Special Topics in Cosmology (Spring 2013)

Problem Set 5

1)Show that the tensor-to-scalar ratio of primordial perturbations in slow roll paradigm is equal to slow roll parameter as:

$$
\begin{equation*}
r=\frac{\mathcal{P}_{t}\left(k_{*}\right)}{\mathcal{P}_{s}\left(k_{*}\right)} \approx 16 \epsilon \tag{1}
\end{equation*}
$$

2)Prove the Lyth bound condition, which relates the inflaton field change with the number of e-fold N and the tensor-to-scaler ratio r :

$$
\begin{equation*}
\frac{\Delta \phi}{M_{p l}} \sim \frac{1}{\sqrt{8}} \int_{0}^{\infty} d N \sqrt{r} \tag{2}
\end{equation*}
$$

3)Position of the acoustic peaks

a)Calculate the sound horizon at decoupling,

$$
\begin{equation*}
r_{s}=(1+z)^{-1} \int_{0}^{t_{\text {dec }}} d t \frac{c_{s}}{a} \tag{3}
\end{equation*}
$$

in terms of $z_{\text {dec }}, H_{0}, \omega_{m} \equiv \Omega_{m}^{0} h^{2}$ and $\omega_{b} \equiv \Omega_{b}^{0} h^{2}$. Assume a constant speed of sound, $c_{s}=c_{s}\left(t_{\text {dec }}\right)$, but include the effect of radiation and matter components in the expansion law. Neglect neutrino masses.
b)What is the separation l_{A} between the acoustic peaks in CMB angular spectrum C_{l} for the cases, $\Omega_{\Lambda}=0$ and $\Omega_{\Lambda}=1-\Omega_{m}$?
c) Give the numerical values of r_{s} and l_{A} for $z_{\text {dec }}=1090, h=0.7, \Omega_{m} 0=0.3$ and $\omega_{b}=0.02$. Give also the numerical value of the comoving sound horizon.

4) The effect of a varying sound speed.

Same as the previous problem, but now take into account that the sound speed evolves.
5)Assume that the CMB multipole coefficients $a_{l m}, m=-l, \ldots,+l$ are independent Gaussian random variables for $m=0, \ldots, l$, with variance $\left.\left.\langle | a_{l m}\right|^{2}\right\rangle=C_{l}$ (same for all m). The coefficient $a_{l 0}$ is real but the other $a_{l m}$ are complex, and $a_{l,-m}=a_{l m}^{*}$.
The observed angular power spectrum \hat{C}_{l} is defined as:

$$
\begin{equation*}
\hat{C}_{l} \equiv \frac{1}{2 l+1} \sum_{m=-l}^{l}\left|a_{l m}\right|^{2} \tag{4}
\end{equation*}
$$

Clearly, $\left\langle\hat{C}_{l}\right\rangle=C_{l}$. Calculate the cosmic variance, defined as the expectation value

$$
\begin{equation*}
\left\langle\left(\hat{C}_{l}-C_{l}\right)^{2}\right\rangle \tag{5}
\end{equation*}
$$

