
Dimensional Analysis 
and Similarity To this point, we have concentrated on analytical methods of solution for fluids 

problems. However, analytical methods are not always satisfactory due to:

(1) limitations due to simplifications required in the analysis,
(2) complexity and/or expense of a detailed analysis.

The most common alternative is to use experimental test & verification procedures. 
However, without planning and organization, experimental procedures can :

(a) be time consuming,
(b) lack direction,
(c) be expensive.

Dimensional Analysis 

Dimensional analysis provides a procedure that will 
typically reduce both the time and expense of 
experimental work necessary to experimentally 
represent a desired set of conditions and geometry.

It also provides a means of "normalizing" the final 
results for a range of test conditions. A normalized 
(non-dimensional) set of results for one test 
condition can be used to predict the performance 
at different but fluid dynamically similar 
conditions ( including even a different fluid).

Dimensional Analysis Dimensional Analysis

• Want to study pressure drop as function of 
velocity (V1) and diameter (do)

• Carry out numerous experiments with 
different values of V1 and do and plot the data
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5 parameters:
Δp, ρ, V1, d1, do

2 dimensionless parameters:
Δp/(ρV2/2), (d1/do)
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Much easier to establish functional 
relations with 2 parameters, than 5



The Buckingham Pi Theorem

• “in a physical problem including n quantities in 
which there are m dimensions, the quantities can 
be arranged into n-m independent dimensionless 
parameters”

• We reduce the number of parameters we need to 
vary to characterize the problem!

Buckingham Pi Theorem
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Force F on a body immersed in a flowing fluid depends 
on: L, V, ρ, and μ

n = 5 No. of dimensional parameters
j = 3 No. of dimensions
k = n - j = 2 No. of dimensionless parameters

Select “repeating” variables: L, V, and ρ
Combine these with the rest of the variables: F & μ

Reynolds number

ML-1T-1ML-3LT-1LMLT-2

μρVLF

Buckingham Pi Theorem
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Dimensionless force is a function 
of the Reynolds number

ML-1T-1ML-3LT-1LMLT-2

μρVLF

Buckingham Pi Theorem

1. List all n variables involved in the problem
– Typically: all variables required to describe the problem geometry (D) or 

define fluid properties (ρ, μ) and to indicate external effects (dp/dx)
2. Express each variables in terms of MLT dimensions (j)
3. Determine the required number of dimensionless parameters (n – j)
4. Select a number of repeating variables = number of dimensions

– All reference dimensions must be included in this set and each must be 
dimensionalls independent of the others

5. Form a dimensionless parameter by multiplying one of the nonrepeating
variables by the product of the repeating variables, each raised to an 
unknown exponent

6. Repeat for each nonrepeating variable
7. Express result as a relationship among the dimensionless parameters



Example

• Find: Drag force on rough sphere is function 
of D, ρ, μ, V and k.  Express in form:
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n = 6 No. of dimensional parameters
j = 3 No. of dimensions
k = n - j = 3 No. of dimensionless parameters

Select “repeating” variables: D, V, and ρ
Combine these with nonrepeating variables: F, μ & k

Example
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Select “repeating” variables: D, V, and ρ
Combine these with nonrepeating variables: F, μ & k
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Common Dimensionless No’s.

• Reynolds Number (inertial to viscous forces)
– Important in all fluid flow problems

• Froude Number (inertial to gravitational forces)
– Important in problems with a free surface

• Euler Number (pressure to inertial forces)
– Important in problems with pressure differences

• Mach Number (inertial to elastic forces)
– Important in problems with compressibility 

effects

• Weber Number (inertial to surface tension 
forces)
– Important in problems with surface tension effects
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Similarity

• Similarity 
– Predict prototype behavior from model 

results
– Models resemble prototype, but are 

• Different size (usually smaller) and may 
operate in 

• Different fluid and under
• Different conditions

– Problem described in terms of 
dimensionless parameters which may 
apply to the model or the prototype

– Suppose it describes the prototype

– A similar relationship can be written for 
a model of the prototype
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• If the model is designed 
& operated under 
conditions that
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Similarity 
requirements or 
modeling laws

Dependent variable for 
prototype will be the 
same as in the model

But this is easier said than done!

Similarity conditions
• Instead of complete similarity, the engineering literature speaks of 

particular types of similarity, the most common being geometric, 
kinematic, and dynamic.

• A model and prototype are geometrically similar if and only if all 
body dimensions in all three coordinates have the same linear-scale 
ratio.

• All angles are preserved in geometric similarity. All flow directions 
are preserved. The orientations of model and prototype with respect to 
the surroundings must be identical.

Similarity conditions
• Kinematic similarity requires that the model and prototype have the same length-

scale ratio and the same time-scale ratio. The result is that the velocity-scale ratio 
will be the same for both.

• The motions of two systems are kinematically similar if homologous particles lie at 
homologous points at homologous times.



• Dynamic similarity exists when the model and the prototype have 
the same lengthscale ratio, time-scale ratio, and force-scale (or mass-
scale) ratio.

• The dynamic-similarity laws ensure that each of these forces will be 
in the same ratio and have equivalent directions between model and 
prototype. The force polygons at homologous points have exactly 
the same shape.

• Kinematic similarity is also ensured by these model laws.

Similarity conditions
Example

• Consider predicting the drag on a 
thin rectangular plate (w*h) placed 
normal to the flow.  

• Drag is a function of: w, h, μ, ρ, V
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• Dimensional analysis shows:
• And this applies BOTH to a model 

and a prototype

• We can design a model to predict the 
drag on a prototype.

• Model will have:

• And the prototype will have:

Similarity conditions
Example
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Example

• Given: Submarine moving below surface in 
sea water 
(ρ=1015 kg/m3, ν=μ/ρ=1.4x10-6 m2/s).  
Model is 1/20-th scale in fresh water (20oC).

• Find:  Speed of water in the testdynamic
similarity and the ratio of drag force on 
model to that on prototype.

• Solution:  Reynolds number is significant 
parameter.
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Scaling in Open Hydraulic 
Structures

• Examples
– spillways
– channel transitions
– weirs

• Important Forces
– inertial forces
– gravity: from changes in water surface elevation
– viscous forces (often small relative to gravity forces)

• Minimum similitude requirements
– geometric
– Froude number
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• Froude number the same in model and 
prototype

• ________________________ 

• define length ratio (usually larger than 1)

• velocity ratio

• time ratio

• discharge ratio

• force ratio

Example: Spillway Model

• A 50 cm tall scale model of a proposed 50 
m spillway is used to predict prototype flow 
conditions. If the design flood discharge 
over the spillway is 20,000 m3/s, what water 
flow rate should be tested in the model?
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• Skin friction ______________
• Wave drag (free surface effect) ________
• Therefore we need ________ and ______ 

similarity



Water is the only 
practical fluid
Water is the only 
practical fluid

Reynolds and Froude Similarity?
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Ship’s Resistance

• Can’t have both Reynolds and 
Froude similarity

• Froude hypothesis: the two 
forms of drag are independent

• Measure total drag on Ship
• Use analytical methods to 

calculate the skin friction
• Remainder is wave drag
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Exercise:

7.8, 7.9, 7.27, 7.34, 7.41, 7.49


