

Owner: Gilan regional water authority Name of dam: Sefidrud Objective: water supply, irrigation and Hydroelectricity

1- Technical data:

General Province: Gilan Nearest city: Manjil River: Sefidrud Year of completion: 1962

Dam: Type: Concrete Buttress Height above foundation (m):106 Crest length (m): 425 Volume (million m³): 840000

Appurtenant structures: spillway type:Morning glory and chute Max. discharge capacity (m³/s): 7500

Reservoir: Gross capacity (million m³): 1650 Effective capacity (million m³): 1100 Regulated annual water (million m³): 1650 Installed capacity (MW): 87.5

Engineer: E.T.C.O. Edfer consulting engineers Contractor: Saser Co.

Definitions and Applications

- Statics: no relative motion between adjacent fluid layers.
 - Shear stress is zero
 - Only pressure can be acting on fluid surfaces
- Gravity force acts on the fluid (body force)
- Applications:
 - Pressure variation within a reservoir
 - Forces on submerged surfaces
 - Tensile stress on pipe walls
 - Buoyant forces

What do we need to know?

- Pressure variation with direction
- Pressure variation with location
- How can we calculate the total force on a submerged surface?

Pressure Variation with Direction (Pascal's law)

Pressure Field Pressure $\left(p + \frac{\partial p}{\partial z}\frac{\partial z}{2}\right) \delta x \delta y$ Small element of fluid in pressure Forces acting $p_{A}A \sin \alpha$ gradient with arbitrary acceleration on surfaces of Weight $\Delta z = \Delta l \sin \alpha$ Ζ element Pressure is p at $\Delta x = \Delta l \cos \alpha$ center of element $p_z \Delta A \cos \alpha$ $\left(p + \frac{\partial p}{\partial y}\frac{\partial y}{2}\right) \partial x \partial z$ $\sum F_x = 0 = p_x \Delta y \Delta l \sin \alpha - p_n \Delta y \Delta l \sin \alpha$ $\Rightarrow p_n = p_x$ $\left(p - \frac{\partial p}{\partial y}\frac{\delta y}{2}\right)\delta x \delta z$ $\sum F_z = 0 = p_z \Delta y \Delta l \cos \alpha - p_n \Delta y \Delta l \cos \alpha - \frac{1}{2} \gamma \Delta l \cos \alpha \Delta l \sin \alpha \Delta y$ Mass... k $\Rightarrow p_n = p_z$ $\delta m = \rho \delta x \delta y \delta z$ у $\left(p - \frac{\partial p}{\partial z}\frac{\partial z}{\partial z}\right) \delta x \delta y$ х

Simplify the expression for the force acting on the element

$$\delta F_{y} = \left(p - \frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z - \left(p + \frac{\partial p}{\partial y} \frac{\delta y}{2}\right) \delta x \delta z \qquad \text{Same in x, z!}$$
$$\delta F_{y} = -\frac{\partial p}{\partial y} \delta x \delta y \delta z \qquad \delta F = -\nabla p \, \delta x \, \delta y \delta z \qquad \delta F_{z} = -\frac{\partial p}{\partial z} \delta x \, \delta y \, \delta z$$
vector notation

$$\partial \mathbf{F} = -\left(\frac{\partial p}{\partial x}\,\hat{\mathbf{i}} + \frac{\partial p}{\partial y}\,\hat{\mathbf{j}} + \frac{\partial p}{\partial z}\,\hat{\mathbf{k}}\right) \delta x \,\delta y \,\delta z$$

$$\delta F_x = -\frac{\partial p}{\partial x} \, \delta x \, \delta y \, \delta z$$

Forces acting on element of fluid due to pressure gradient

 $\frac{\partial p}{\partial x}\hat{\mathbf{i}} + \frac{\partial p}{\partial y}\hat{\mathbf{j}} + \frac{\partial p}{\partial z}\hat{\mathbf{k}} = \nabla p$

Apply Newton's Second Law

$\partial \mathbf{F} = \delta m \mathbf{a}$ $\partial \mathbf{F} = -\nabla p \delta x \delta y \delta z$	Obtain a general vector expression relating pressure gradient to acceleration and write the 3 component equations.
$\delta m = \rho \delta x \delta y \delta z$	Mass of element of fluid
$-\nabla p\delta x\delta y\delta z=\rho\delta x\delta y\delta z\mathbf{a}$	Substitute into Newton's 2nd Law
$-\nabla p = \rho \mathbf{a}$	$-\nabla p = \rho \mathbf{a} + \gamma \hat{\mathbf{k}} \qquad \mathbf{\delta F} = \mathbf{Fs-W}$
$-\frac{\partial p}{\partial x} = \rho a_x -\frac{\partial p}{\partial y} = \rho a_y -\frac{\partial p}{\partial y} = \rho a_y$	$-\frac{\partial p}{\partial z} = \rho a_z$ 3 component equations
$-\frac{dp}{dt} = \rho g = \gamma$ At rest (independent of x and y)

Pressure Variation When the Specific Weight is Constant (fluid at rest)

• What are the two things that could make specific weight (γ) vary in a fluid?

Compressible fluid - changing density Changing gravity γ is constant

 $p = -\gamma z + \text{constant}$

 $\frac{p}{\gamma} + z = \text{constant}$

$\frac{p_1}{\gamma} + z_1 = \frac{p_2}{\gamma} + z_2$

Piezometric head

Pressure Variation with Elevation

Pressure Variation with Elevation

Example: Pressure at the bottom of a Tank of Water?

Pressure Field

• In the absence of shearing forces (no relative motion between fluid particles) what causes pressure variation within a fluid?

Which has the highest pressure?

Piezometric Head

Pressurized Tank

Pressurized Tank

Example

- Tank contins fluid with $\gamma_A > \gamma_B$
- Which graph depicts the correct pressure distribution?

Pressure Measurement (Absolute & Gage)

Mercury Barometer

Example

Compressible Fluids

• Density is nearly proportional to pressure

$$\frac{dp}{dz} = -\gamma$$
 but $\gamma = \rho g$ and $\rho \neq constant$

• For perfect gasses

$$p = \rho RT \implies \rho = \frac{p}{RT} \implies \frac{dp}{dz} = -\frac{p}{RT}g$$

- Need to know T = T(z)
 - Constant (Isothermal): $T = T_0 = const.$
 - Linear: $T = T_0 \alpha(z z_0)$

Compressible Fluids

• Assume constant and integrate

Pressure Measurement

- Barometers Weight or pressure
- Manometers
 - Standard
 - Differential
- Mechanical devices and Pressure Transducers

Manometry

• Pressure can be estimated by measuring fluid elevation

Standard Manometers

Manometers for High Pressures

Example

Find the location of the surface in the manometer

The distance Δh is the height of the liquid in the manomoter above the heavier liquid in the tank.

$$p_A + 0.1 * \gamma_w - \Delta h * \gamma_m = p_D$$
$$p_A = P_D = 0$$

$$\Delta h = 0.1 * \frac{\gamma_w}{\gamma_m}$$
$$\Delta h = 0.1 * \frac{1}{3} = 3.33 \, cm$$

Differential Manometers

Differential Manometer

Procedure to keep track of pressures

- Start at a known point or at one end of the system and write the pressure there using an appropriate symbol
- Add to this the change in pressure to the next meniscus (plus if the next meniscus is lower, and minus if higher)
- Continue until the other end of the gage is reached and equate the expression to the pressure at that point

Example

Bourdon gage

Pressure Transducers

- Can be monitored easily by computer
- Applications:
 - Volume of liquid in a tank
 - Flow rates
 - Process monitoring and control

Find: Specific weight of fluid

Solution:

Summary for Statics

- Pressure is independent of <u>direction</u>
- Pressure increases with <u>depth</u>
 - constant density $dp = -\gamma dz$ $\mathbf{p} = \gamma \mathbf{h}$
- Pressure scales
 - units
 - datum
- Pressure measurement

Statics example

What is the air pressure in the cave air pocket?

Exercise:

<u>2.26, 2.28, 2.29, 2.30, 2.36, 2.45</u>