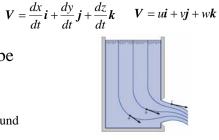
Fluid Kinematics

Fluid Flow Concepts and Reynolds Transport Theorem

- Descriptions of:
 - fluid motion
 - fluid flows
 - temporal and spatial classifications
- Analysis Approaches
 - Lagrangian vs. Eulerian
- Moving from a system to a control volume
 - Reynolds Transport Theorem

Fluid Motion

- Velocity field
- Two ways to describe fluid motion
 - Lagrangian
 - Follow particles around
 - Eularian
 - Watch fluid pass by a point or an entire region
 - Flow pattern
 - Streamlines velocity is tangent to them



Analysis Approaches

- Lagrangian (system approach)
 - Describes a defined <u>mass</u> (position, velocity, acceleration, pressure, temperature, etc.) as functions of time
 - Track the location of a migrating bird`
- Eulerian
 - Describes the flow <u>field</u> (velocity, acceleration, pressure, temperature, etc.) as functions of position and time
 - Count the birds passing a particular location

If you were going to study water flowing in a pipeline, which approach would you use? <u>Eulerian</u>

Descriptions of Fluid Motion

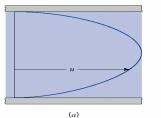
– streamline

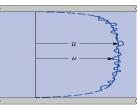
- Defined instantaneously
- has the direction of the velocity vector at each point
- no flow across the streamline
- steady flow streamlines are fixed in space
- unsteady flow streamlines move Defined as particle moves (over time)
- pathline
 - path of a particle
 - same as streamline for steady flow
- streakline
 - tracer injected continuously into a flow
 - same as pathline and streamline for steady flow

Descriptors of Fluid Flows

Laminar vs Turbulent Flow

- Laminar flow
 - fluid moves along smooth paths
 - viscosity damps any tendency to swirl or mix
- Turbulent flow
 - fluid moves in very irregular paths
 - efficient mixing
 - velocity at a point fluctuates





(*b*)

Flow Patterns Temporal/Spatial Classifications

• Uniform flow $\frac{\partial V}{\partial s} = 0$ • Non-uniform flow $\frac{\partial V}{\partial s} \neq 0$ • Steady flow $\frac{\partial V}{\partial t} = 0$ • Unsteady flow $\frac{\partial V}{\partial t} \neq 0$ Can turbulent flow be steady?

If averaged over a suitable time

Acceleration

• Cartesian coordinates $\vec{v} = u\vec{i} + v\vec{j} + w\vec{k}$ $\vec{a} = a_x\vec{i} + a_y\vec{j} + a_z\vec{k}$

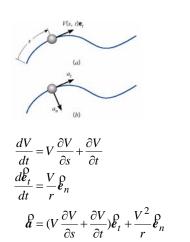
$$a_{x} = \frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + \frac{\partial u}{\partial z}\frac{dz}{dt} + \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}u + \frac{\partial u}{\partial y}v + \frac{\partial u}{\partial z}w + \frac{\partial u}{\partial t}$$
$$a_{y} = \frac{dv}{dt} = \frac{\partial v}{\partial x}\frac{dx}{dt} + \frac{\partial v}{\partial y}\frac{dy}{dt} + \frac{\partial v}{\partial z}\frac{dz}{dt} + \frac{\partial v}{\partial t} = \frac{\partial v}{\partial x}u + \frac{\partial v}{\partial y}v + \frac{\partial v}{\partial z}w + \frac{\partial v}{\partial t}$$
$$a_{z} = \frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt} + \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}u + \frac{\partial w}{\partial y}v + \frac{\partial w}{\partial z}w + \frac{\partial w}{\partial t}$$

Convective Local

Acceleration

- Acceleration = rate of change of velocity
- Components:
 - Normal changing direction
 - Tangential changing speed

$$\vec{V} = V(s,t)\vec{e}_t$$
$$\vec{a} = \frac{d\vec{V}}{dt} = \frac{dV}{dt}\vec{e}_t + V\frac{d\vec{e}_t}{dt}$$



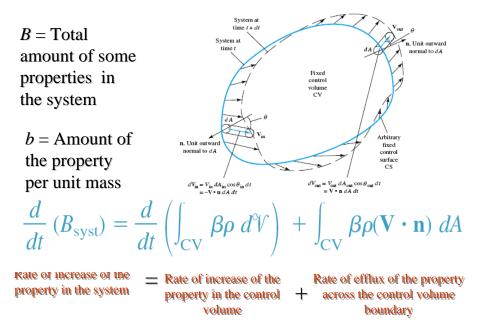
The Dilemma

- The laws of physics in their simplest forms describe systems (the Lagrangian approach)
 - Conservation of Mass, Momentum, Energy
- It is impossible to keep track of the system in many fluids problems
- The laws of physics must still hold in a Eulerian world!
- We need some tools to bridge the gap

Reynolds Transport Theorem

- A moving system flows through the fixed control volume.
- The moving system transports extensive properties across the control volume surfaces.
- We need a bookkeeping method to keep track of the properties that are being transported into and out of the control volume

Control Volume Conservation Equation



Application of Reynolds Transport Theorem

- Conservation of mass (for all species)
- Newton's 2nd law of motion (momentum)
 F =ma
- First law of thermodynamics (energy)

continuity, momentum, and energy equations

Summary

- Reynolds Transport Theorem can be applied to a control volume of finite size
 - We don't need to know the flow details within the control volume!
 - We do need to know what is happening at the control surfaces.
- We will use Reynolds Transport Theorem to solve many practical fluids problems

Exercise:

4.34, 4.43, 4.49, 4.67

Flow Rate

- Volume rate of flow
 - Constant velocity over cross-section

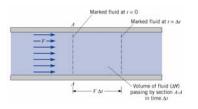
Q = VA

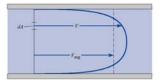
- Variable velocity

 $Q = \int_{A} V dA$

• Mass flow rate

$$n\& = \int_{A} \rho V dA = \rho \int_{A} V dA = \rho Q$$





Flow Rate

• Only *x*-direction component of velocity (*u*) contributes to flow through cross-section

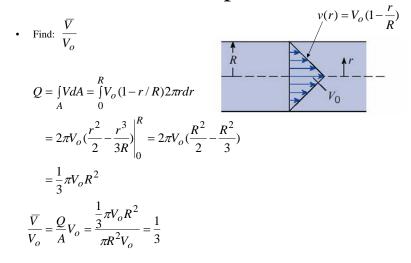
$$Q = \int_{A} V dA = \int_{A} u dA = \int_{A} V \cos \theta dA$$

or
$$Q = \int_{A} V \cdot dA$$

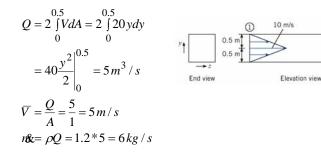
or
$$Q = V \cdot A$$

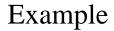
1.0 m

Example



Example





Given: $\mathbf{V} = 3t\mathbf{i}^{P} + xz\mathbf{j}^{P} + ty^{2}\mathbf{k}^{P}$ Find: Acceleration, \mathbf{a}^{P} $u = 3t; v = xz; w = ty^{2}$ $a_{x} = \frac{\partial u}{\partial x}u + \frac{\partial u}{\partial y}v + \frac{\partial u}{\partial z}w + \frac{\partial u}{\partial t} = 0(3t) + 0(xz) + 0(ty^{2}) + 3 = 3$ $a_{y} = \frac{\partial v}{\partial x}u + \frac{\partial v}{\partial y}v + \frac{\partial v}{\partial z}w + \frac{\partial v}{\partial t} = z(3t) + 0(xz) + x(ty^{2}) + 0 = 3zt + xy^{2}t$ $a_{z} = \frac{\partial w}{\partial x}u + \frac{\partial w}{\partial y}v + \frac{\partial w}{\partial z}w + \frac{\partial w}{\partial t} = 0(3t) + 2ty(xz) + 0(ty^{2}) + y^{2} = 2xyzt + y^{2}$ $\mathbf{a}^{P} = a_{x}\mathbf{i}^{P} + a_{y}\mathbf{j}^{P} + a_{z}\mathbf{k}^{P} = 3\mathbf{i}^{P} + (3tz + txy^{2})\mathbf{j}^{P} + (2xyzt + y^{2})\mathbf{k}^{P}$