

Static Surface Forces

- Forces on plane areas
- Forces on curved surfaces
- Buoyant force

• Stability of floating and submerged bodies

Forces on Plane Areas

- Two types of problems
 - Horizontal surfaces (pressure is **constant**)

 $= -\gamma$

- Inclined surfaces
- Two unknowns
 - -Total force
 - -Line of action
- Two techniques to find the line of action of the resultant force
 - Moments
 - Pressure prism

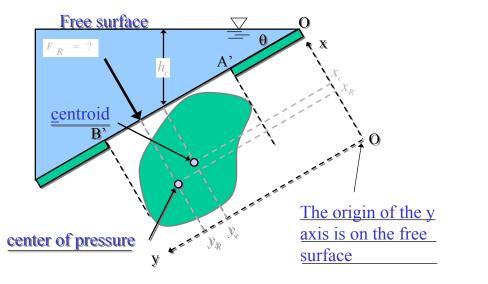
Forces on Plane Areas: Horizontal surfaces	
tank of water? $F_R = \int p dA = p \int dA = pA$ $p = \gamma h$	Side view
$F_R = \gamma h A$ h = $F_R = $ weight of overlying fluid!	= Vertical distance to free surface
F is normal to the surface and towards the surface if p is positive.	А
F passes through the <u>centroid</u> of the area.	Top view

Forces on Plane Areas: Inclined Surfaces

- Direction of force Normal to the plane
- Magnitude of force
 - integrate the pressure over the area
 - pressure is no longer constant!
- Line of action
 - Moment of the resultant force must equal the moment of the distributed pressure force

XXXXXXXXXXXX

Forces on Plane Areas: Inclined **Surfaces**



Magnitude of Force on Inclined Plane Area

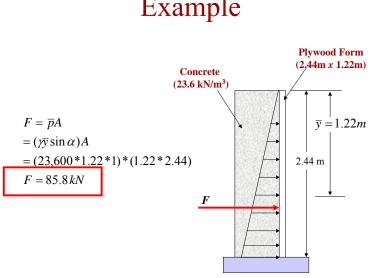
$$F_R = \int p dA$$

$$F_R = \gamma \sin \theta \int y dA$$

$$F_R = \gamma A y_c \sin \theta$$

h_c is the vertical distance between free $F_{R} = \gamma h_{c} A$ surface and centroid

$$F_R = p_c A$$
 p_c is the pressure at the centroid of the area



Example

Forces on Plane Areas: Center of Pressure: x_R

 The center of pressure is not at the centroid (because pressure is increasing with depth)
 x coordinate of center of pressure: x_R

$$x_{R}F_{R} = \int_{A} xpdA \qquad \text{Moment of resultant force} = \text{sum of} \\ \text{moment of distributed forces} \\ x_{R} = \frac{1}{F_{R}} \int_{A} xpdA \qquad F_{R} = y_{c}A\gamma\sin\theta \qquad p = \gamma y\sin\theta \\ x_{R} = \frac{1}{y_{c}}A\gamma\sin\theta} \int_{A} xy\gamma\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\sin\theta dA \\ x_{R} = \frac{1}{y_{c}} \int_{A} xydA \qquad F_{R} = y_{c}A\gamma\sin\theta + y_{c}\cos\theta + y$$

Center of Pressure: x_R $x_R = \frac{1}{y_c A} \int_A xy dA$ $I_{xy} = \int_A xy dA$ Product of inertia $x_R = \frac{I_{xy}}{y_c A}$ $I_{xy} = x_c y_c A + I_{xyc}$ Parallel axis theorem $x_R = \frac{x_c y_c A + I_{xyc}}{y_c A}$ $x_R = \frac{I_{xyc}}{y_c A} + x_c$

Center of Pressure: y_R

$$y_{R}F_{R} = \int_{A} ypdA \qquad \underline{Sum of the moments}}$$

$$y_{R} = \frac{1}{F_{R}} \int_{A} ypdA \qquad F_{R} = y_{c}A\gamma\sin\theta \qquad p = \gamma y\sin\theta$$

$$y_{R} = \frac{1}{y_{c}A\gamma\sin\theta} \int_{A} y^{2}\gamma\sin\theta dA$$

$$y_{R} = \frac{1}{y_{c}A} \int_{A} y^{2}dA \qquad I_{x} = \int_{A} y^{2}dA$$

$$y_{R} = \frac{I_{x}}{y_{c}A} \qquad I_{x} = I_{xc} + y_{c}^{2}A \qquad \underline{Parallel axis theorem}$$

$$y_{R} = \frac{I_{xc} + y_{c}^{2}A}{y_{c}A} \qquad y_{R} = \frac{I_{xc}}{y_{c}A} \neq y_{c}$$

Properties of Areas

$$I_{xc} \xrightarrow{b} \xrightarrow{b} \xrightarrow{f} R^{2} \qquad A = ab \qquad y_{c} = \frac{a}{2} \qquad I_{xc} = \frac{ba^{3}}{12} \qquad I_{xyc} = 0$$

$$I_{xc} \xrightarrow{a} \xrightarrow{f} y_{c} \qquad A = \frac{ab}{2} \qquad y_{c} = \frac{a}{3} \qquad I_{xc} = \frac{ba^{3}}{36} \qquad I_{xyc} = \frac{ba^{2}}{72} \quad f - 2d \downarrow$$

$$I_{xc} \xrightarrow{f} y_{c} \qquad A = \frac{ab}{2} \qquad x_{c} = \frac{b \neq d}{3} \qquad I_{xc} = \frac{ba^{3}}{36} \qquad I_{xyc} = \frac{ba^{2}}{72} \quad f - 2d \downarrow$$

Properties of Areas

$$I_{xc}$$
 $I_{xc} = \frac{y^{2}R^{2}}{2}$ $Y_{c} = \frac{4R}{3y}$ $I_{xc} = \frac{y^{2}R^{4}}{8}$ $I_{xyc} = 0$

$$I_{xc} \xrightarrow{i} b \xrightarrow{i} A = \mathcal{P} ab \quad y_c = a \qquad I_{xc} = \frac{\mathcal{P} ba^3}{4} \qquad I_{xyc} =$$

$$\overset{\uparrow}{\underset{R}{\square}} \underbrace{\bigcirc} \overset{\frown}{\underset{R}{\square}} \underbrace{\bigvee}_{c} A = \underbrace{\cancel{P} R^{2}}{4} \quad y_{c} = \frac{4R}{3p} \quad I_{xc} = \underbrace{\cancel{P} R^{4}}{16}$$

Inclined Surface Findings

- The horizontal center of pressure and the horizontal centroid <u>coincide</u> when the surface has either a horizontal or vertical axis of symmetry
- The center of pressure is always <u>below</u> the centroid

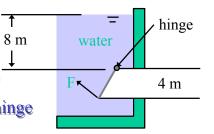
- The vertical distance between the centroid and the center of pressure <u>decreases</u> as the surface is lowered deeper into the liquid (y_c increases)
- What do you do if there isn't a free surface?

Example

An elliptical gate covers the end of a pipe 4 m in diameter. If the gate is hinged at the top, what normal force F applied at the bottom of the gate is required to open the gate when water is 8 m deep above the top of the pipe and the pipe is open to the atmosphere on the other side? Neglect the weight of the gate.

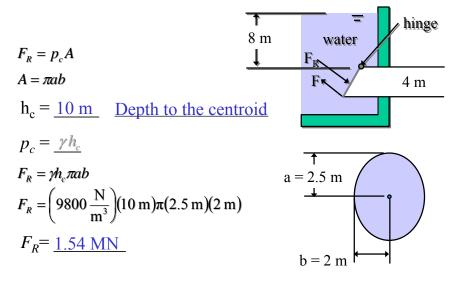
Solution Scheme

- Magnitude of the force applied by the water
- Location of the resultant force
- Find F using moments about hinge

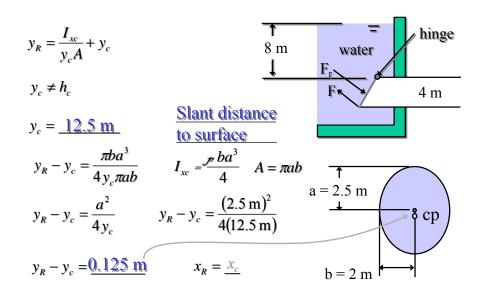


0

Magnitude of the Force



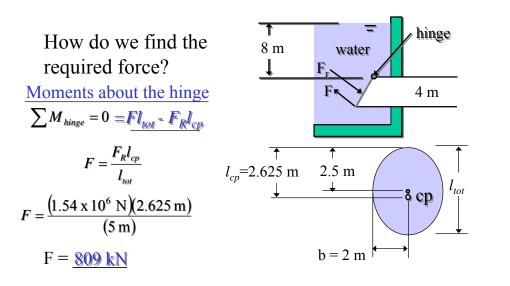
Location of Resultant Force



Forces on Plane Surfaces Review

- The average magnitude of the pressure force is the pressure at the centroid
- The horizontal location of the pressure force was at x_c (WHY?) <u>The gate was symmetrical</u> about at least one of the centroidal axes.
- The vertical location of the pressure force is below the centroid. (WHY?) <u>Pressure</u> increases with depth.

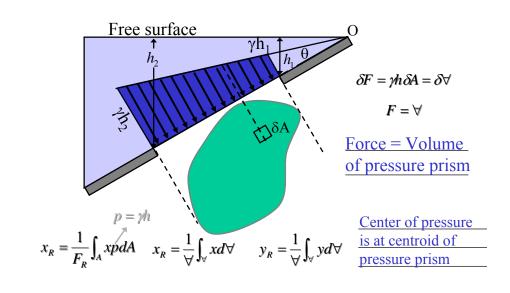
Force Required to Open Gate



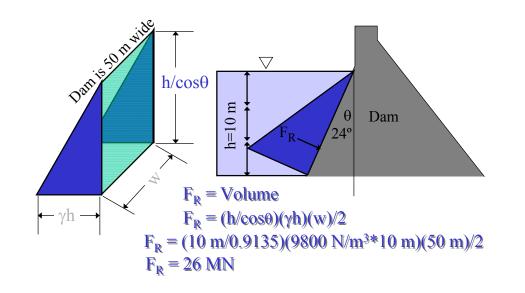
Forces on Plane Areas: Pressure Prism

- A simpler approach that works well for areas of constant width (<u>rectangles</u>)
- If the location of the resultant force is required and the area doesn't intersect the free surface, then the moment of inertia method is about as easy

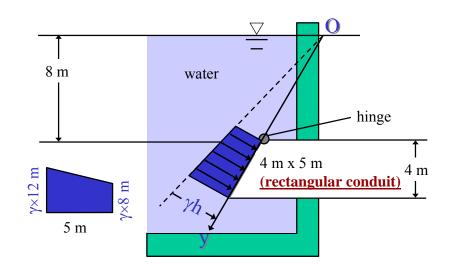
Forces on Plane Areas: Pressure Prism



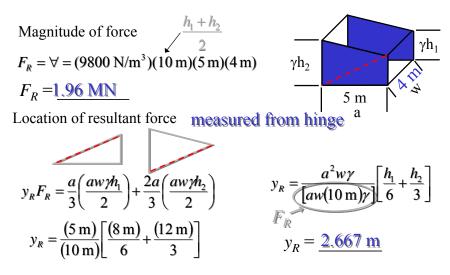
Example : Pressure Prism



Example : Pressure Prism



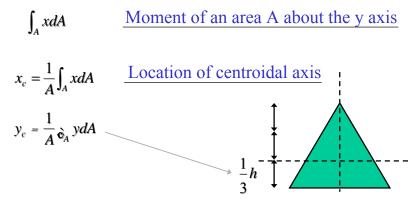
Solution : Pressure Prism



Exercise:

2.61, 2.67, 2.71, 2.77

First Moments



For a plate of uniform thickness the intersection of the centroidal axes is also the center of gravity

Second Moments

Also called moment of inertia of the area

 $I_x = \int_A y^2 dA$

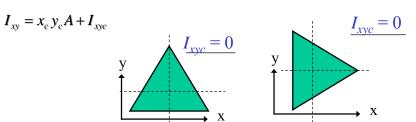
 $I_x = I_{xc} + A y_c^2$

 I_{xc} is the 2nd moment with respect to an axis passing through its centroid and parallel to the x axis. Parallel axis theorem

Product of Inertia

• A measure of the asymmetry of the area

 $I_{xy} = \int_A xy dA$ Product of inertia



If $x = x_c$ or $y = y_c$ is an axis of symmetry then the product of inertia I_{xvc} is zero.