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Motivation




Introduction

» How do you separate these two classes?

» Most of learning algorithms are linear and are not able to classify non-linearly-separable data.

» Linear separation impossible in most problems.

» Non-linear mapping from input space to high-dimensional feature space: ¢ : X +— H.

> Generalization ability:
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independent of dim(H), depends only on p and m.
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Kernel methods




Ideas of kernels

> Most datasets are not linearly separable, for example
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> Instances that are not linearly separable in R, may be linearly separable in R? by using mapping

3(x) = (x,x%).

> In this case, we have two solutions

> Increase dimensionality of data set by introducing mapping ¢.
> Use a more complex model for classifier.
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Ideas of kernels

> To classify the non-linearly separable dataset, we use mapping ¢.
> For example, let x = (x1,x2)", z = (z1,2.23)", and ¢ : R*> - R®.

> If we use mapping z = ¢(x) = (x¥,v2x1x2,x3)", the dataset will be linearly separable in R®.
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» Mapping dataset to higher dimensions has two major problems.
> In high dimensions, there is risk of over-fitting.
> In high dimensions, we have more computational cost.

> The generalization capability in higher dimension is ensured by using large margin classifiers.

> The mapping is an implicit mapping not explicit.
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Kernels

» Kernel methods avoid explicitly transforming each point x in the input space into the mapped
point ¢(x) in the feature space.

> Instead, the inputs are represented via their m x m pairwise similarity values.

> The similarity function, called a kernel, is chosen so that it represents a dot product in some
high-dimensional feature space.

> The kernel can be computed without directly constructing ¢.

> The pairwise similarity values between points in S represented via the m x m kernel matrix,

defined as
k(x1,x1)  k(x1,x2) -+ k(X1,Xm)
k(x2,x1)  k(x2,x2) -+ k(x2,Xm)
K = )
k(Xm,x1)  k(Xm,%2) -+ k(Xm,Xm)

> Function K(x;,x;) is called kernel function and defined as

Definition (Kernel)

Function K : X x X — R is a kernel if
1. 3¢ : X — RN such that K(x,y) = (¢(x), #(y)).
2. Range of ¢ is called the feature space.

3. N can be very large.
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Kernels (example)

> Let ¢ : R? — R® be defined as ¢(x) = (7,3, v2x1x2).
> Then (¢(x), ¢(z)) equals to

(6(x), 6(2)) = (2,28, V), (2, 28, V2212) )

= (xz1 + X2Z2)2

2
= ({x,2))
= K(x,z).
> The above mapping can be described
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Kernels (example)

v

Let ¢1 : R? — R? be defined as ¢(x) = (x7, %3, V2x1x2).
Then (¢1(x), ¢1(2z)) equals to

(@100, 1(@) = (04,4, Vaxe). (. 4. v222))

v

= (xaz1 +X222)
= ((x,2))* = K(x,2).
(4

X1 Xz , X1X2, X2X1)

v

Let ¢ : R? — R* be defined as ¢(x) =
Then {(¢2(x), $2(z)) equals to

v

(#2(x), ¢2(2)) = <(X12,X22,X1X2,X2X1)7 (212,2227212272221)>

= (<sz>)2 = K(x,2).

> Feature space can grow really large and really quickly. 2 s

> Let K be a kernel K(x,z) = ((x,z))d = (¢(x), #(2)) % -

> The dimension of feature space equals to (d+g_1). g :

> Let n =100, d = 6, there arel.6 billion terms. g : s
£

number of input dimensions
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Mercer’s condition

» The kernel methods have the following benefits.
Efficiency: K is often more efficient to compute than ¢ and the dot product.
Flexibility: K can be chosen arbitrarily so long as the existence of ¢ is guaranteed (Mercer's
condition).

Theorem (Mercer’s condition)

For all functions c that are square integrable (i.e., [ c(x)’dx < o), other than the zero function, the
following property holds:

/ / c(x)K(x, z)c(z)dxdz > 0.

> This Theorem states that K : X X X+ R is a kernel if matrix K is positive semi-definite (PSD).
> Suppose x,z € R” and consider the following kernel

K(x,2) = ({x,2))’

(320) (522)

DD ax) (ziz) = (#(x), 6(2))

i=1 j=1

> |t is a valid kernel because

K(x,z)

where the mapping ¢ for n =2 is

B#(x) = (xix1, x1x2, XaX1, X2X2)T
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Polynomial kernels (example)

» Consider the polynomial kernel K(x,z) = ((x,z) + c)? for all x,z € R".
» Forn=2and d =2,

K(x,z) = (x1z1 + xey2 + ¢)
= < [X12,X22, \/§X1X2, \/iCXl, \/ECXz, C:| 5 [212, 222, \/521227 \/ECZl, \/5C22, C:| >

» Using second-degree polynomial kernel with ¢ = 1:

T2 \/§$1$2
-1,1) | (1,1)  (LL+v2 V2 -v21) | (1142 V2, +v2,1)
o ® ° °®
> > /21
€1
(] () o (]
(—=1,-1) (1,-1) (1,1, —v2,—v2,+v2,1) | (1,1, -v2,+V2, —V2,1)

> The left data is not linearly separable but the right one is.
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Some valid kernels

» Some valid kernel functions
> Polynomial kernels consider the kernel defined by

K(x,z) = ({x,z) + c)d

d is the degree of the polynomial and specified by the user and c is a constant.
> Radial basis function kernels consider the kernel defined by

2
X—z
K(x,z) = exp <—”202|>

The width o is specified by the user. This kernel corresponds to an infinite dimensional mapping ¢ .
> Sigmoid kernel consider the kernel defined by

K(x,z) = tanh (8o (x,z) + B1)
This kernel only meets Mercer's condition for certain values of By and Si.

» Homework: Please prove VC-dimension of the above kernels.
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Reproducing kernel Hilbert space

» We give the crucial property of PDS kernels, which is to induce an inner product in a Hilbert
space.

Lemma (Cauchy-Schwarz inequality for PDS kernels)
Let K be a PDS kernel matrix. Then, for any x,z € X,

K(x, z)2 < K(x,x)K(z,z)

Theorem (Reproducing kernel Hilbert space (RKHS))

Let K: X x X — R be a PDS kernel. Then, there exists a Hilbert space H and a mapping ¢ from X
to H such that for all x,y € X

K(x,y) = (¢(x), 8(y)) -

> This Theorem implies that PDS kernels can be used to implicitly define a feature space.
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Normalized kernel

> For any kernel K, we can associate a normalized kernel K, defined by
0 if (K(x,x) = 0) v (K(z,2) = 0))

Kn(x,2) = K(x,2)

_— otherwise
K(x,x)K(z,2)

Lemma (Normalized PDS kernels)
Let K be a PDS kernel. Then, the normalized kernel K, associated to K is PDS.

Proof.
1. Let {x1,...,xm} C X and let c be an arbitrary vector in R".
2. We will show that Z?jj:l cicjKn(xj,x;) > 0.

3. By Lemma Cauchy-Schwarz inequality for PDS kernels, if K(x;,x;) =0, then K(x;,x;) = 0 and thus
Kn(xi,xj) =0 for all j € {1,2,..., m}.

4. We can assume that K(x;,x;) > 0 for all i € {1,2,..., m}.

5. Then, the sum can be rewritten as follows:

S Gikk) g e (90a).0(x))

iCiKn(xj, x;) = =
2 cicikalxi x;) K%Ky %) To0) - 10—

ij=1 ij=1

= >||H :
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Closure properties of PDS kernels

> The following theorem provides closure guarantees for all of these operations.

Theorem (Closure properties of PDS kernels)
PDS kernels are closed under
1. sum
product
tensor product

pointwise limit

ok~ DN

composition with a power series > 72 | agx* with a, > 0 for all k € N.

Proof.
We only proof the closeness under sum. Consider two valid kernel matrices K; and Ko.
1. For any ¢ € R™, we have ¢”Kic > 0 and ¢’ Kyc > 0.
2. This implies that ¢"Kic + ¢ Kyc > 0.
3. Hence, we have cT(K1 + Kz)c > 0.
4. Let K = K; + K5, which is a valid kernel.

» Homework: Please prove other closure properties of PDS kernels.
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Basic kernel operations in feature space
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Kernel operations in feature space
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» Norm of a point: we can compute the norm of a point ¢(x) in feature space as
() 1> = (B(x), 6(x)) = K(x,x),
which implies that||¢(x)|| = v/ K(x, x).
» Distance between Points: the distance between two points ¢(x;) and ¢(x;) can be computed as
lo(xi) = (x)I* = ll(xi)I* + lp(x)I* — 2 (b(x:), (7))
= K(xi,xi) + K(x}, %)) = 2K(xi, %),
which implies that

l6(xi) = S(x) | = /K (xi xi) + K(x, %) — 2K (xi, x;).
> Mean in feature space: the mean of the points in feature space is given as
1 m
= o 29l
m <
i=1
Since we haven't access to ¢(x), we cannot explicitly compute the mean point in feature space
but we can compute the squared norm of the mean as follows.

o 1* = (o, 1)
<; Z¢(xf),;2¢(xf)>
1 m m 1 m m
= o 2 2 (00 000)) = 753 3 S Kl)

i=1 j=1
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Kernel operations in feature space

xRS

» Total variance in feature space: the squared distance of a point ¢(x;) to the mean pu in feature
space:

16(x) = mell* = lle(x)II* = 2 (S(xi), 1) + [l sl
= K(xi,x;) — i’;K(x;,xj)—k %;;K(xa,xb

The total variance in feature space is obtained by taking the average squared deviation of points
from the mean in feature space

m

1
o5 = > lle(xi) — pol?
1 Y K(x-x-)—giK(x-x iEm:in:Kx Xp)
oom i=1 o m j=1 ) m2 a=1 b=1 n

m m

%ZK (xi,x ,)——ZZK(X,,XJ) %

i=1

Ma

Zm:K(xa7xb
=1

I
-

a

m

%ZK (xi,xi) — %ZZK(X,—,XJ-)

LT [0K] o
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Kernel operations in feature space

» Centering in feature space:

> We can center each point in feature space by subtracting the mean from it
o(xi) = ¢(xi) — 1.
> We have not ¢(x;) and ji4, hence, we cannot explicitly center the points.

> However, we can still compute the centered kernel matrix K, that is, the kernel matrix over centered
points.

R(a,%5) = (30x), 3lx7) )
= ((xi) = pg> d(x)) — 1)
= (@(xi), (%)) — (d(xi), pgp) — <¢>(Xj o) + (e o)

= Kl — = 3 (06, 60c0)) — - Z (605 9x0)) +

k=1
X,,XJ ZK(XHXk) ZK(vaxk)+||u¢H2
k:l

> In other words, we can compute the centered kernel matrix using only the kernel function.
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Kernel operations in feature space
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» Normalizing in feature space:

> A common form of normalization is to ensure that points in feature space have unit length by
#(x)
o)l

> The dot product in feature space then corresponds to the cosine of the angle between the two
mapped points, because

replacing ¢(x) with the corresponding unit vector ¢,(x) =

<¢)(X,’), ¢(XJ)>
loCx)Il - [|o(x)) |
> If the mapped points are both centered and normalized, then a dot product corresponds to the
correlation between the two points in feature space.
> The normalized kernel function, K, can be computed using only the kernel function K, as

(o(xi), (%)) _ K(xi,X;)
o)l - [|o(xi) | K(xi, x;).K(xj,%;)

= cos 6.

(pn(xi), Pn(x})) =

K"(Xh xj) =
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Kernel-based algorithms
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SVMs with PDS Kernels
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> The optimization problem for SVM is defined as
Minimize% [lw|) subject to yx ({w,xx) + b) > 1forall k=1,2,...,m

> In order to solve this constrained optimization problem, we use the Lagrangian function

L(w,b,0) = 3 Wl — > o [k ((w xe) + ) — 1]
k=1

where a = (a1, a2,...,am)".

> Eliminating w and b from L(w, b, a) using these conditions then gives the dual representation of
the problem in which we maximize

Pla) = o — 5 > Z akajyiy; (Xe; %)
k=1 k=1 j=1

> We need to maximize () subject to constraints » ", cyx = 0 and ax > 0 Vk.

=

> For optimal ay’s, we have ay [1 — yi ((w,xx) + b)] = 0.

> To classify a data x using the trained model, we evaluate the following function

(x) = sgn (Z QK Yk (xk,x>>

k=1

» This solution depends on the dot-product between two pints xx and x.
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SVMs with PDS Kernels

> By using kernel K, the dual representation of the problem in which we maximize

Y(a) =) ow—

» To classify a data x using the trained model, we evaluate the following function

h(x) = sgn (Z oy K (X, x))

k=1

N =
(]

D akayyeyiK(xi, x;)
j=1

x
[l

1

» This solution depends on the dot-product between two pints xx and x.
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Learning guarantees

Theorem (Rademacher complexity of kernel-based hypotheses)

Let K: X x X — R be a PDS kernel and let ¢ : X — H be a feature mapping associated to K.
also S C {x | K(x,x) < r’} be a sample of size m and let H = {x — (w, ¢(x)) | [[x||ly <A} for

some N > 0. Then
L, A/ Tr[[[K 2\2
oty < VT [

Let

Proof.

] — QJE [Z aioj {p(xi), d(x;))

ij=1

</\\/Tr[[]K]

|
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Learning guarantees

Theorem (Margin bounds for kernel-based hypotheses)
Let K: X x X — R be a PDS kernel with r* = sup, » K(x,x). Let ¢ : X — H be a feature mapping

associated to K and let H = {x — (w, ¢(x)) | [[w||; < A} for some A > 0. Fix p > 0. Then for any
0 > 0, each of the following statements holds with probability at least (1 — &) for any h € H:

R(h)gﬁs,p(h)+2\/f2/\;/p2 +\/|og(1/§)

2m

R(h) < Rs,,(h) +2\/%W 1 3/

21/24



Summary




Summary H)

> Advantages

> The problem doesn’t have local minima and we can found its optimal solution in polynomial time.

> The solution is stable, repeatable, and sparse (it only involves the support vectors).

> The user must select a few parameters such as the penalty term C and the kernel function and its
parameters.

> The algorithm provides a method to control complexity independently of dimensionality.

> SVMs have been shown (theoretically and empirically) to have excellent generalization capabilities.

» Disadvantages

> There is no method for choosing the kernel function and its parameters.

> It is not a straight forward method to extend SVM to multi-class classifiers.

> Predictions from a SVM are not probabilistic.

> It has high algorithmic complexity and needs extensive memory to be used in large-scale tasks.
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Readings

1. Chapter 16 of Shai Shalev-Shwartz and Shai Ben-David Book!
2. Chapter 5 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book?.

1Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning : From theory to algorithms. Cambridge University
Press, 2014.
2l\/lehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. Second Edition. MIT Press,
2018.
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