Fluid Kinematics

Fluid Flow Concepts and
Reynolds Transport Theorem

Descriptions of:

— fluid motion

— fluid flows

— temporal and spatial classifications

Analysis Approaches

— Lagrangian vs. Eulerian

* Moving from a system to a control volume
— Reynolds Transport Theorem

Fluid Motion

dx. dy. dz

* Velocity field V=it X V =Ui +Vj+wk
» Two ways to describe
fluid motion
— Lagrangian
« Follow particles around
— Eularian

¢ Watch fluid pass by a
point or an entire region

— Flow pattern

« Streamlines — velocity
is tangent to them

Analysis Approaches

— Lagrangian (system approach)
* Describes a defined mMass (position, velocity,

acceleration, pressure, temperature, etc.) as functions
of time

» Track the location of a migrating bird"
— Eulerian

« Describes the flow field (velocity, acceleration,
pressure, temperature, etc.) as functions of position
and time

 Count the birds passing a particular location

If you were going to study water flowing in a pipeline, which
approach would you use? _Eulerian




Descriptions of Fluid Motion

— streamline Defined instantaneous
« has the direction of the velocity vector at each point >
« no flow across the streamline
« steady flow streamlines are fixed in space
« unsteady flow streamlines move
— pathline Defined as particle moves (over time)
« path of a particle
 same as streamline for steady flow
— streakline
« tracer injected continuously into a flow
« same as pathline and streamline for steady flow =——
o
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Descriptors of Fluid Flows
Laminar vs Turbulent Flow

— Laminar flow

* fluid moves along smooth paths

* viscosity damps any tendency to swirl or mix
— Turbulent flow

* fluid moves in very irregular paths

« efficient mixing

* velocity at a point fluctuates
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Flow Patterns
Temporal/Spatial Classifications
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Can turbulent flow be steady?
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Unsteady flow % #0
If averaged over a suitable time
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Acceleration

«  Acceleration = rate of change of T
velocity s
«  Components: o

— Normal — changing direction
— Tangential — changing speed
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The Dilemma

The laws of physics in their simplest forms
describe systems (the Lagrangian approach)
— Conservation of Mass, Momentum, Energy

It is impossible to keep track of the system
in many fluids problems

The laws of physics must still hold in a
Eulerian world!

We need some tools to bridge the gap

Reynolds Transport Theorem

* A moving system flows
through the fixed control
volume.

» The moving system transports
extensive properties across the
control volume surfaces.

» We need a bookkeeping
method to keep track of the
properties that are being
transported into and out of the
control volume

Control VVolume Conservation Equation
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Application of Reynolds
Transport Theorem

» Conservation of mass (for all species)

« Newton’s 2" Jaw of motion (momentum)
F =ma

* First law of thermodynamics (energy)

continuity, momentum, and energy equations

Summary

* Reynolds Transport Theorem can be applied
to a control volume of finite size

— We don’t need to know the flow details within
the control volume!

— We do need to know what is happening at the
control surfaces.

» We will use Reynolds Transport Theorem
to solve many practical fluids problems

Exercise:

4.34,4.43,4.49, 4.67

Flow Rate

* Volume rate of flow _
— Constant velocity over =
cross-section =
Q=VA :

— Variable velocity

Q= [VdA
A

* Mass flow rate

= | pVdA = p [VdA = pQ
A A




Example

Flow Rate
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