 + β

2

]MWM (N)

N

m∗T log β ≤ logN + MWM(N) log

[
1 + β

2

]
MWM(N) log

[
2

1 + β

]
≤ m∗T log(

1

β
) + logN
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Weighted majority algorithm

I The theorem guarantees a bound of the following form for WM (for constant C)

MWM(N) ≤ O(logN) + C ×m∗T .

I It guarantees that the number of mistakes is roughly a constant times m∗T .

I This is a remarkable result, because it requires no assumption about the sequence of points

and labels generated.

I In realizable case (m∗T = 0), the bound reduces to MWM(N) ≤ O(logN) as Halving algorithm.

I For deterministic algorithm A, let H = {h0, h1}, where h0(x) = 0 and h1(x) = 1 for all x.

I An adversary can make MA(H) = T , by simply waiting for ŷt and then give yt = 1− ŷt .

I The error of the best expert over that sequence is at most m∗T ≤ T
2

. Thus, for that sequence, we

have

RegretA(H,T ) = MA(H)−m∗T ≥
T

2
I This shows that the regret of any deterministic online algorithm such as weighted majority is not

sublinear in T .

I Question: can we design an algorithm with low regret, meaning that RegretA(H,T ) grows

sublinearly with T?

I This implies that the difference between the error rate of the learner and the best hypothesis in

H tends to zero as T goes to infinity. This means that RegretA(H,T ) = o(T ).

I This is impossible because (no deterministic algorithm can obtain a sublinear regret bound

even if |H| = 2) as shown.

I This impossibility result is attributed to Cover.
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Online classification in the unrealizable case

I To sidestep Cover’s impossibility result, we must further restrict the power of the adversarial

environment by allowing the learner to randomize his predictions.

I To make the randomization meaningful, we force the adversarial environment to decide on yt

without knowing the random coins flipped by the learner on round yt .

I The adversary can still know the learner’s forecasting strategy and even the random coin flips of

previous rounds, but it does not know the actual value of the random coin flips used by the learner

on round t.

I With this change, we analyze the expected number of mistakes of the algorithm, where the

expectation is with respect to the learner’s own randomization.

I In this randomized scenario, we assume that a set A = {1, . . . ,N} of N actions is available.

I At round t, algorithm A selects a distribution pt over the set of actions, receives a loss vector lt ,
whose ith component lt,i ∈ [0, 1] is the loss of action i . Thus, we have

I the expected loss: Lt =
∑N

i=1 pt,i lt,i = 〈pt , lt〉,
I the total loss: LT =

∑T
t=1 Lt ,

I the total loss of action i : LT ,i =
∑T

t=1 lt,i ,
I the best action loss: Lmin

T = mini∈A Lt,i ,
I the regret of algorithm: RegretA(H,T ) = LT − Lmin

T .
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Randomized weighted majority algorithm

I For this algorithm, we consider zero-one losses lt,i ∈ {0, 1} for all t.

Randomized weighted majority algorithm (RWM)

1: w1,i ← 1, p1,i ← 1
N

for all i ∈ {1, 2, . . . ,N}
2: for t ← 1, 2, . . . do

3: Receive xt .

4: Choose expert k with probability pt,k and outputs its prediction.

5: Receive true label yt .

6: for (i ← 1 to N) do

7: if (lt,i = 1) then

8: wt+1,i ← βwt,i

9: else

10: wt+1,i ← wt,i

11: end if

12: end for

13: Wt+1 ←
∑N

i=1 wt,i

14: pt+1,i ← wt+1,i

Wt+1
for all i ∈ {1, 2, . . . ,N}

15: end for

16: return wT+1

I This is equivalent to qj =

∑N
i=1 wt,i I [hi (xt) = j ]

Wt
.

I Then choose ŷt = j with probability qj .
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Randomized weighted majority algorithm

Theorem (Bounds on RegretRWM(H,T ))

Fix β ∈
[

1
2
, 1
)
. Then for any T ≥ 1, the loss of RWM on any sequence can be bounded as

LT ≤ logN

1− β + (2− β)Lmin
T .

In particular, for β = max{ 1
2
, 1−

√
log N
T
}, the loss can be bounded as

LT ≤ Lmin
T + 2

√
T logN.

Proof (Bounds on RegretRWM(H,T )).

I Let Wt =
∑N

i=1 wt,i . Then, we have

Wt+1 =
∑

i : lt,i=0

wt,i + β
∑

i : lt,i=1

wt,i = Wt + (β − 1)
∑

i : lt,i=1

wt,i

= Wt + (β − 1)Wt

∑
i : lt,i=1

pt,i

= Wt + (β − 1)WtLt

= Wt (1− (1− β)Lt)

I Since W1 = N, then WT+1 = N
∏T

t=1 (1− (1− β)Lt), WT+1 ≥ maxi∈{1,...,N} wT+1,i = βL
min
T .
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Randomized weighted majority algorithm

Proof (Bounds on RegretRWM(H,T )) (cont.).

I Since W1 = N, then WT+1 = N
∏T

t=1 (1− (1− β)Lt), WT+1 ≥ maxi∈{1,...,N} wT+1,i = βL
min
T .

I Then using log(1− x) ≤ −x valid for all x < 1 and − log(1− x) < x + x2 valid for all

x ∈ [0, 1
2
], we obtain βL

min
T ≤ N

∏N
t=1 (1− (1− β)Lt). Then

βL
min
T ≤ N

N∏
t=1

(1− (1− β)Lt) =⇒ Lmin
T log β ≤ logN +

T∑
t=1

log (1− (1− β)Lt)

=⇒ Lmin
T log β ≤ logN − (1− β)

T∑
t=1

Lt

=⇒ Lmin
T log β ≤ logN − (1− β)LT

=⇒ LT ≤ logN

1− β −
log β

1− βL
min
T

=⇒ LT ≤ logN

1− β −
log(1− (1− β))

1− β Lmin
T

=⇒ LT ≤ logN

1− β + (2− β)Lmin
T

I This shows the first statement.
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Randomized weighted majority algorithm

Proof (Bounds on RegretRWM(H,T )) (cont.).

I Since Lmin
T ≤ T , this also implies

LT ≤ logN

1− β + (1− β)T + Lmin
T

I Differentiating the upper bound with respect to β and setting it to zero gives
logN

(1− β)2
− T = 0, that is β = 1−

√
(logN)/T .

I Thus, if 1−
√

(logN)/T ≥ 1
2
, then β0 = 1−

√
(logN)/T is the minimizing value of β,otherwise

the boundary value β0 = 1
2

is the optimal value.

I The second statement follows by replacing β with β0.

This bound assumes that the algorithm additionally receives as a parameter the number of rounds

T .

There exists a general doubling trick that can be used to relax this requirement at the price of a small

constant factor increase.
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Randomized exponential weighted majority algorithm

I For this algorithm, we consider loss lt,i ∈ [0, 1] for all t.

Randomized exponential weighted majority algorithm (REWM)

1: Set η ←
√

2 log(N)T

2: w1,i ← 1, p1,i ← 1
N

for all i ∈ {1, 2, . . . ,N}
3: for t ← 1, 2, . . . do

4: Receive xt .

5: Choose expert k with probability pt,k and outputs its prediction.

6: Receive true label yt and hence lt = (lt,1, . . . , lt,N).

7: for (i ← 1 to N) do

8: wt+1,i ← wt,i exp (−ηlt,i )
9: end for

10: Wt+1 ←
∑N

i=1 wt,i

11: pt+1,i ← wt+1,i

Wt+1
for all i ∈ {1, 2, . . . ,N}

12: end for

13: return wT+1
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Randomized exponential weighted majority algorithm

Theorem (Bounds on RegretREWM(H,T ))

Assuming that T > 2 log(N), then REWM enjoys the bound

T∑
t=1

〈pt , lt〉 − min
i∈{1,...,T}

T∑
t=1

lt,i ≤
√

2T log(N).

Proof (Bounds on RegretREWM(H,T )).

I We have

log
Wt+1

Wt
= log

N∑
i=1

wt,i

Wt
exp (−ηlt,i ) = log

N∑
i=1

pt,i exp (−ηlt,i )

I By using the inequality e−a ≤ 1− a + a2/2, which holds for all a ∈ (0, 1), we obtain

log
Wt+1

Wt
≤ log

N∑
i=1

pt,i
(

1− ηlt,i + η2l2
t,i/2

)

≤ log

1−
N∑
i=1

pt,i
(
ηlt,i − η2l2

t,i/2
)

︸ ︷︷ ︸
,b

 = log(1− b).
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Randomized exponential weighted majority algorithm

Proof (Bounds on RegretREWM(H,T )) (cont.).

I Note that b ∈ (0, 1). By using the inequality log(1− b) ≤ −b, which holds for all b ≤ 1, we

obtain

log
Wt+1

Wt
≤ −

N∑
i=1

pt,i
(
ηlt,i − η2l2

t,i/2
)

= −η 〈pt , lt〉+ η2
N∑
i=1

pt,i l
2
t,i/2

≤ −η 〈pt , lt〉+ η2/2.

I Summing this inequality over t, we get

log
WT+1

W1
= logWT+1 − logW1 =

T∑
t=1

log
Wt+1

Wt
≤ −η

T∑
t=1

〈pt , lt〉+ Tη2/2.

I For each i , we can rewrite

wT+1,i = exp

(
−η

T∑
t=1

lt,i

)
I Next, we lower bound WT+1.

logWT+1 = log

[
N∑
i=1

exp

(
−η

T∑
t=1

lt,i

)]
≥ log

[
max

i
exp

(
−η

T∑
t=1

lt,i

)]
= −ηmin

i

T∑
t=1

lt,i .
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Randomized exponential weighted majority algorithm

Proof (Bounds on RegretREWM(H,T )) (cont.).

I We have

logWT+1 − logW1 ≤ −η
T∑
t=1

〈pt , lt〉+ Tη2/2

logWT+1 ≥ −ηmin
i

T∑
t=1

lt,i .

I Combining the above inequalities and the fact logW1 = logN, we get that

−ηmin
i

T∑
t=1

lt,i − logN ≤ −η
T∑
t=1

〈pt , lt〉+ Tη2/2.

I This can be rearranged as

T∑
t=1

〈pt , lt〉 −min
i

T∑
t=1

lt,i ≤ logN

η
+

Tη

2
.

I By plugging value of η into the above inequality, the proof will be completed.
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Online classification in the unrealizable case (finite hypothesis class)

I Let H = {h1, . . . , hN} be a finite hypothesis class.

I Each hypothesis hi is an expert with advice hi (xt) and cost lt,i = |hi (xt)− yt |.
I Prediction of algorithm will be ŷt =

∑
i=1 pt,ihi (xt) ∈ [0, 1].

I The loss is

|ŷt − yt | =

∣∣∣∣∣
N∑
i=1

pt,ihi (xt)− yt

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

pt,i (hi (xt)− yt)

∣∣∣∣∣
I The last equality is concluded from

1. if yt = 1, then hi (xt)− yt ≤ 0, and

2. if yt = 0, then hi (xt)− yt ≥ 0.

I This results in

|ŷt − yt | =
N∑
i=1

pt,i |hi (xt)− yt | = 〈pt , lt〉 .

I As conclusion, we have

Corollary

Let H be a finite hypothesis class. There exists an algorithm for online classification, whose

predictions come from [0, 1], that enjoys the regret bound

T∑
t=1

|ŷt − yt | −min
h∈H

T∑
t=1

|h(xt)− yt | ≤
√

2T log|H|.
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Online classification in the unrealizable case (general hypothesis class)

Theorem

For every hypothesis class H, there exists an algorithm for online classification, whose predictions

come from [0, 1], that enjoys the regret bound

∀h ∈ H
T∑
t=1

|ŷt − yt | −min
h∈H

T∑
t=1

|h(xt)− yt | ≤
√

2T min{log|H|, Ldim(H) log(eT )}.

Furthermore, no algorithm can achieve an expected regret bound smaller than Ω
(√

Ldim(H)T
)

.

Proof.

1. The preceding corollary is the proof for the finite hypothesis class.

2. Homework: Prove the general hypothesis case.

3. Homework: Prove the lower bound.
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Perceptron



Perceptron

I In prediction with expert advice ,

1. we have a set of N experts,

2. each expert gives its prediction for a given input zt , and

3. we guess a prediction according to all experts’ predictions.

I The way of scoring is according to the best expert.

I We could easily imagine a scenario where no one expert is good.

I But, if we form a committee of experts, they might be much better.

I We assume that there is a perfect committee, i.e. there exists a w∗ ∈ RN , such that for all t,

we have sgn (〈w∗t , xt〉) = yt .

Committee of experts

1: We have N experts H = {h1, . . . , hN}.
2: for t ← 1, 2, . . . do

3: Receive zt .

4: Let xt = (xt,1, . . . , xt,N) = (h1(zt), . . . , hN(zt)) ∈ {−1,+1}N
5: Predict ŷt = sgn (〈wt , xt〉).

6: Receive true label yt .

7: Update wt .

8: end for

9: return wT+1
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Perceptron algorithm

Perceptron algorithm

1: Let w1 ← 0 .

2: for t ← 1, 2, . . . ,T do

3: Receive xt .

4: Predict ŷt = sgn (〈wt , xt〉).

5: Receive true label yt .

6: if (ŷt 6= yt) then

7: wt+1 ← wt + ytxt . more generally ηytxt and η > 0.

8: else

9: wt+1 ← wt

10: end if

11: end for

12: return wT+1

1. Before an update, xt is misclassified and thus yt 〈wt , xt〉 is negative.

2. After an update, yt 〈wt+1, xt〉 = yt 〈wt , xt〉+ η ‖xt‖2.

3. Thus, the update corrects the weight vector in the direction of making the inner product

yt 〈xt ,wt〉 positive by augmenting it with the quantity η ‖xt‖2 > 0.
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Perceptron algorithm

Lemma

If ∀t, we have yt 〈xt ,w
∗〉 ≥ ρ, then the inner product 〈w∗,wk〉 increases at least linearly with each

update.

Proof.

1. The weight vector w updated when the training instance is not classified correctly.

2. We consider the inner product 〈w∗,wk〉 before and after each update.

〈w∗,wk〉 = 〈w∗, (wk−1 + ykxk)〉
= 〈w∗,wk−1〉+ yn 〈w∗, xk〉
≥ 〈w∗,wk−1〉+ ρ

≥ 〈w∗,wk−2〉+ 2ρ

≥ 〈w∗,wk−3〉+ 3ρ

...

≥ 〈w∗,w1〉+ kρ

= kρ
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Perceptron algorithm

Lemma

If ∀t, we have ‖xt‖ ≤ r , then the squared norm ‖wk‖2 increases at most linearly in the number of

updates k.

Proof.

1. The weight vector w updated when the training instance is not classified correctly.

2. We consider the inner product ‖wk‖2 before and after each update.

‖wk‖2 = ‖wk−1 + ykxk‖2

= ‖wk−1‖2 + 2yk 〈wk−1, xk〉+ ‖xk‖2

≤ ‖wk−1‖2 + ‖xk‖2

≤ ‖wk−1‖2 + r 2

≤ ‖wk−2‖2 + 2r 2

≤ ‖wk−3‖2 + 3r 2

...

≤ ‖w0‖2 + kr 2 = kr 2.
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Perceptron algorithm

Theorem (Mistake bound of Perceptron)

Suppose there exists a w∗ of unit length and values ρ > 0 and r > 0 such that ∀t, we have

yt 〈xt ,w
∗〉 ≥ ρ and ‖xt‖ ≤ r . Then, the number of mistakes made by the Perceptron algorithm is

no more than

(
r

ρ

)2

.

Proof.

1. The cos(x, z) measures the similarity of x and z.

cos (w∗,wk) =
〈w∗,wk〉
‖w∗‖ . ‖wk‖

1

≥ kρ

‖w∗‖ . ‖wk‖
2

≥ kρ√
kr 2 ‖w∗‖

≤ 1.

2. The last inequality is because the cos is bounded by one. Hence, we have

k ≤
√
kr 2 ‖w∗‖ /ρ

≤ (r/ρ)2 ‖w∗‖2
= (r/ρ)2 .

38/48



Perceptron algorithm

Homework

1. Consider a scenario that w∗ consist of 0 and 1 and the number of 1 is k.

2. Let also k � N.

3. This means that k experts are the perfect committee.

4. By normalizing ‖xt‖2 ≤ 1 and ‖w∗‖2 = 1, find margin of Perceptron.

5. Find the number of mistakes of Perceptron algorithm.
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Winnow algorithm

I This algorithm is particularly well suited to cases where
I a relatively small number of dimensions or experts can be used to define an accurate weight vector and
I many of the other dimensions may then be irrelevant.

I In Winnow, weights are updated in multiplicative manner.

Winnow algorithm

1: Let w1 ←
(

1
N
, . . . , 1

N

)
.

2: for t ← 1, 2, . . . ,T do

3: Receive xt .

4: Predict ŷt = sgn (〈wt , xt〉).

5: Receive true label yt .

6: if (ŷt 6= yt) then

7: Zt ←
∑N

i=1 wt,i exp(ηytxt,i )

8: for i ← 1, 2, . . . ,N do

9: wt+1,i ← wt,i exp(ηytxt,i )

Zt
10: end for

11: else

12: wt+1 ← wt+1

13: end if

14: end for

15: return wT+1
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Winnow algorithm

I Winnow algorithm =WM algorithm:
I when yt,i = xt,i ∈ {−1,+1}, then sgn (〈xt ,wt〉) coincides with themajority vote.
I multiplying by eη or e−η the weight of correct or incorrect experts , is equivalent to multiplying by

β = e−2η the weight of incorrect ones.

I Relationships with other algorithms such as boosting and Perceptron (Winnow and Perceptron

can be viewed as special instances of a general family). Find such relationships as homework.

Theorem (Mistake bound for Winnow algorithm)

Assume that ‖xt‖∞ ≤ r∞ for all t ∈ {1, 2, . . . ,T} and that for some r∞ > 0. Assume that there

exist v ∈ RN , v > 0 and ρ∞ > 0 such that for all t ∈ {1, 2, . . . ,T}

ρ∞ ≤ yt 〈v, xt〉
‖v‖1

.

Then, for η =
ρ∞
r 2
∞

, the number of mistakes made by the Winnow algorithm is bounded by

2

(
r∞
ρ∞

)2

logN.
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Winnow algorithm

Proof of (Mistake bound for Winnow algorithm).

1. Define relative entropy as potential function Φt =
∑N

i=1

vi
‖v‖1

log
vi/ ‖v‖1

wt,i
.

2. The upper bound for each t, we have

Φt+1 − Φt =
N∑
i=1

vi
‖v‖1

log
wt,i

wt+1,i
=

N∑
i=1

vi
‖v‖1

log
Zt

exp(ηytxt,i )

= logZt − η
N∑
i=1

vi
‖v‖1

ytxt,i

≤ log

[
N∑
i=1

wt,i exp(ηytxt,i )

]
− ηρ∞

= log E
i∼wt

[exp(ηytxt,i )]− ηρ∞

= log E
i∼wt

[exp(ηytxt,i − ηyt 〈wt , xt〉+ ηyt 〈wt , xt〉)]− ηρ∞

≤ log
[
exp(η2(2r∞)2/8)

]
+ ηyt 〈wt , xt〉︸ ︷︷ ︸

≤0

−ηρ∞

≤ η2r 2
∞/2− ηρ∞
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Winnow algorithm

Proof of (Mistake bound for Winnow algorithm) (cont.).

3. Summing up these inequalities over all t yields

ΦT+1 − Φ1 ≤ η2r 2
∞/2− ηρ∞.

4. We derive a lower bound by noting that

Φ1 =
N∑
i=1

vi
‖v‖1

log
vi/ ‖v‖1

1/N
= logN +

N∑
i=1

vi
‖v‖1

log
vi
‖v‖1

≤ logN

5. The relative entropy is always non-negative, hence ΦT+1 ≥ 0.

6. This yields the following lower bound

ΦT+1 − Φ1 ≥ 0− logN = − logN.

7. By combining the upper and lower bounds we obtain

− logN ≤ η2r 2
∞/2− ηρ∞.

8. Setting η =
ρ∞
r 2
∞

yields the statement of the theorem.
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On-line to batch conversion

I Can these algorithms be used to derive hypotheses with small generalization error in the standard

stochastic setting?

I How can the intermediate hypotheses they generate be combined to form an accurate predictor?

On-line to batch setting

1. Let H = {h : X 7→ Y ′} and let L : Y ′ × Y 7→ R+ be a bounded loss function (L ≤ M for some M ≥ 0).

2. Let a standard supervised learning setting where a sample S = {(x1, y1), . . . , (xT , yT )} ∈ (X × Y)T is

drawn i.i.d. according to some fixed but unknown distribution D.

3. The sample is sequentially processed by an on-line learning algorithm A.

4. The algorithm starts with an initial hypothesis h1 ∈ H and generates a new hypothesis ht+1 ∈ H, after

processing pair (xt , yt), for t ∈ {1, . . . ,T} .

5. The regret of the algorithm is defined as before by

RegretA(H,T ) =
T∑
t=1

L(ht(xt), yt)−min
h∈H

T∑
t=1

L(h(xt), yt)

6. The generalization error of a hypothesis h ∈ H is its expected loss R(h)E(x,y)∼D [L(h(x), y)].
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On-line to batch conversion

The following lemma gives a bound on average generalization errors of the hypotheses generated by A.

Lemma (Bound on average generalization errors of hypotheses h1, . . . , hT )

Let S = {(x1, y1), . . . , (xT , yT )} ∈ (X × Y)T be a sample drawn iid according D, L ≤ M a bounded

loss and hypotheses h1, . . . , hT the sequence of hypotheses generated by an on-line algorithm A

sequentially processing S . Then, for any δ > 0, with probability at least (1− δ), the following holds:

1

T

T∑
t=1

R(ht) ≤ 1

T

T∑
t=1

L(ht(xt), yt) + M

√
2 log 1

δ

T
.

Proof.

1. For any t ∈ {1, . . . ,T}, let Vt be the random variable defined by Vt = R(ht)− L(ht(xt), yt).

2. Observe that for any t ∈ {1, . . . ,T}, we have

E [Vt | x1, . . . , xt−1] = R(ht)− E [L(ht(xt), yt) | ht ] = R(ht)− R(ht) = 0

3. Since L ≤ M, then Vt ∈ [−M,+M] for all t ∈ {1, . . . ,T}.

4. Using Azuma’s inequality, we obtain P
[

1

T

∑T
t=1 Vt ≥ ε

]
≤ exp

(
−2T ε2/(2M)2

)
.

5. Setting the right-hand side to be equal to δ > 0 yields the statement of the lemma.
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Summary

I We defined on line-learning problem.

I The on line learnability is characterized by Ldim measure.

I We analyzed several on line algorithms.

I On line algorithms can be used in batch learning.
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1. Chapter 21 of Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From

theory to algorithms. Cambridge University Press, 2014.

2. Chapter 8 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

Machine Learning. Second Edition. MIT Press, 2018.

3. Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. “Agnostic Online Learning”. In:
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2009.
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