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Dimensional Analysis

To this point, we have concentrated on analytical methods of solution for fluids
problems. However, analytical methods are not always satisfactory due to:

(1) limitations due to simplifications required in the analysis,
(2) complexity and/or expense of a detailed analysis.

The most common alternative isto use experimental test & verification procedures.
However, without planning and organization, experimental procedures can :

(@) be time consuming,
(b) lack direction,
(c) be expensive.

Dimensional Analysis

Dimensional analysis provides a procedure that will

typically reduce both the time and expense of
experimental work necessary to experimentally
represent adesired set of conditions and geometry.

It also provides ameans of "normalizing” the final
results for arange of test conditions. A normalized
(non-dimensional) set of results for one test
condition can be used to predict the performance
at different but fluid dynamically similar
conditions ( including even adifferent fluid).

Dimensional Analysis

Want to study pressure drop as function of
velocity (V,) and diameter (d,) Py

Carry out numerous experiments with Py
different values of V, and d, and plot the data
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The Buckingham Pi Theorem

* “inaphysical problem including n quantitiesin
which there are m dimensions, the quantities can
be arranged into n-m independent dimensionless
parameters’

» We reduce the number of parameters we need to
vary to characterize the problem!

Force F

Buckingham Pi Theorem

on abody immersed in aflowing fluid depends

on:L,V, p,and i
F= f(L,V,p,ﬂ)
ayb ¢
n=5 No. of dimensional parameters m=u(LV-p")
j=3 No. of dimensions 0y0+0 _ “1r-1 a -1\b -3\¢
k=n-j=2 No. of dimensionless parameters M LOT (MLET(L)T(LT ) (ML)
M : 0=1+c = c=-1
F L v P u L: 0=-1+a+b-3%& = a=-1
Mtz | L | LTt | M [meera| TP 0=-1-b = b=-1
u pVL
Select “repeating” variables: L, V, and m= or m=R=—
epeating” vari P LVp P

Combine these with the rest of the variables: F & u

Reynolds number

Buckingham Pi Theorem
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MOLOTO = (MLT ()3 (LT 1P (ML3)¢
M: O0=1+c = c=-1

L: O=1+a+bh-3%x = a=-2

T: 0=2-b = b=-2
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F = f (%)) Dimensonlessforceisafunction
Yo% 22 of the Reynolds number
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Buckingham Pi Theorem

List al n variablesinvolved in the problem

Typicaly: al variables required to describe the problem geometry (D) or
define fluid properties (o, 1) and to indicate external effects (dp/dx)

Express each variablesin terms of MLT dimensions (j)

Det

ermine the required number of dimensionless parameters (n —j)

Select a number of repeating variables = number of dimensions

All reference dimensions must be included in this set and each must be
dimensionallsindependent of the others

Form a dimensionless parameter by multiplying one of the nonrepeating

vari
unk

ables by the product of the repesting variables, each raised to an
nown exponent

Repeat for each nonrepeating variable
Express result as a relationship among the dimensionless parameters




_ a/b ¢
+  Find: Drag force on rough sphere is function Fo D p u \ k 73 =Fp(DV"p")
of D, p, u, Vand k. Expressin form: M OLOTO _ MLT*Z L)2 LT*]- b ML*3 c
MLT2| L | ML® | MLAT2 | LT | L ( L) ) )
M : 0=1+c = c=-1
3= f(;[l,ﬁz) -5 5 L: 0=1+a+b-3 = a=-2
Select “repeating” variables: D, V, and p T: 0=—2-b = b=-2
Combine these with nonrepeating variables: F, 1 & k T -
Fo D Y2 U \ k
ayb ¢ — k(D& b ¢ Ta = Fo
MLT2| L | M2 | Mo [ o | L m =p(DV°p%) mp =k(D*V"p") * V22
I = _ 0 0 -1\b -3
MOLOTO = (ML L) (L)3 (LT 1P (ML) MOLOTO = (L)L) (LT HP(ML3)°
n=6 No. of dimensional parameters M : 0=1+c = c=-1 M: 0=c = c=0
j=3 No. of dimensions . a _ _ L: O=1+a+b-3c = a=-1
k=n-j=3 No. of dimensionless parameters L: O=-1+a+b-X = a=-1 ' Fo VD k
T: 0=-1-b = b=-1 T: 0=-b = b=0 > Z:f(—,B)
Select “repeating” variables: D, V, and p pV D H
Combine these with nonrepeating variables: F, 1 & k K
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Parameter Definition Qualitative ratio Importance
of effects
I ' ’ SUL _nertin _
Common Dimensionless NO’' s Remotteumter e 5
- u Flow speed
Mach number Ma == W Compressible flow
U? Inertia
Vd Froude number Fr= g_L Gravity Free-surface flow
. . . , .
Reyn0| dS Numba (I natl al to viscous forces) m = L ‘Weber number W, = &/L Surfi::% Free-surface flow
— Important in al fluid flow problems H p-p Pressure
Cavitation number Ca :pTJ‘ Tnertia Cavitation
V (Euler number) o
Froude Number (inertial to gravitational forces) F= T Prandtl number pr= S B et conveetion
— Important in problems with a free surface V9 Eekort aumber el m Dissipation
¢, T, Enthalpy S1pa
i . T Enthalpy .
Eu|e|’ NumbEr (pf6$ure to |na’t| al fOfCES) C Ap Specific-heat ratio = c, Internal energy Compressible flow
. . . =—F L Oscillati
— Important in problems with pressure differences P V2 Strouhal number si=2= o Oscillating flow
i £ Wall roughness
. . . Roughness ratio T Body length Turbulent,rough
Mach Number (inertial to elastic forces) v v Py aovmer walls
— Important in problems with compressibility M= == Grashof number =T Viscosity Natural convection
effa:ts E /p c X T, Wall temperature
Temperature ratio T, Stream temperature Heat transfer
< pP—p. Static pressure
H H : Pressur ffici P 1/ ) PR y A lynamics,
Weber Number (inertial to surface tension 5 ressune oetlieient 12pU pynmmiepressie | oy namics
2 Lift fc
forces) . . . W = pLV Lift coefficient CL=1; 2pUA Dvnlaxni(;r;ci'ce Aerodynamics
— Important in problems with surface tension effects o ’ . hydrodynamics
D Li
Drag coefficient “p = 1/2pUA Dynlamiocr;ci-ce Ael‘odynz\miqs.
hydrodynamics




Similarity

e Similarity
— Predict prototype behavior from model
results
— Models resemble prototype, but are
« Different size (usually smaller) and may
operatein
 Different fluid and under
 Different conditions
— Problem described in terms of
dimensionless parameters which may
apply to the model or the prototype

my = f(m2, 730 770

— Supposeit describes the prototype 71'1p = f(”2p1”3pa---’”np)
— A similar relationship can be written for

amodel of the prototype Tim = f (”2m1”3m ,...,irnm)

Similarity

e If themodel isdesigned TTom =72
& operated under m P

conditions that 73m = 73p Similarity
requirements or
modeling laws
Znm = Tnp

Dependent variable for
prototype will be the
same as in the model

then Tim = ;z'lp >

Flow conditions for a model test are completely similar if all relevant dimensionless
I )
parameters have the same corresponding values for the model and the prototype.

But thisis easier said than done!

Similarity conditions

» Instead of complete similarity, the engineering literature speaks of
particular types of similarity, the most common being geometric,
kinematic, and dynamic.

* A model and prototype are geometrically similar if and only if al
body dimensionsin all three coordinates have the same linear-scale
ratio.

* All angles are preserved in geometric similarity. All flow directions
are preserved. The orientations of model and prototype with respect to
the surroundings must be identical.
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Similarity conditions
Kinematic similarity requires that the model and prototype have the same length-
scale ratio and the same time-scale ratio. The result is that the velocity-scale ratio
will be the same for both.
The motions of two systems are kinematically similar if homologous particleslie at
homologous points at homol ' o
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Similarity conditions

* Dynamic similarity exists when the model and the prototype have
the same lengthscale ratio, time-scale ratio, and force-scale (or mass-
scale) ratio.

» The dynamic-similarity laws ensure that each of these forces will be
in the same ratio and have equivalent directions between model and
prototype. The force polygons at homologous points have exactly
the same shape.

» Kinematic similarity is also ensured by these model laws.

Example

Consider predicting the drag on a
thin rectangular plate (w*h) placed
normal to the flow.

Dragisafunction of: w, h, &, p, V

Fp = f(w,h,u,pV)

my = (72, 73)
(W pr

Dimensional analysis shows:

And this appliesBOTH to amodel
and a prototype W2 pV

We can design amodel to predict the
drag on a prototype.
Model will have:

Zim = T (7om. 773m)
Fom f(Wm PmVm Wm)
WE pVid P Hm

T1p = f(”Zpr”Sp)
Fop (Wp PpV P,
2=

pppV P Hp

And the prototype will have:

Similarity conditions
Example

*Similarity conditions
Geometric similarity

W _ Wp

h
Tom = 7T2p h o h = Wp Zhﬂwp Gives usthe size of the model
m

P P
Dynamic similarity

PVmW  PpVpW s Pp W
Tam = 7T3p m¥mWm _ Zp"pp N szimipipvp
Hm Hp Hp Pm W
Then Gives us the velocity in the model

Fom Fop

2 2
w Pp |V
p PP
Tm=mp 5 5= 5 5 = Fpp= Fom
WinPmVm  WpPpVp Wi ) Pm Vi

Example

Given: Submarine moving below surfacein

sea water
(p=1015 kg/m3, v=1/p=1.4x10-6 m?/s). F
Model is 1/20-th scale in fresh water (20°C). sz . ,%
Find: Speed of water in the testdynamic PmVimlm plp
similarity and the ratio of drag force on Fy v |2
model to that on prototype. — PmVmm m
Solution: Reynolds number is significant F V |
eter.
parameter Ren = Re, 1000[28 .6
1015\ 2
Vimlm ,VpLD
Vm Vo Ffm =0.504
Lo v, P
Vp =2 my
m Lm Vp P
= @izm S
114

Vp, =28.6m/s

&




Scaling in Open Hydraulic F:\/\% .
°g . . . m — p
Structures Froude similarity
. Va _ Vo
Examples * Froude number the same in model and g,.L - g.L
— spillways prototype Rt
— channel transitions £=V::
— weirs B ) L Lno Lo
 Important Forces « definelength ratio (usually larger than 1) L, =I%’
— inertial forces . velocity ratio V=L, "
— gravity: from changes in water surface elevation _Vv ) ] L -
— viscous forces (often small relative to gravity forces) /gl * timeratio t, =V:"=ﬁ
* Minimum similitude requirements g + dischargeratio o _\ A'_ [y o5
— geometric R> u » forceratio s L 2
— Froude number F=Ma =prLrt:2r=Lr
Example: Spillway Model Ship’s Resistance
« A 50 cm tall scale model of aproposed 50 e Skinfriction Viscosity, roughness
m spillway is used to predict prototype flow « Wave drag (free surface effect) gravity
conditions. I the design rooc;dlscharge « Therefore we need Reyrolds and Froude
over the spillway is 20,000 m°/s, what water similarity
flow rate should be tested in the model ?
Fn=F L, =100
o ZDr89=Cd=f £ RF
Q, = L3'2 =100,000 oV 3A I
), = 20,000m*/s —0.2m3/s
) 100,000




Reynolds and Froude Similarity?

Ship’s Resistance

Reyr:/?l ds FrOl\Jlde Can't have both Reynoldsand  2Puwa _ ¢, — f[ £ R, FJ
R=£C F=— Froude similarity PV 2A D
H Jol _
Froude hypothesis: the two
PVuln _ 2oVolo Water isthe only V, =L, forms of drag are independent Dua =D D
o Hy practica flud Measure total drag on Ship A (&
Vil =Vil, Use analytical methods to D, = fl =R
. . . 2 D
V.| calculate the skin friction analviical
Vo |, 1L L=1 Remainder is wave drag oA )
V., =i / Lr N .
L, empirical
Exercise:

7.8,7.9,7.27,7.34,7.41,7.49




