
Particle Production during Inflation

Mehdi Saravani1, 2, ∗

1Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5,Canada
2Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

(Dated: December 10, 2011)

In this paper the theory of cosmological perturbation has been reviewed. First, the classical
equation for metric perturbation has been derived. Due to gauge freedom of gravity (diffeomor-
phism invariant), all perturbation fields are not physical degree of freedoms that is a problem in the
quantization of the theory, as the canonical commutation relation should be imposed only on dy-
namical variables. As a result, the gauge invariant approach which only works with gauge invariant
quantities has been discussed. After the quantization, the two point correlation function of field per-
turbation in some inflationary scenarios has been derived and the feature of having approximately
scale invariant power has been shown.

I. INTRODUCTION

Observational data suggests that the universe at early
time has been homogeneous and isotropic. On the other
hand, completely homogeneous universe cannot lead to
the formation of structures such as galaxies and clusters
because these structures have been formed through
gravitational instability. In fact, parts of the universe
with higher matter density have higher gravitational
force and attract the matter in lower density parts and
over the time they have become denser and formed the
structures as we can see today. This suggests that there
must be some inhomogeneities in the universe at early
times which has been approved by the small anisotropy
in the Cosmic Microwave Background (CMB). Indeed,
these small inhomogeneities are the origin of large scale
structures in the universe, but an important question is
what the source of the inhomogeneities is.

Theory of inflation is the most promising candidate to
describe the anisotropy of the CMB (as well as address-
ing other problems like flatness problem and monopole
problem). In this review, the simplest model of inflation
consisting of a real scalar field has been introduced. In
summery, the idea of inflation is that a homogeneous real
scalar field, ϕ, in a homogeneous isotropic space-time
exists and the quantum fluctuations of the field, as
a result of exponential expansion of space-time, have
become the inhomogeneities at cosmological scales.
Consequently, it is reasonable to divide any quantity in
this scenario into two parts: its background value which
is only time-dependent and the perturbation around
the background value which can depend both on time
and space and the perturbation are much smaller than
the background value. This division into background
and perturbation value will make the process of finding
solution much easier by letting us to solve the linearized
equation of gravity.
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The flow of the article is as follows: first, the classical
linearized equation of gravity with focus on gauge in-
variant approach has been reviewed. Second, the theory
has been quantized and the ambiguity in the choice of
vacuum in a time-dependent space-time which generally
results in particle production has been discussed. Then,
the power spectrum for some explicit examples have been
computed and a general scale-invariant property of the
power spectrum in the case of inflation has been shown.
The last part is devoted to summary and conclusion.

II. CLASSICAL PERTURBATION THEORY

In this section, we are looking at the deviation of the
space-time metric from the background metric which de-
scribes a completely spatial homogeneous and isotropic
universe. As a result, we can choose the background met-
ric to be the FRW metric [1]:

g
(0)
00 = a2(η)

g
(0)
ij = −a2(η)γij = −a2(η)

δij
1−Kr2 (1)

Where a is the scale factor, η is the conformal time,
superscript (0) refers to background value, γij is the
3-dimensional metric of hypersurface η = constant
and K = 0,+1,−1 for flat, closed and open universe
respectively.

The full metric is a sum of the background metric
and perturbation metric δgµν . In general, it can be
shown that the fields in δgµν can be decomposed into
three different categories of scalar perturbation, vector
perturbation and tensor perturbation, depending on
their transformation properties with respect to spatial
coordinate transformation and, more importantly in the
linear approximation, the evolution of each category is
independent of the other ones. Additionally, since only
the scalar perturbation shows gravitational instability
and results in structure [1], this part of metric perturba-
tion is of interest in this review.
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The general form of the (scalar) perturbation metric is

δgµν = a2(η)

[
2φ −B;i

−B;i 2(ψγij − E;ij)

]
(2)

Where ; i is the covariant derivative with respect to γij
(Appendix A).

A. Gauge Invariant Variables

Although the scalar part of the metric perturbation
consists of four scalar fields (φ, ψ,B and E), they do not
describe four physical degrees of freedom and are not
completely independent. Indeed, any infinitesimal co-
ordinate transformation (although describing the same
space-time) would change the perturbation quantities.
Consider a general scalar quantity A(p) which p is a point
on space-time manifold and two coordinate representa-
tions xα and x̃α. Then,

δA(p) = A(xµ(p))−A(0)(xµ(p))˜δA(p) = Ã(x̃µ(p))−A(0)(x̃µ(p))

x̃µ = xµ + εµ

Where εµ is an infinitesimal four-vector field (describ-
ing infinitesimal coordinate transformation), A(0)(xµ(p))
(A(0)(x̃µ(p))) is the background value of A at xµ (x̃µ) and

δA(p) ( ˜δA(p)) is the perturbation of A around the back-

ground value A(0)(xµ(p)) (A(0)(x̃µ(p))). As Ã(x̃µ(p)) and
A(xµ(p)) are the value of quantity A at point p, they are
equal and the change in the perturbation quantity as a
result of coordinate transformation is˜δA(p)− δA(p) = A(0)(xµ)−A(0)(x̃µ) (3)

On the other hand, the general infinitesimal coordinate
transformation εµ which changes only the scalar metric
perturbation (2) has the following form

εµ = (ε0, γijε;j) (4)

Where ε0 and ε are two scalar functions. Under this
infinitesimal transformation (ignoring the second order
term) the scalar fields φ, ψ, E and B transform in the
following way (Appendix A)

φ̃ = φ− a′

a ε
0 − ε0′

ψ̃ = ψ + a′

a ε
0

B̃ = B + ε0 − ε′ (5)

Ẽ = E − ε

Where ′ denotes the derivative with respect to conformal
time η. As there are two scalar variables in gauge trans-
formation, we can construct two gauge-invariant quanti-
ties Φ and Ψ from φ, ψ, E and B as follows [1]

Φ = φ+ 1
a [(B − E′)a]′ (6)

Ψ = ψ − a′

a (B − E′) (7)

Another important quantity is the scalar field ϕ. Per-
turbation on the top of homogeneous scalar field ϕ0(η)
transforms, as a result of coordinate transformation, us-
ing (3,4)

δ̃ϕ = δϕ− ϕ
′

0(η)ε0 (8)

So we can construct a gauge-invariant field perturbation
as follow

δϕ(gi) = δϕ+ ϕ
′

0(η)(B − E′) (9)

III. PERTURBED ACTION

As we have studied the perturbation of metric and
field, we are ready to expand the action in terms of the
perturbation fields. Obviously, the zero order term in the
action corresponds to homogeneous equation of motion
for background field ϕ. In addition, the first order term
vanishes as we expect from the action principal, So we
need to expand the action to second order in the field
perturbations.

The action consists of two parts, the action of gravity
and the action of scalar field

S = Sgr + Sm (10)

Sgr =
∫
Lgr
√
−gd4x = − 1

16πG

∫
R
√
−gd4x (11)

Sm =
∫

( 1
2ϕ,µϕ

,µ − V (ϕ))
√
−gd4x (12)

A. Background Equation

In the zero order of perturbation, the metric will be
FRW metric and scalar field ϕ will be homogeneous.
Then (for K = 0)

ds2 = a2(η)(dη2 − d~x2)
√
−g = a4

Lm = 1
2a2 ((ϕ′)2 − V (ϕ)) (13)

So the Euler-Lagrange equation for the scalar field is as
follows

ϕ′′ + 2Hϕ′ + a2V,ϕ = 0 (14)

Which H = a′

a .

B. Perturbation of GR Action

The calculations for finding the perturbation of GR
action ,although, is straightforward but is rather lengthy.
Here we only point out the process of calculation in [2].
Interested reader can find the detailed calculation in part
10.1 of [2]. First, the line element can be written in the
following ADM form

ds2 = (N2 −NiN i)dη2 − 2Nidx
idη − γijdxidxj
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comparing this line element with the one of the metric
(equations (1,2))

Ni = a2B,i (15)

N = a(1 + φ− φ2

2 + 1
2B,iB,i) (16)

γij = a2(1− 2ψ)δij + 2a2E,ij (17)

Substituting equations(15-17) into (11), the perturbation
of the GR action (up to a total derivative term) is

δSgr = 1
16πG

∫
a2[−6ψ

′2 − 12H(φ+ ψ)ψ′

− 9H2(ψ+ φ)2 − 2ψ,i(2φ,i −ψ,i)− 4H(φ+ψ)(B −E′),ii
+ 4Hψ′E,ii− 4ψ′(B−E′),ii− 4Hψ,iB,i + 6H2(φ+ψ)E,ii
− 4HE,ii(B − E′),jj + 4HE,iiB,jj + 3H2E2

,ii +

3H2B,iB,i](18)

C. Perturbation of Real Scalar Field Action

Another term in the action (10) is the action of real
scalar field

Sm =

∫ √
−g(

1

2
ϕ,µϕ

,µ − V (ϕ))d4x

substituting ϕ = ϕ0 + δϕ and gµν (1,2) into (12) and
keeping the terms up to second order in the field pertur-
bations, and summing with δSgr, we can find the follow-
ing expression (up to a total derivative) for δS

δS = 1
6l2

∫
a2[−6ψ

′2 − 12Hφψ′ − 2ψ,i(2φ,i − ψ,i) −
2(H ′ + 2H2)φ2 + 3l2(δϕ

′2 − δϕ,iδϕ,i − a2V,ϕϕδϕ
2) +

6l2(ϕ′0(φ+3ψ)′δϕ−2a2V,ϕφδϕ)+4(B−E′),ii( 3
2 l

2ϕ′0δϕ−
ψ′ −Hφ)](19)

Where l =
√

8πG
3 . As we can see in (19), the time deriva-

tive of B − E′ does not appear in the action. So the
variation of the action with respect to this term leads to
a constraint equation

ψ′ +Hφ =
3

2
l2ϕ′0δϕ (20)

Defining a gauge-invariant variable

v = a(δϕ+
ϕ′0
H
ψ) = a(δϕ(gi) +

ϕ′0
H

Ψ) (21)

and substituting (20,21) in (19), the action perturbation
can be written as following simple form

δS = 1
2

∫
(v

′2 − v,iv,i + z′′

z v
2) (22)

z =
aϕ′

0

H (23)

Which is the action of a real scalar field with time de-
pendent mass m2 = − z

′′

z . Variation of the action (22)
results in the following Euler-Lagrange equation

v′′ −∇2v − z′′

z
v = 0 (24)

Once we know the action for the perturbation field v, we
can quantize the theory.

IV. QUANTIZATION

Equation (22) is the action of a real scalar field with
a time-dependent mass. In order to quantize the theory,
first we need to find the canonical momentum conjugate
to v

π =
∂L

∂v′
= v′

Then, the fields v and π become operators (v̂ and π̂) with
the following same time commutation relation

[v̂(~x, η), π̂(~y, η)] = iδ(3)(~x, ~y) (25)

[v̂(~x, η), v̂(~y, η)] = [π̂(~x, η), π̂(~y, η)] = 0 (26)

The operator v̂ is a Heisenberg operator, which means it
evolves with time according to

v̂′′ −∇2v̂ − z′′

z
v̂ = 0 (27)

Generally, the operator v̂ can be expanded in terms of
the solutions of the classical equation of motion of field

v. Here, the solutions of (24) are ei
~k.~xvk(η) which vk(η)

satisfies the following

v′′k (η) + E2
k(η)vk(η) = 0, E2

k(η) = k2 − z′′

z
(28)

The operator v̂ can be expanded in terms of these solu-
tions as

v̂ =
1√
2

∫
d3~k(ei

~k.~xv∗k(η)â~k + e−i
~k.~xvk(η)â†~k

(29)

A. Bogolyubov Transformation

If we set the normalization factor of vk(η) such that

W (vk(η), v∗k(η)) = v′kv
∗
k − vkv∗

′

k = 2i (30)

then, the commutation relations (25,26) result in the fol-
lowing commutation relation

[â~k, â~k′ ] = [â†~k
, â†~k′

] = 0 (31)

[â~k, â
†
~k′

] = δ(3)(~k − ~k′) (32)

So â~k and â†~k
satisfy the commutation relation of anni-

hilation and creation operator respectively and vacuum
state can be defined as the state which is annihilated by
all annihilation operator

â~k|0(a)〉 = 0 (33)
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Once we have defined the vacuum state, particle states

can be defined by acting â†~k
on the vacuum. However,

there is no unique vacuum state by this definition. As
(28) is a linear equation, any linear combination of inde-
pendent solutions is another solution. So ṽk(η) and ṽ∗k(η)
defined as

ṽk(η) = αkvk(η) + βkv
∗
k(η) (34)

are also solutions of (28) and we can expand v̂ in terms
of these solutions

v̂ =
1√
2

∫
d3~k(ei

~k.~xṽ∗k(η)b̂~k + e−i
~k.~xṽk(η)b̂†~k

) (35)

If we normalize ṽk(η) such that

W (ṽk(η), ṽ∗k(η)) = 2i (36)

Which means

|αk|2 − |βk|2 = 1 (37)

then

[b̂~k, b̂~k′ ] = [b̂†~k
, b̂†~k′

] = 0 (38)

[b̂~k, b̂
†
~k′

] = δ(3)(~k − ~k′) (39)

So we can define the vacuum state using b̂~k’s

b̂~k|0(b)〉 = 0 (40)

And, obviously, the vacuum state |0(b)〉 differs from |0(a)〉.
To see this, from equations (29,34,35) we can obtain the

relation between b̂~k and â~k

â~k = α~k b̂~k + β∗~k b̂
†
~k

(41)

which means that the vacuum state defined by mode
functions vk is different from the vacuum state defined
by ṽk.

B. On Initial Condition

In the case of Minkowski space-time (no time depen-
dency), the field can be expanded in terms of positive
frequency mode functions

vk(η) ∼ eiωkη, ω2
k = k2 +m2 (42)

And their coefficients in the mode expansion are the cor-
rect annihilation operators for defining the vacuum state.
In fact, a more elaborate definition of being positive-
frequency for a mode function at time η0 is

vk(η0) =
1√
E(η0)

, v′k(η0) = i
√
E(η0) (43)

Hence at any time, we can define the positive frequency
modes and consequently the vacuum state. When
equation of motion contains time dependent mass, a
mode which is positive frequency at time η0, in general
will not be a positive frequency mode at a different
time. Indeed, it means that the vacuum state of the field
changes in time. As a result, starting from the vacuum
state at time η0, at later times this state will contain
particles.

However, the definition of positive frequency modes
(43) are only applicable to modes with positive Ek. In
fact, the definition of vacuum state in general space-time
is not well-established. In inflation period

z′′

z
=
a′′

a
> 0 (44)

So Ek for a long-wavelength mode can be negative and
the vacuum state cannot be defined completely. However,
for k → ∞, we expect that the effect of the space time
curvature becomes negligible and the definition of pos-
itive frequency mode for flat space time becomes valid.
So we can use the following initial conditions to define
the vacuum at time ηi [2]

vk(ηi) = k−
1
2M(kηi) v′k(ηi) = ik

1
2N(kηi) (45)

with the following asymptotic behavior and normaliza-
tion (using (30)) for N and M

NM∗ +N∗M = 2 (46)

M(kηi)| → 1, |N(kηi)| → 1, kηi →∞ (47)

Fortunately, for the purpose of calculating the power
spectrum (will be defined in the next section) up to first
order in k, these general conditions will be sufficient.

V. CALCULATING THE POWER SPECTRUM

As we have mentioned before, the inflationary sce-
nario can describe the primordial inhomogeneities in the
universe which can be seen in the CMB. A good measure
for the anisotropy in the primordial fluctuations is the
two point correlation function of metric perturbation
Φ. In order to find the two point correlation function,
first we need the relation between v̂ and Φ̂, as we have
imposed the commutation relation on v̂.

variation of the action (19) with respect to φ and ψ
leads to the following equation in terms of gauge invariant
variables

∇2Ψ− 3HΨ′ − (H ′ + 2H2)Φ =
3
2 l

2(ϕ′0δϕ
(gi)′ + V,ϕa

2δϕ(gi)) (48)
1
3∇

2(Φ−Ψ) + Ψ′′ +HΦ′ + 2HΨ′ + (H ′ + 2H2)Φ =
3
2 l

2(ϕ′0δϕ
(gi)′ + V,ϕa

2δϕ(gi)) (49)
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Equations (48,49) and definition (21) lead to the follow-
ing [2]

Φ = Ψ (50)

Φ′′ + 2( a
ϕ0

′)′
ϕ′

0

a Φ′ −∇2Φ + 2ϕ′0(Hϕ′0)Φ = 0 (51)

∇2Φ = 3
2 l

2 ϕ
′2
0

H ( vz )′ (52)

Substituting fields with operators in equations (50-52),

using (52) we can conclude that Φ̂ can be expanded in
terms of creation and annihilation operators

Φ̂(~x, η) =
1√
2

ϕ′0
a

∫
d3k

(2π)3/2
[u∗k(η)ei

~k.~xa~k+uk(η)e−i
~k.~xa~k†]

(53)
And (52) results in the relation between mode function
vk and uk as follows

uk(η) = −3

2
l2p
z

k2
(
vk
z

)′ (54)

Suppose that the universe at time ηi was at the vacuum
state of the field v̂ denoted by |0〉 defined via (45). Then
the two point correlation function of metric perturbation
Φ̂ between point ~x and ~x+ ~r at time η is

〈0|Φ̂(~x)Φ̂(~x+ ~r)|0〉 (55)

Using (53) and the fact that the state |0〉 is annihilated
by all a~k operators

〈0|Φ̂(~x)Φ̂(~x+ ~r)|0〉 =

∫ ∞
0

dk

k

sin(kr)

kr
|δk|2 (56)

Which δk, in the above equation, is called the power spec-
trum of metric perturbation Φ̂ and []

|δk(η)|2 =
1

4π2

ϕ′20
a2
|uk(η)|2k3 (57)

In fact, the power spectrum is a measure of the anisotropy
in the metric perturbation Φ. In order to calculate the
power spectrum, we can solve (28) with initial conditions
(45) at time ηi to find the mode functions vk, then (54)
gives the solution for the mode functions uk and from
definition (57), we can find an expression for the power
spectrum.

A. Power Spectrum in Inflationary Universe

So far, all the calculation was general for the case of
a real scalar field. However, in this section, we are go-
ing to compute the power spectrum in some special cases.

Let’s assume that the space-time is de Sitter space-
time

a(t) = eHΛt = − 1

HΛη
(58)

The equations in the earlier sections gives an exponen-
tially expanding universe, if we assume that the field ϕ
has stayed at some point on the top of the potential and
does not roll over it. In this case ϕ′0 ' 0 and

H2
Λ = l2pV (ϕ) = const (59)

Also equation (21) gives

v = aδϕ(gi) (60)

As ϕ′0 = 0, from equation(53), it is obvious that the
metric perturbation and its power spectrum is zero.
However, this is not surprising, as we have assumed that
the deviation of space-time from background metric is
zero (58,59). Consequently, we are going to calculate
the power spectrum for field perturbation δϕ.

In exponentially expanding universe, (28) becomes

v′′k + (k2 − 2

η2
)vk = 0 (61)

by a change of variable

vk(η) =
√
k|η|f(k|η|) (62)

equation (61) reduces to Bessel equation

s2 d
f

ds2
+ s

df

ds
+ (s2 − 9

4
)f = 0, s = k|η| (63)

Which has the solution

vk(η) =
√
k|η|(AkJ3/2(k|η|) +BkY3/2(k|η|)) (64)

and the normalization condition (30) imposes

AkB
∗
k −A∗kBk =

iπ

k
(65)

Assuming that inflation lasts forever and all modes has
started from the vacuum, we expect that for η → −∞

vk(η)→ 1√
k
eikη (66)

Looking at the solution (64) in the limit of η → −∞ and
make use of normalization condition (65), we find the
following mode functions [3]

vk(η) =

√
π|η|

2
(J3/2(k|η|)− iY3/2(k|η|)) (67)

Defining the power spectrum for the field perturbation
δϕ(k) as

〈0|δ̂ϕ(~x)δ̂ϕ(~x+ ~r)|0〉 =

∫ ∞
0

dk

k

sin(kr)

kr
|δϕ(k)|2 (68)

and using (29,60)

δϕ(k, η) =

√
2π

a(η)
k3/2|vk(η)| (69)
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Substituting the solution (67) into (69) and expressing
the power spectrum in terms of physical wavenumber
kph = k

a we have

δϕ(kph) = πHΛ(
kph
HΛ

)3/2

√
J2

3/2(
kph
HΛ

) + Y 2
3/2(

kph
HΛ

) (70)

Using the properties of Bessel function, we obtain the
following asymptotic behavior

δϕ(kph) =

{ √
2πkph kph � HΛ√
2πHΛ kph � HΛ

(71)

B. Finite Duration Inflation

In a more realistic scenario, inflation only last for a fi-
nite time. Assume that the inflation starts at time ηi and
ends at ηf . At time ηi, the subhorizon modes (k|ηi| � 1)
do not feel the effect of curvature. It can be seen from
(61) (which for k|η| � 1 becomes)

v′′k − k2vk = 0 (72)

It means we can assume that these modes are in the
vacuum state at the beginning of inflation. However, for
superhorizon modes at time ηi (k|ηi| � 1), we have

v′′k −
2

η2
vk = 0 (73)

Which means the notion of vacuum for these modes
is ambiguous and their spectrum depends on some
preinflationary scenario [3].

Assuming that a subhorizon mode at ηi has started
from the vacuum, the solution of equation (72) is

vk(η) =
1√
k
eikη (74)

for ηi ≤ η ≤ − 1
k . This mode crosses the horizon at time

ηk = − 1
k and then, its evolution is determined by (73).

The general solution for (73) is

vk(η) = Akη
−1 +Bkη

2 (75)

Matching the solution (74) and (75) at the time of cross-
ing ηk, we have

Ak ∼ k−3/2, Bk ∼ k3/2 (76)

As time passes, the second term in (75) becomes negligi-
ble and the solution up to a order one factor becomes

vk(η) ∼ k−3/2η−1 (77)

In summary, for the subhorizon modes at the beginning
of inflation (ηi) which are still subhorizon at time η,
equation (74) is the solution. For the subhorizon modes
at the beginning of inflation which become superhorizon

at time η, equation(77) is the solution.

Consequently, the power spectrum of the field ϕ can
be computed using (69) and the solutions (74) and (77),
as follows

δϕ(k, η) ∼


k
a(η) k ≥ − 1

η

− 1
aη −

1
η ≥ k ≥ −

1
ηi

? k ≤ − 1
ηi

(78)

Which in terms of physical wavenumber kph = k
a is

δϕ(kph, η) ∼


kph kph ≥ HΛ

HΛ HΛ ≥ kph ≥ HΛ
η
ηi

? kph ≤ HΛ
η
ηi

(79)

After the end of inflation (in radiation or matter
dominated era), the co-moving horizon 1

aH expands
and the modes which were subhorizon at the beginning
of inflation and became superhorizon during inflation,
enters the horizon with scale-invariant power.

C. Time-dependent Hubble Parameter in Inflation

In a realistic model, the Hubble parameter changes
slightly in time and the power spectrum is not completely
scale-invariant. In this case, (28) becomes

v′′k + (k2 − a′′

a
)vk = 0 (80)

For subhorizon modes at the beginning of inflation, we
obtain

vk(η) =
1√
k
eikη, aiHi ≤ k ≤ a(η)H(η) (81)

Which ai and Hi are the scale factor and Hubble pa-
rameter at the beginning of inflation. After crossing the
horizon at time ηk, the evolution of the mode is deter-
mined by the following equation

v′′k −
a′′

a
vk = 0 (82)

Which has the general solution as

vk = Aka+Bka

∫
dη

a2
(83)

After imposing the matching conditions between solution
(81) and (83) and considering that the second term in 83)
becomes negligible as time passes, we can find the follow-
ing solution for the mode k after crossing the horizon

vk ∼
1√
k

a(η)

ak
(84)
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Which ak is the scale factor at the time of horizon cross-
ing. Using (69), we can find the power spectrum for the
subhorizon mode which crosses the horizon

δϕ(k, η) ∼ 1

a(η)
k3/2|vk| ∼ Hk, a(η)H(η) ≥ k ≥ aiHi

(85)
Which Hk is the Hubble parameter at the time of horizon
crossing and k ' akHk. Equation (85) shows that a
specific mode enters the horizon (in radiation or matter
era) with a slight dependence on the scale of the mode.
Also, it is obvious that equations (80-85) give equations
in the previous section provided that a(η) = − 1

HΛη
.

D. Back-reaction of the Scalar Field

So far, in all examples, we have neglected the effect of
the scalar field on metric. However, equations (28,54,57)
are completely general and we have considered the back-
reaction of the scalar field on geometry. The process of
finding the power spectrum in this situation is similar to
previous cases and here we only express the result from
[2]. The power spectrum (57) for a general potential V (ϕ)
is

δk(η) ' lp
4π

{
V,ϕ
V 1/2 kph > H(η)

(V
3/2

V,ϕ
)ηk

V 2
,ϕ

V 2 H(η) > kph > Hiai/a(η)
(86)

Which ηk is the time of horizon crossing. For the special
case of V (ϕ) = 1

2m
2ϕ2 (86) becomes

δk(η) '
√

2

4π

m

mp

{
1 kph > H(η)

1 +
ln(λphH(η))
ln( ar

a(η)
)

H(η) > kph > Hiai/a(η)

Which mp = 1/lp is the Planck mass, λph is the physi-
cal wavelength and the ar is the scale factor at the end
of inflation. In this scenario, the modes enter the hori-
zon at late times with the power depend on their scale
logarithmically.

VI. SUMMARY AND CONCLUSION

As it was shown, the vacuum state in time-dependent
space-times generally changes in time which leads to par-
ticle production. Here, we computed the power spectrum
of field fluctuation in some more or less realistic scenar-
ios and in all cases approximately scale invariant power
spectrum has been derived.
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APPENDIX A: SCALAR, VECTOR AND
TENSOR PERTURBATION OF METRIC

The metric perturbation can be decomposed into
three classes, scalar, vector and tensor part based on the
symmetry properties of the background metric (FRW
metric has spatial rotation and translation symmetry).

δg00 acts like a scalar under spatial rotation, so we can
express it in terms of a 3-scalar field φ as following

δg00 = 2a2φ

δg0i can be expressed as a sum of a spatial gradient of a
scalar field and a 3-divergenceless vector field (divergence
of a 3-vector transforms like a scalar, so we can put it in
the gradient of a scalar part) as follow

δg0i = a2(−B;i + Si)

Si;i = 0

Similarly, δgij can be decomposed into a scalar times 3-
metric, gradient of a scalar, derivative of a divergenceless
3-vector and traceless divergenceless tensorial part

δgij = a2(2ψωij − 2E;ij + Fi;j + Fj;i + hij)

F i;i = 0

hii = 0, hij;i = 0

So we have four scalar perturbation φ, ψ, E and B, two
vector perturbation Si and Fi (having four independent
components) and one tensor perturbation hij (having
two independent component).

For an infinitesimal coordinate transformation (4), the
metric in x̃ coordinate is

g̃µν(x̃α) = ∂xµ
′

∂x̃µ
∂xν

′

∂x̃ν gµ′ν′(xα) '

g
(0)
µν (xα) + δgµν − gµν′εν

′

,ν − gµ′νε
µ′

,µ (A1)

We can split the metric in x̃ coordinate into background
and perturbation part as

g̃µν(x̃α) = g(0)
µν (x̃α) + δ̃gµν (A2)

Using the fact that

g(0)
µν (x̃α) ' g(0)

µν (xα) + g
(0)
µν,βε

β (A3)

and comparing equations (A1) and (A2), the metric per-
turbation in x̃ coordinate can be expressed in terms of
δg and εµ

δ̃gµν = δgµν − g(0)
µν,βε

β − g(0)
βν ε

β
,µ − g

(0)
µβ ε

β
,ν (A4)

Equation (A4) together with equations (1) and (2) results
in (5).
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