
Hydrostatic Forces on 
Plane Surfaces Static Surface Forces

• Forces on plane areas
• Forces on curved surfaces
• Buoyant force
• Stability of floating and submerged bodies

Forces on Plane Areas

• Two types of problems
– Horizontal surfaces (pressure is _______)
– Inclined surfaces

• Two unknowns
– ____________
– ____________

• Two techniques to find the line of action of 
the resultant force
– Moments
– Pressure prism
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Forces on Plane Areas: 
Horizontal surfaces
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p = h

F is normal to the surface and towards 
the surface if p is positive.

F passes through the ________ of the area.
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What is the force on the bottom of this 
tank of water?
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centroid
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Vertical distance 
to free surface



Forces on Plane Areas: Inclined 
Surfaces

• Direction of force
• Magnitude of force

– integrate the pressure over the area
– pressure is no longer constant!

• Line of action
– Moment of the resultant force must equal the 

moment of the distributed pressure force

Normal to the plane

Forces on Plane Areas: Inclined 
Surfaces
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Magnitude of Force on Inclined 
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Forces on Plane Areas: 
Center of Pressure: xR

• The center of pressure is not at the centroid 
(because pressure is increasing with depth)
– x coordinate of center of pressure: xR
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Parallel axis theorem
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Properties of Areas
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Inclined Surface Findings

• The horizontal center of pressure and the 
horizontal centroid ________ when the surface 
has either a horizontal or vertical axis of 
symmetry

• The center of pressure is always _______ the 
centroid

• The vertical distance between the centroid and 
the center of pressure _________ as the surface 
is lowered deeper into the liquid

• What do you do if there isn’t a free surface?
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An elliptical gate covers the end of a pipe 4 m in diameter. If the 
gate is hinged at the top, what normal force F applied at the 
bottom of the gate is required to open the gate when water is 8 m 
deep above the top of the pipe and the pipe is open to the 
atmosphere on the other side? Neglect the weight of the gate.
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Solution Scheme
Magnitude of the force 
applied by the water
Magnitude of the force 
applied by the water

Example

•

•
•

Location of the resultant forceLocation of the resultant force

Find F using moments about hingeFind F using moments about hinge

Depth to the centroid

Magnitude of the Force
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Location of Resultant Force
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Force Required to Open Gate

How do we find the 
required force?
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Forces on Plane Surfaces Review

• The average magnitude of the pressure force 
is the pressure at the centroid

• The horizontal location of the pressure force 
was at xc (WHY?) ____________________ 
___________________________________

• The vertical location of the pressure force is 
below the centroid. (WHY?) ___________ 
___________________

The gate was symmetrical 
about at least one of the centroidal axes.

The gate was symmetrical 
about at least one of the centroidal axes.

Pressure 
increases with depth.

Forces on Plane Areas:
Pressure Prism

• A simpler approach that works well for 
areas of constant width (_________)

• If the location of the resultant force is 
required and the area doesn’t intersect the 
free surface, then the moment of inertia 
method is about as easy

rectangles
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Forces on Plane Areas: Pressure 
Prism
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Exercise:

2.61, 2.67, 2.71, 2.77 First Moments
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For a plate of uniform thickness the intersection of the centroidal 
axes is also the center of gravity

Moment of an area A about the y axis

Location of centroidal axis

h
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Second Moments

Also called _______________ of the area
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Ixc is the 2nd moment with respect to an 
axis passing through its centroid and 
parallel to the x axis.

moment of inertia

Parallel axis theorem

Product of Inertia
• A measure of the asymmetry of the area
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If x = xc or y = yc is an axis of symmetry then the product of 
inertia Ixyc is zero. 
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