

Fluid Mechanics

- Definition
 - The study of liquids and gasses at rest (statics) and in motion (dynamics)
- Engineering applications
 - Blood in capillaries
 - Oil in pipelines
 - Groundwater movement
 - Runoff in parking lots
 - Pumps, filters, rivers, etc.

States of Matter

- Fluids (gasses and liquids) and solids
- What's the difference?
 - Fluid particles are free to move among themselves and give way (flow) under the slightest tangential (shear) force

Classes of Fluids

- Liquids and gasses What's the difference?
 - Liquids: Close packed, strong cohesive forces, retains volume, has free surface
 - <u>Gasses:</u> Widely spaced, weak cohesive forces, free to expand

Common Fluids

- Liquids:
 - water, oil, mercury, gasoline, alcohol
- Gasses:
 - air, helium, hydrogen, steam
- Borderline:
 - jelly, asphalt, lead, toothpaste, paint, pitch

Primary Dimensions & Units

- **Dimension:** Generalization of "unit" telling us what kind of units are involved in a quantitative statement
 - Mass [M], length [L], time [T], temperature $[\theta]$
- Unit: Particular dimension
 - kg, m, s, °K (Systeme International) - slug, ft, s, °R (British Gravitational)
 - lbm, ft, s, °R (English Engineering)

Secondary Units

- Force
 - Ν lbf
- = kg-m/s² = slug-ft/s²
- = 32.2 lbm-ft/s²
- Work/Energy (Force through a distance)
 - = N-m ft-lbf

J

- Power (Work per time)
 - W = J/sft-1bf/s 550 ft-lb/s hp

 $\left[\frac{ML}{T^2}\right] = \left[M\right]\left[\frac{L}{T^2}\right]$

ma

Ќ =

(Newton)

(pound force)

(Joule)

(foot pound)

(Watt)

(foot pound per sec) (horsepower)

Dimensions and Units

Quantity	Symbol	Dimensions
Velocity	V	LT ⁻¹
Acceleration	a	LT ⁻²
Area	A	L^2
Volume	\checkmark	L ³
Discharge	Q	$L^{3}T^{-1}$
Pressure	р	ML-1T-2
Gravity	g	LT ⁻²
Temperature	T	Θ
Mass concentration	on C	ML ⁻³

Fluid as a Continuum

- Fluids are aggregates of molecules
 - Widely spaced: gasses
 - Closely spaced: liquids
- Intermolecular distance is large compared to molecular diameter
- Molecules move freely
- Air at STP (standard temperature and pressure): $\delta V^*=10^{-9} \text{ mm}^3 \text{ and}$ contains $3x10^7$ molecules
- Continuum hypothesis

Fluid Properties

- Density: Mass per unit volume
 - How large is the volume?
 - Too small: # molecules changes continuously
 - Large: # molecules remains almost constant
 - At these scales, fluid properties (e.g., density) can be thought of as varying continuously in

space.

Density

- Mass per unit volume (e.g., @ 20 °C, 1 atm)
 - Water $\rho_{water} = 1000 \text{ kg/m}^3$
 - Mercury $\rho_{Hg} = 13,500 \text{ kg/m}^3$
 - Air
- $\rho_{air} = 1.22 \text{ kg/m}^3$
- Densities of gasses increase with pressure
- Densities of liquids are nearly constant (incompressible) for constant temperature
- Specific volume = 1/density

Specific Weight

- $\gamma = \rho g$ $[N/m^3] or [lbf / ft^3]$
- Weight per unit volume (e.g., @ 20 °C, 1 atm)
 - γ_{water} = (998 kg/m³)(9.807 m²/s) = 9790 N/m³

$[= 62.4 \text{ lbf/ft}^3]$

 γ_{air} = (1.205 kg/m³)(9.807 m²/s) = 11.8 N/m³

$[= 0.0752 \text{ lbf/ft}^3]$

APPROXIMATE PHYSICAL PROPERTIES OF COMMON LIQUIDS AT ATMOSPHERIC PRESSURE

Liquid and temperature	Density kg/m ³ (slugs/ft ³)	Specific gravity (S) water at 4°C is ref.	Specific weight, N/m ³ (lbf/ft ³)	Dynamic viscosity, N ·s/m ² (lbf-s/ft ²)	Kinematic viscosity, m ² /s (ft ² /s)	Surface tension, N/m* (lbf/ft)
Ethyl alcohol(3)(1)	799	0.79	7,850	1.2×10^{-3}	1.5×10^{-6}	2.2×10^{-2}
20°C (68°F)	(1.55)		(50.0)	(2.5×10^{-5})	(1.6×10^{-5})	(1.5×10^{-3})
Carbon tetrachloride(3)	1,590	1.59	15,600	9.6×10^{-4}	6.0×10^{-7}	2.6×10^{-2}
20°C (68°F)	(3.09)		(99.5)	(2.0×10^{-5})	(6.5×10^{-6})	(1.8×10^{-3})
Glycerine ⁽³⁾	1,260	1.26	12,300	6.2×10^{-1}	5.1×10^{-4}	6.3×10^{-2}
20°C (68°F)	(2.45)		(78.5)	(1.3×10^{-2})	(5.3×10^{-3})	(4.3×10^{-3})
Kerosene ⁽²⁾⁽¹⁾	814	0.81	8,010	1.9×10^{-3}	2.37×10^{-6}	2.9×10^{-2}
20°C (68°F)	(1.58)		(51)	(4×10^{-5})	(2.55×10^{-5})	(2.0×10^{-3})
Mercury ⁽³⁾⁽¹⁾	13,550	13.55	133,000	1.5×10^{-3}	1.2×10^{-7}	4.8×10^{-1}
20°C (68°F)	(26.3)		(847)	(3.2×10^{-5})	(1.3×10^{-6})	(3.3×10^{-2})
Sea water 10°C	1,026	1.03	10,070	1.4×10^{-3}	1.4×10^{-6}	
at 3.3% salinity	(1.99)		(64.1)	(3×10^{-5})	(1.5×10^{-5})	
Oils-38°C (100°F)						
SAE 10W(4)	870	0.87	8,530	3.6×10^{-2}	4.1×10^{-5}	
	(1.69)		(54.4)	(7.4×10^{-4})	(4.4×10^{-4})	
SAE 10W-30 ⁽⁴⁾	880	0.88	8,630	6.7×10^{-2}	7.6×10^{-5}	
	(1.71)		(55.1)	(1.4×10^{-3})	(8.2×10^{-4})	
SAE 30 ⁽⁴⁾	880	0.88	8,630	1.0×10^{-1}	1.1×10^{-4}	
	(1.71)		(55.1)	(2.0×10^{-3})	(1.2×10^{-3})	

*Liquid-air surface tension values.

*Lquin-air surface tension values. Sources: (1) VL. Streeter, Handbook of Fluid Drananics, McGraw-Hill Book Company, New York, 1961; (2) VL. Streeter, Fluid Mechanics, 4th ed., McGraw-Hill Book Company, New York, 1966; (3) J. Vennard, Elementary Fluid Mechanics, 4th ed., John Wiley & Sons, Inc., New York, 1961; (4) R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Sciences, CRC Press, Inc., Cleveland, 1973.

Ideal Gas Law

• Equation of state

 $pV = nR_nT$ $p = \rho RT$, $R = R_n / M$

 R_n = universal gas constant = 8.314472 J/(mol•K)

n = number of moles of gas (m/M)

M = molecular weight of the gas

PHYSICAL PROPERTIES OF GASES AT STANDARD ATMOSPHERIC PRESSURE AND 15°C (59°F)

Gas	Density, kg/m ³ (slugs/ft ³)	Kinematic viscosity, m ² /s (ft ² /s)	R Gas constant, J/kg K (ft-lbf/slug-°R)	$ \begin{pmatrix} c_{\rho} \\ \mathbf{J} \\ \mathbf{\overline{kg K}} \\ \left(\frac{\mathbf{Btu}}{\mathbf{lbm}\text{-}^{\circ}\mathbf{R}} \right) \\ \end{split} $	$k = \frac{c_p}{c_v}$	S Sutherland's Constant K ("R)
Air	1.22 (0.00237)	$\begin{array}{c} 1.46 \times 10^{-5} \\ (1.58 \times 10^{-4}) \end{array}$	287 (1716)	1004 (0.240)	1.40	111 (199)
Carbon dioxide	1.85 (0.0036)	$\begin{array}{c} 7.84 \times 10^{-6} \\ (8.48 \times 10^{-5}) \end{array}$	189 (1130)	841 (0.201)	1.30	222 (400)
Helium	0.169 (0.00033)	$\begin{array}{c} 1.14 \times 10^{-4} \\ (1.22 \times 10^{-3}) \end{array}$	2077 (12,419)	5187 (1.24)	1.66	79.4 (143)
Hydrogen	0.0851 (0.00017)	$\begin{array}{c} 1.01\times 10^{-4} \\ (1.09\times 10^{-3}) \end{array}$	4127 (24,677)	14,223 (3.40)	1.41	96.7 (174)
Methane (natural gas)	0.678 (0.0013)	1.59×10^{-5} (1.72×10^{-4})	518 (3098)	2208 (0.528)	1.31	198 (356)
Nitrogen	1.18 (0.0023)	$\begin{array}{c} 1.45 \times 10^{-5} \\ (1.56 \times 10^{-4}) \end{array}$	297 (1776)	1041 (0.249)	1.40	107 (192)
Oxygen	1.35 (0.0026)	1.50×10^{-5} (1.61 × 10 ⁻⁴)	260 (1555)	916 (0.219)	1.40	

SURCE V. L. Streeter (ed.), Handbook of Fluid Dynamics: McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc. Cleveland, 1973; and Handbook of Chemistry and Physics, Chemical Rubber Company, 1951.

Example

- Given: Natural gas
 - Time 1: T_1 =10°C, p_1 =100 kPa
 - Time 2: T₂=10°C, p₂=200 kPa
- Find: Ratio of mass at time 2 to that at time 1
 - Ideal gas law (p is absolute pressure)

$$M = \rho V = \frac{p}{RT} V \qquad \frac{M_1}{M_2} = \frac{\frac{p_1}{RT}V}{\frac{p_2}{RT}V} = \frac{p_1}{p_2}$$
$$\frac{M_2}{M_1} = \frac{300 \, kPa}{200 \, kPa} = 1.5$$

Definition of a Fluid

- "a fluid, such as water or air, <u>deforms</u> <u>continuously</u> when acted on by shearing stresses of any magnitude."
 - Munson, Young, Okiishi

Fluid Deformation between Parallel Plates

Force F causes the top plate to have velocity U. What other parameters control how much force is required to get a desired velocity?

Distance between plates (b)

Area of plates (A) Viscosity!

