
Viscous Flow in Pipes
Pipe Flow Problems

• Piping systems are encountered in almost every engineering design 
and thus have been studied extensively. There is a small amount of 
theory plus a large amount of experimentation.

The basic piping problem is this:
• Given the pipe geometry and its added components (such as fittings, 

valves, bends, and diffusers) plus the desired flow rate and fluid 
properties, what pressure drop is needed to drive the flow?

Of course, it may be stated in alternate form: 
• Given the pressure drop available from a pump, what flow rate will 

result? 

Reynolds Experiment

• Reynolds Number

• Laminar flow:  Fluid moves in smooth 
streamlines

• Turbulent flow: Violent mixing, fluid 
velocity at a point varies randomly with time
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• Developing flow
– Includes boundary layer and core, 
– viscous effects grow inward from the 

wall
• Fully developed flow

– Shape of velocity profile is same at all 
points along pipe
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Shear Stress in Pipes
• Steady, uniform flow in a pipe:  momentum 

flux is zero and pressure distribution across 
pipe is hydrostatic, equilibrium exists 
between pressure, gravity and shear forces
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• Head loss is due to the shear stress.

• The shear stress will be zero at the center (r = 
0) and increase linearly to a maximum at the 
wall.

• Applicable to either laminar or turbulent flow
• Now we need a relationship for the shear 

stress in terms of the Re and pipe roughness

Darcy-Weisbach Equation
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Darcy-Weisbach Eq. Friction factor

Laminar Flow in Pipes
• Laminar flow -- Newton’s law of viscosity is valid:
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• Velocity distribution in a pipe (laminar flow) 
is parabolic with maximum at center.
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Head Loss in Laminar Flow
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Example
Given:  Liquid in pipe has γ= 8 kN/m3.  Acceleration = 0.  

D = 1 cm, μ = 3x10-3 N-m/s2.  
Find:  Is fluid stationary, moving up, or moving down?  

What is the mean velocity?
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Solution:  Energy eq. from z = 0 to z = 10 m

Example

2/62.0,/300,12 mNsmN == μγ

Given:  Glycerin@ 20oC flows commercial steel 
pipe.  

Find: Δh
Solution:  
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Turbulent-Flow in Pipes

Two important parameters!
Re - Laminar or Turbulent

ε/d - Rough or Smooth

Laminar and turbulent pipe-flow velocity
profiles for the same volume flow:



Nikuradse’s Experiments

• In general, friction factor

– Function of Re and roughness
• Laminar region 

– Independent of roughness

• Turbulent region
– Smooth pipe curve

• All curves coincide @ 
~Re=2300

– Rough pipe zone
• All rough pipe curves flatten 

out and become independent 
of Re
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Nikuradse simulated roughness by gluing uniform sand grains onto the inner walls of the pipes. He then 
measured the pressure drops and flow rates and correlated friction factor versus Reynolds number. at 
high Reynolds numbers.

Turbulent-Flow in Pipes Moody Diagram

Transition function for both smooth and rough pipe laws (Colebrook)

(used to draw the 
Moody diagram)

(Haaland)

Roughness Values Moody Diagram



Example Three Types of Pipe-Flow Problems 
Moody Diagram

1. Given d, L, and V or Q, ρ, μ , and g, compute the 
head loss hf (head-loss problem).

2. Given d, L, hf , ρ, μ and g, compute the velocity V or 
flow rate Q (flow-rate problem).

3. Given Q, L, hf , ρ, μ and g, compute the diameter d 
of the pipe (sizing problem).
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Given:  The pressure at a water main is 300 kPa gage.  
What size pipe is needed to carry water from the 
main at a rate of 0.025 m3/s to a factory that is 140 m 
from the main?  Assume galvanized-steel pipe is to 
be used and that the pressure required at the factory 
is 60 kPa gage at a point 10 m above the main 
connection.

Find:  Size of pipe.
Solution:

Assume f = 0.020
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Minor Losses in Pipe
Systems

• For any pipe system, in addition to the Moody-type 
friction loss computed for the length of pipe, there 
are additional so-called minor losses due to:

1. Pipe entrance or exit
2. Sudden expansion or contraction
3. Bends, elbows, tees, and other fittings
4. Valves, open or partially closed
5. Gradual expansions or contractions

Minor Losses 

• Since the flow pattern in fittings and valves is quite complex, the theory
is very weak. The losses are commonly measured experimentally and 
correlated with the pipe flow parameters.

• The measured minor loss is usually given as a ratio of the 
head loss                      through the device to the velocity head
V2/(2g) of the associated piping system

Minor Loss in a Pipe
• A piping system may have many minor losses 

which are all correlated to V2/2g
• Sum them up to a total system loss for pipes 

of the same diameter

• Where, 
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EGL & HGL for Losses in a Pipe

• Entrances, bends, and other 
flow transitions cause the EGL 
to drop an amount equal to the 
head loss produced by the 
transition.

• EGL is steeper at entrance 
than it is downstream of there 
where the slope is equal the 
frictional head loss in the pipe.

• The HGL also drops sharply 
downstream of an entrance



Example

Given:  The 10-cm galvanized-steel pipe is 1000 m long 
and discharges water into the atmosphere.  The 
pipeline has an open globe valve and 4 threaded 
elbows; h1=3 m and h2 = 15 m.  

Find:  What is the discharge, and what is the pressure at A, 
the midpoint of the line?

Solution:  
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Near cavitation pressure, not good!

Multiple-Pipe Systems
• Pipes in series

Since V2 and V3 are proportional to V1

The αi are dimensionless constants.

If the flow rate is given, we can evaluate the right-hand side and hence the total head 
loss. If the head loss is given, a little iteration is needed, since f1, f2, and f3 all 
depend upon V1 through the Reynolds number. Begin by calculating f1, f2, and f3, 
assuming fully rough flow, and the solution for V1 will converge with one or two 
iterations.

• Pipes in parallel

Since the fi vary with Reynolds number and roughness ratio, one begins by guessing 
values of fi (fully rough values are recommended) and calculating a first estimate of 
hf. Then each pipe yields a flow-rate estimate Qi = (Cihf /fi)1/2 and hence a new 
Reynolds number and a better estimate of fi. Then repeat Eq. for hf to convergence.

If the total head loss is known, it is straightforward to solve for Qi in 
each pipe and sum them. The reverse problem, of determining  Qi
when hf is known, requires iteration.

• Three-reservoir 
pipe junction

We guess the position hJ and solve Eqs. for V1, V2, and V3 and hence Q1, Q2, and 
Q3, iterating until the flow rates balance at the junction. If we guess hJ too high, the 
sum Q1+ Q2+ Q3 will be negative and the remedy is to reduce hJ, and vice versa.

If all flows are considered positive toward the junction, which obviously implies that one or 
two of the flows must be away from the junction.



Example

Exercise:

8.3, 8.17, 8.22, 8.24,  8.37
8.60, 8.72, 8.89, 8.100, 8.102

Head Loss due to Gradual 
Expansion (Diffusor)
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Sudden Contraction

• losses are reduced with a gradual contraction
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Entrance Losses

Losses can be 
reduced by 
accelerating the flow 
gradually and 
eliminating the
vena contracta

Head Loss in Bends
• Head loss is a function 

of the ratio of the bend 
radius to the pipe 
diameter (R/D)

• Velocity distribution 
returns to normal 
several pipe diameters 
downstream

High pressure

Low pressure

Possible 
separation 
from wall
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Head Loss in Valves
• Function of valve type and valve 

position
• The complex flow path through 

valves can result in high head loss 
(of course, one of the purposes of a 
valve is to create head loss when it 
is not fully open)
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